Production of I-123

Total Page:16

File Type:pdf, Size:1020Kb

Production of I-123 United States Patent [191 L I I I 3,971,697 Blue 1451 July 27, 1976 PRODUCTION OF lsnI 3,018,159 111962 Silverman ........................... 423/249 3,694,313 911972 Blue et al .............................. 176116 Inventor: James W. Blue, Bay Village, Ohio OTHER PUBLICATIONS Assignee: The United States of America as represnted by the National Bulletin of the Chemical Society of Japan, Feb. 1970, Aeronautics and space vol. 43, No. 2, p. 576, Kat0 et al. Administration, Washington, D.C. Isotopes and Radiation Technology, vol. 4, No. 3, Filed: July 12, 1973 1967, pp. 275-280. Uses of Cyclotrons in Chemistry, Metallurgy and Biol- Appl. No.: 380,046 ogy, Proc. Conf., Sept. 1969, pp. 138-148, Blue et al. Related U.S. Application Data Continuation-in-part of Ser. No. 247,434. April 25, Primary Examiner-Harvey E. Behrend 1972. Attorney, Agent, or Firm-N. T. Musial; G. E. Shook; John R. Manning U.S. CI. .................................... 176111; 176116; 176114; 2501400; 2501429; 2501492 R [571 ABSTRACT Int. C1.* ........................................... G21G 1/10 Field of Search .......................... 17611 1, 16, 14; Bombarding a cesium heat pipe with high energy par- 4231249; 2501429, 400, 492, 432 ticles causes a spallation reaction which produces va- pors of lZ3Xeand contaminants. The contaminants are References Cited removed in a dry ice cold trap while the con- denses in a liquid nitrogen trap where it decays to UNITED STATES PATENTS "',. 2,795,482 611957 McNabney .......................... 4231249 6 Claims, 1 Drawing Figure 3,971,697 3,971,697 1 2 PRODUCTION OF 1231 DESCRIPTION OF THE PREFERRED EMBODIMENT ORIGIN OF THE INVENTION Referring now to the drawing there is shown a target The invention described herein was made by an em- assembly which extends into a beam duct 12 of a high ployee of the United States Government and may be energy accelerator. It is contemplated the target assem- manufactured and used by or for the Government for bly 10 may be used with the LOS ALAMOS MESON governmental purposes without the payment of any FACILITY, known as LAMF. Another high energy royalties thereon or therefor. accelerator located in Canada, called TRIUMF, would STATEMENT OF COPENDENCY lo be a suitable source of high energy particles. The beam in the duct 12 from such accelerators is characterized This application is a continuation-in-part of applica- by high energy between 200 MeV and 2000 MeV and tion serial No. 247,434 which was filed Apr. 25, 1972. high current. BACKGROUND OF THE INVENTION The target assembly 10 is in the form of a heat pipe l5 which comprises a tubular container 14 having a supply This invention is concerned with the production of 16 of cesium-133 in the end which extends into the high purity radioiodine for thyroid measurements and beam duct 12. The opposite end of the tube 14 which as a general radionuclide. The invention is particularly protrudes from the duct 12 is surrounded by cooling directed to the utilization of a heat pipe in the produc- coils 18. A suitable cooling fluid, such as water, is cir- tion of radioisotopes using very intense particle accel- *O culated through the coils 18. erators. A porous metal plug 20 is mounted in the container Radioactive iodine is used for medical diagnostic 14 adjacent to the cooling coils 18. A wick 22 extends studies. The isotope 1311 has been used for this purpose along the inner wall of the tube 14 between the plug 20 because of its availability. The radioisotope lBI is con- 25 and the cesium 16. sidered much superior to the I3lI in studies where the A tube 24 connects the inside of the container 14 to amount of radiation exposure to a patient is of prime a cold trap 26 through a valve 28. Tygon tubing has concern. Because of the shorter half-life and the decay been satisfactory for the tubular conduit 24. The cold by electron capture, the radiation exposure received by trap 26 comprises a U-tube 30 immersed in a coolant in the patient from IZ3I is about one-fortieth that of an 3o an insulated container 32. A one-fourth inch copper equal amount of l3II. U-tube surrounded by solid COz in a Dewar has been lBI is also superior to 1311 because the gamma ray satisfactory. The dry ice maintains a trap 26 at a tem- energy of lZ3Iis 159 KEV compared to 364 KEV of 1311. perature of -79°C. Collimators operate more effectively with this lower A valve 34 connects the dry ice trap 26 to a second energy. Also the collimators used with lZ3I are less cold trap 36. A one-fourth inch copper U-tube 38 im- bulky. 