Magnolia Pollination in Cornwall and Gwent by John D

Total Page:16

File Type:pdf, Size:1020Kb

Magnolia Pollination in Cornwall and Gwent by John D Magnolia pollination in Cornwall and Gwent by John D. Carlaon I began this study of Magnolia mollicomata, M. X soulangiana, and po)!!nation in Spring 1988, at the on some still receptive flowers of M. suggestion of Mr. N. G. Treseder, X 'Caerhays Surprise'. who said that he had never seen the I identified the two most common beetles responsible for pollination in flies as Bibio hortulanus and St. any Cornish garden. During this Mark's By, Bibio marci; in addition exercise I examined hundreds of quite a few more insects have been magnolia Bowers