35 mersed in liquid nitrogen in a Dewar 40 has been satis- A method of lZ3I production is disclosed in U.S. Pat. factory for the cold trap No. 3,694,3 13. The method disclosed in this patent has 36. The liquid nitrogen main- been quite successful in terms of freedom from radio- tains the trap 36 at a temperature of -196°C. A valve active impurities. However, the method is not capable 42 is used to isolate the trap 36 or connect it to a vac- ' of handling the power densities involved in using high 40 uum pump 44. energy, high current machines. In operation, a beam of high energy protons identi- fied by the arrow in the duct 12 penetrates the tubular SUMMARY OF THE INVENTION container 14 and strikes the cesium-I33 in the target According to the present invention cesium is used assembly 10. The beam penetrating the cesium causes both as the working fluid of a heat pipe and as the 45 what is known in nuclear physics as a spallation reac- target material for high energy protons. A spallation tion which produces Iz3Xe according to the reaction reaction produces lZ3Xeand many radioactive contami- 13Ts (p,p 10n)Iz3Xe. nants which pass from the heat pipe to low temperature This is only one of a number of reactions that lead to traps where the undesirable contaminants are removed. significant impurities. Some of these reactions are 133C~ The xenon is held for a period of time sufficient for it to 50 (p, 2p 8n)1241,'=Cs (p, 2p 7n)lZ5I,133Cs(p, 2p 6n)lZ6I, decay to lZ3l. 13Ts (p, 3p 8n)lZ3Te,lmCs (p, 4p 6n)Iz4Sb. To produce these spallation reactions the incident OBJECTS OF THE INVENTION proton must have an energy greater than 200 MeV. It is, therefore, an object of the invention to produce The first three reactions produce the radioactive io- the radioisotope IBI with high energy particles from 55 dines Iz4I, lZ5I and IZsI. These radioactive iodines would very intense particle accelerators. seriously contaminate the desired lZ3I because they Another object of the invention is to produce lZ3I cannot be chemically separated. The other impurities using a heat pipe that is bombarded with high energy formed by the above listed reactions could be sepa- particles. rated chemically because they are different elements. These and other objects of te invention will be appar- 60 However, this is not necessary in the heat pipe device ent from the specification which follows and from the because all of the imwrities have a lower vapor pres- drawing wherein like numerals are used throughout to sure than the desired lz3Xe and can be coliected on identify like parts. cool surfaces at the heat rejection end of the heat pipe. Radioactive isotopes of iodine, tellurium, antimony, DESCRIPTION OF THE DRAWINGS 65 tin, indium, and cesium are all contaminants. The drawing is a schematic view of an apparatus for All of the isotopes of hydrogen and helium could be producing radioactive iodine in accordance with the accelerated to hundreds of MeV and produce the de- invention. sired spallation reaction. An example would be 13Ts(cy, 3,97 1,697 3 4 3p Pln)"%e. The same contaminants as produced by fer properties, such as enthalpy, melting point, boiling proton bombardment would also be produced. point and vapor pressure-temperature curve. No other The beam penetrating the cesium-I33 deposits en- element has these properties together with the nuclear ergy in the cesium that heats this target to the point requirements as required by the target material. where it vaporizes. All charged particle beams lose 5 Although the preferred embodiment has been shown energy by ionizing and exciting electrons on the atoms and described it is contemplated that various structural of the stopping material, such as cesium. The individual modifications may be made to the disclosed apparatus particles that make up the beam actually lose velocity without departing from the spirit of the invention or the in a continuous manner. This energy lost by the beam scope of the subjoined claims. By way of example, it is appears as heat, and if the beam current is large enough 10 contemplated that different trap configurations could this heat will melt metallic cesium and vaporize it. The be utilized. The trap 26 could be a chemical trap, such vapor is transported to the end of the tubular chamber as hot silver, to remove radioiodine impurities. The 14 where it is cooled by the cooling coils 18. The tem- IznXe trap 36 could work on the absorption principle. perature at the hot end of the heat pipe is 670°C which The trap 34 could also contain a pharmaceutical is the boiling point of cesium. The temperature at the 15 compound that would become tagged or labeled when cold end is above the melting point and below the boil- the xenon decays to iodine.
Recommended publications
  • Modelling Transport and Deposition of Caesium and Iodine from the Chernobyl Accident Using the DREAM Model J
    Modelling transport and deposition of caesium and iodine from the Chernobyl accident using the DREAM model J. Brandt, J. H. Christensen, L. M. Frohn To cite this version: J. Brandt, J. H. Christensen, L. M. Frohn. Modelling transport and deposition of caesium and iodine from the Chernobyl accident using the DREAM model. Atmospheric Chemistry and Physics, European Geosciences Union, 2002, 2 (5), pp.397-417. hal-00295217 HAL Id: hal-00295217 https://hal.archives-ouvertes.fr/hal-00295217 Submitted on 17 Dec 2002 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Atmos. Chem. Phys., 2, 397–417, 2002 www.atmos-chem-phys.org/acp/2/397/ Atmospheric Chemistry and Physics Modelling transport and deposition of caesium and iodine from the Chernobyl accident using the DREAM model J. Brandt, J. H. Christensen, and L. M. Frohn National Environmental Research Institute, Department of Atmospheric Environment, Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark Received: 11 April 2002 – Published in Atmos. Chem. Phys. Discuss.: 24 June 2002 Revised: 9 September 2002 – Accepted: 24 September 2002 – Published: 17 December 2002 Abstract. A tracer model, DREAM (the Danish Rimpuff and low cloud scavenging process for the submicron particles and Eulerian Accidental release Model), has been developed for that the precipitation rates are relatively uncertain in the me- modelling transport, dispersion and deposition (wet and dry) teorological model compared to the relative humidity.
    [Show full text]
  • New York State Department of Health Environmental Radiation Program Environmental Radiation Surveillance Site Readings
    New York State Department of Health Environmental Radiation Program Environmental Radiation Surveillance Site Readings Glossary This glossary has been added in order to define technical terms that are used in the various supporting documents for this data set. Please refer to the Data Dictionary for explanation of the meaning of the column headings in the data set. 1. Alpha particles- a positively charged particle made up of two neutrons and two protons emitted by certain radioactive nuclei. a. Gross alpha radioactivity- a measurement of all alpha activity present, regardless of specific radionuclide source. 2. Americium (chemical symbol Am) - is a man-made radioactive metal, with Atomic Number 95. The most important isotope of Americium is Am-241. 3. Background radiation- is radiation that results from natural sources such as cosmic radiation and naturally-occurring radioactive materials in the ground and the earth’s atmosphere including radon. 4. Beta particles- an electron or positron emitted by certain radioactive nuclei. Beta particles can be stopped by aluminum. a. Gross beta radioactivity- measurement of all beta activity present, regardless of specific radionuclide source. 5. Cerium (chemical symbol Ce) - an iron-gray, lustrous metal. Cerium-141, -143, and - 144 are radioisotopes of cerium. 6. Cesium (chemical symbol Cs) - is a metal that may be stable (nonradioactive) or unstable (radioactive). The most common radioactive form of cesium is cesium-137. Another fairly common radioisotope is cesium-134. 7. Cobalt (chemical symbol Co) - is a metal that may be stable (non-radioactive, as found in nature), or unstable (radioactive, man-made). The most common radioactive isotope of cobalt is cobalt-60.
    [Show full text]
  • 12 Natural Isotopes of Elements Other Than H, C, O
    12 NATURAL ISOTOPES OF ELEMENTS OTHER THAN H, C, O In this chapter we are dealing with the less common applications of natural isotopes. Our discussions will be restricted to their origin and isotopic abundances and the main characteristics. Only brief indications are given about possible applications. More details are presented in the other volumes of this series. A few isotopes are mentioned only briefly, as they are of little relevance to water studies. Based on their half-life, the isotopes concerned can be subdivided: 1) stable isotopes of some elements (He, Li, B, N, S, Cl), of which the abundance variations point to certain geochemical and hydrogeological processes, and which can be applied as tracers in the hydrological systems, 2) radioactive isotopes with half-lives exceeding the age of the universe (232Th, 235U, 238U), 3) radioactive isotopes with shorter half-lives, mainly daughter nuclides of the previous catagory of isotopes, 4) radioactive isotopes with shorter half-lives that are of cosmogenic origin, i.e. that are being produced in the atmosphere by interactions of cosmic radiation particles with atmospheric molecules (7Be, 10Be, 26Al, 32Si, 36Cl, 36Ar, 39Ar, 81Kr, 85Kr, 129I) (Lal and Peters, 1967). The isotopes can also be distinguished by their chemical characteristics: 1) the isotopes of noble gases (He, Ar, Kr) play an important role, because of their solubility in water and because of their chemically inert and thus conservative character. Table 12.1 gives the solubility values in water (data from Benson and Krause, 1976); the table also contains the atmospheric concentrations (Andrews, 1992: error in his Eq.4, where Ti/(T1) should read (Ti/T)1); 2) another category consists of the isotopes of elements that are only slightly soluble and have very low concentrations in water under moderate conditions (Be, Al).
    [Show full text]
  • Correspondence Continuing Education for Nuclear Pharmacists
    THE UNIVERSITY OF NEW MEXICO COLLEGE OF PHARMACY ALBUQUERQUE, NEW MEXICO The University of New Mexico Correspondence Continuing Education Courses for Nuclear Pharmacists and Nuclear Medicine Professionals VOLUME II, NUMBER 1 Radionuclide Therapy of Painful Osseous Metastasis by: Jay A. Spicer, M.S. Co-sponsored by: mpi pharmc~ services inc an mersham company The University of New Mexico College of Phamcy is approved by the American Council on Pharmaceutical Education as a provider of continuing pharmaceutical education. Program No. 180-039-93-M6. 2.5 Contact Hours or ,25 CEU’S H m Edtior William B. Hladik III, M. S., R.Ph., University of New Mexico Director of Pharmacy Continuing Education Hugh F. Kabat, Ph. D., University of New Mexico While the advice and information in this publication are believed to be true and accurate at press time, neither the author(s) nor the editor nor the publisher ean accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implid, with res~t to the matetial contained herein. The UNMPharmacy Contittutiig Educatwn Stifl and the Edtior WOUUlike to gratefully achnowkdge Sharon I, Ramirez for her technical suppoti and assktince in the producttin of this pubtiation. Copyright 1993 University of New Mexico Pharmacy Continuing Education Albuquerque, New Mexico HIONUCLIDE THERAPY OF PAINFUL OSSEOUS METASTASIS STATEMENT OF OBJECTIVES This correspondence course is intended to increase tie reader’s knowledge of radiophmaceuticals that are used in the treatment of pain associated with bone metastasis from different types of cancer. A variety of aspects regarding the agents currently being usti or tested are discussed.
    [Show full text]
  • Nuclear Reactor Realities
    Page 1 of 26 Nuclear Reactor Realities NUCLEAR REACTOR REALITIES (An Australian viewpoint) PREFACE Now that steam ships are no longer common, people tend to forget that nuclear power is just a replacement of coal, oil or gas for heating water to form steam to drive turbines, or of water (hydro) to do so directly. As will be shown in this tract, it is by far the safest way of doing so to generate electricity economically in large quantities – as a marine engineer of my acquaintance is fond of saying. Recently Quantum Market Research released its latest Australian Scan (The Advertiser, Saturday April 17, 2012, p 17). It has been tracking social change by interviewing 2000 Australians annually since 1992. In the concerns in the environment category, “[a]t the top of the list is nuclear accidents and waste disposal” (44.4 per cent), while “global warming” was well down the list of priorities at No 15, with only 27.7 per cent of people surveyed rating the issue as “extremely serious.” Part of the cause of such information must be that people are slowly realising that they have been deluded by publicity about unverified computer models which indicate that man’s emissions of CO2 play a major part in global warming. They have not yet realised that the history of the dangers of civilian nuclear power generation shows the reverse of their images. The topic of nuclear waste disposal is also shrouded in reactor physics mysteries, leading to a mis-placed general fear of the unknown. In this article only nuclear reactors are considered.
    [Show full text]
  • Phd Dissertation
    FISSION PRODUCT IMPACT REDUCTION VIA PROTRACTED IN-CORE RETENTION IN VERY HIGH TEMPERATURE REACTOR (VHTR) TRANSMUTATION SCENARIOS A Dissertation by AYODEJI BABATUNDE ALAJO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2010 Major Subject: Nuclear Engineering FISSION PRODUCT IMPACT REDUCTION VIA PROTRACTED IN-CORE RETENTION IN VERY HIGH TEMPERATURE REACTOR (VHTR) TRANSMUTATION SCENARIOS A Dissertation by AYODEJI BABATUNDE ALAJO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Pavel V. Tsvetkov Committee Members, Yassin A. Hassan Sean M. McDeavitt Joseph E. Pasciak Head of Department, Raymond J. Juzaitis May 2010 Major Subject: Nuclear Engineering iii ABSTRACT Fission Product Impact Reduction via Protracted In-core Retention in Very High Temperature Reactor (VHTR) Transmutation Scenarios. (May 2010) Ayodeji Babatunde Alajo, B.Sc., University of Ibadan; M.S., Texas A&M University Chair of Advisory Committee: Dr. Pavel V. Tsvetkov The closure of the nuclear fuel cycle is a topic of interest in the sustainability context of nuclear energy. The implication of such closure includes considerations of nuclear waste management. This originates from the fact that a closed fuel cycle requires recycling of useful materials from spent nuclear fuel and discarding of non-usable streams of the spent fuel, which are predominantly the fission products. The fission products represent the near-term concerns associated with final geological repositories for the waste stream. Long-lived fission products also contribute to the long-term concerns associated with such repository.
    [Show full text]
  • Internalized Β-Particle Emitting Radionuclides
    INTERNALIZED β-PARTICLE EMITTING RADIONUCLIDES Internalized radionuclides that emit β-particles were considered by a previous IARC Working Group in 2000 (IARC, 2001). Since that time, new data have become available, these have been incorporated into the Monograph, and taken into consideration in the present evaluation. 1. Exposure Data bias due to measurement error. These require- ments need to be given due consideration when See Section 1 of the Monograph on X-radiation evaluating the evidence on the carcinogenicity of 3 and γ-radiation in this volume. β-particle irradiation arising from H intakes. The current review of the epidemiological literature focuses on studies of workers in the 2. Cancer in Humans nuclear power and weapons industry for whom 3H could have been an important contribution to the dose. While environmental releases of 2.1 Pure β-particle emitters 3H have led to large numbers of people exposed 3 2.1.1 Tritium to low levels of H, there have been few epide- miological studies of these exposures, and none 3H is a radioactive isotope of hydrogen that has quantified doses from 3H. This review gives emits low-energy β-particles. 3H is readily taken primary attention to epidemiological analyses in into the body via inhalation, ingestion, and which individuals’ 3H exposures were quantified dermal absorption; once deposited in the body, permitting comparisons between groups with 3H acts as an internal emitter. While ubiqui- different exposure histories. tous, the low magnitude of 3H doses typical of Several studies have considered the risk of environmental and occupational settings makes prostate cancer and occupational exposures epidemiological research on the health effects of to radionuclides, including 3H, among United 3H intakes difficult.
    [Show full text]
  • 123Xe REACTION
    PRODUCTION OF CARRIER-FREE 123I USING THE 127l(p,5n)123Xe REACTION M. A. Fusco, N. F. Peek, J. A. Jungerman, F. W. Zielinski, S. J. DeNardo, and G. L. DeNardo University of California at Davis, Davis, California Iodine is notable among the elements which are part iodine were present but did not indicate the amount of man's composition in that it has more different ra- of these contaminants. Sodd, et al (J) and other dioisotopes than any other element natural to man. investigators (4-8) have provided an extensive list These radioisotopes of iodine have different physical of nuclear reactions leading to the production of 123I. characteristics and no one radioisotope is optimal Their list does not include the production method for all biomédicalapplications. Iodine-123 has physi to be described in this publication (Table 1). Most cal characteristics which are optimal for most in vivo of the previously described methods for the produc medical procedures, particularly those which are tion of 123Iresult in contamination with 124Iwhich completed within 24 hr. Iodine-123 decays solely reduces the spatial resolution of imaging procedures by electron capture; the photon-to-electron ratio is and increases the radiation dose to the patient (9). high, indicating a low level of undesirable paniculate We wish to describe a new method for the produc radiation. Iodine-123 emits 159-keV gamma rays in tion of 123Iwhich eliminates virtually all radioactive 84% of the disintegrations, thus providing a high contaminants (Table 2). yield of photons suitable for use with imaging sys tems. The 13.1-hr half-life of 123Iis long enough to MATERIALS AND METHODS allow for target processing, chemical manipulation, Research irradiations.
    [Show full text]
  • Methods of Gas Phase Capture of Iodine from Fuel Reprocessing Off-Gas: a Literature Survey
    INL/EXT-07-12299 Methods of Gas Phase Capture of Iodine from Fuel Reprocessing Off-Gas: A Literature Survey Daryl R. Haefner Troy J. Tranter February 2007 The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance INL/EXT-07-12299 Methods of Gas Phase Capture of Iodine from Fuel Reprocessing Off-Gas: A Literature Survey Daryl R. Haefner Troy J. Tranter February 2007 Idaho National Laboratory Idaho Falls, Idaho 83415 Prepared for the U.S. Department of Energy Office of Nuclear Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517 SUMMARY A literature survey was conducted to collect information and summarize the methods available to capture iodine from fuel reprocessing off-gases. Techniques were categorized as either wet scrubbing or solid adsorbent methods, and each method was generally described as it might be used under reprocessing conditions. Decontamination factors are quoted only to give a rough indication of the effectiveness of the method. No attempt is made to identify a preferred capture method at this time, although activities are proposed that would provide a consistent baseline that would aid in evaluating candidate materials and technologies. iii CONTENTS SUMMARY.................................................................................................................................................iii ACRONYMS/ABBREVIATION...............................................................................................................vii 1. OBJECTIVE......................................................................................................................................
    [Show full text]
  • Iodine-Organic Compounds, Labelled with Iodine-131
    UZ9901264 IODINE-ORGANIC COMPOUNDS, LABELLED WITH IODINE-131 M.N.Abdukayumov, A.Kholbayev, Rikhsiyev, D.Aripov "Padiopreparat"at the Institute of Nuclear Physics, Uzbekistan Academy of Sciences, Tashkent It is being reported the results of development and introduction into production of the importsubstituting generetic radiopharmaceutics of "Albumin labelled with iodine-131", "Macroagregates of Albumin labelled with iodine-131", "Bengalian rose labelled with iodine- 131", "meta-Iodobenzylguanidine labelled with iodine-131", "Sodium iodide with iodine-131, in capsules". Radiopharmaceutical albumin of human blood serum, labelled with iodine-131, is the water solution of albumin of human blood serum, part of molecules of wich includes iodine- 131 and intended for the determination of indicators of the central gemodynamics and regional blood circulation. Injection of the radioactive isotope iodine-131 into albumin is prepared by means of the preliminary transforming it into active cathionic form by means of chloramine T in the phosphate buffer solution with pH 7,3 ± 0,3 with consequent including itit to the phenil group of albumin molecule by the mechanism of electrophul substitution. If necessary, the reaction can be stopped by adding ammonium metabiosulphite. The macroagregates of albumin of human blood serum, labelled with iodine-131, is a suspense agregirated by heating the albumin which includes isotope iodine-131. In medicine they are used for scanning lungs in case of new transformations, embolisms of pulmonary arteries, heart attack
    [Show full text]
  • IODINE MONITORING Need for Iodine Monitoring
    LESSON 10: IODINE MONITORING Need for Iodine Monitoring Iodine has fairly good fission yield (nearly 3%) and dosimetrically significant isotope. Under normal operating conditions of nuclear reactor radioiodine and other fission products are released from the fuel rods due to cladding failure. It is retained in primary systems and subsequently released into the work atmosphere in case of breach. Reprocessing plants likely to release 129I upon dissolution of spent fuel. Need for Iodine Monitoring Hospitals and research institutions do use radio iodine. This is volatile in nature and in case of containment breach there is a probability of leak into working environment. Depending on the facility, monitoring for one or more radio isotopes of iodine may be required. ▪ In non-nuclear facilities, typically one radioisotope used and evident which radioisotope is to be monitored Need for Iodine Monitoring In nuclear plant, range of iodine radioisotopes may be produced with ranges of half life and emissions For nuclear industry, ratio between different iodine radionuclides is obtained from computer code In workplace monitoring, typically measure I-131, I-125, I-129 and/or I-135 and ratio to other iodine quantities Iodine gets concentrated in the thyroid gland of the person exposed to it and delivers radiation dose to the thyroid. Form of Iodine Iodine typically is: Hydrogen Molecular iodide form (I ) 2 (HIO) All these forms have tendency to become Organic, airborne by attaching to and/or Inorganic aerosols (Methyl form (CsI) iodide) In the nuclear industry, gaseous iodine is the most abundant of the forms Iodine Monitoring Techniques Equipment for Delayed Measurement Equipment Used for Real Time Measurement Examples of Iodine Monitors Calibration and Verification Factors Influencing Results TECHNIQUES Techniques ▪ The monitoring of radioactive iodine in the workplace may be accomplished both continuously by real time monitor or via sequential sampling and a delayed analysis in the laboratory.
    [Show full text]
  • Radiochemistry, Production Processes, Labeling Methods, and Immunopet Imaging Pharmaceuticals of Iodine-124
    molecules Review Radiochemistry, Production Processes, Labeling Methods, and ImmunoPET Imaging Pharmaceuticals of Iodine-124 Krishan Kumar * and Arijit Ghosh Laboratory for Translational Research in Imaging Pharmaceuticals, The Wright Center of Innovation in Biomedical Imaging, Department of Radiology, The Ohio State University, Columbus, OH 43212, USA; [email protected] * Correspondence: [email protected] or [email protected] Abstract: Target-specific biomolecules, monoclonal antibodies (mAb), proteins, and protein frag- ments are known to have high specificity and affinity for receptors associated with tumors and other pathological conditions. However, the large biomolecules have relatively intermediate to long circulation half-lives (>day) and tumor localization times. Combining superior target specificity of mAbs and high sensitivity and resolution of the PET (Positron Emission Tomography) imaging tech- nique has created a paradigm-shifting imaging modality, ImmunoPET. In addition to metallic PET radionuclides, 124I is an attractive radionuclide for radiolabeling of mAbs as potential immunoPET imaging pharmaceuticals due to its physical properties (decay characteristics and half-life), easy and routine production by cyclotrons, and well-established methodologies for radioiodination. The ob- jective of this report is to provide a comprehensive review of the physical properties of iodine and iodine radionuclides, production processes of 124I, various 124I-labeling methodologies for large biomolecules, mAbs, and the development
    [Show full text]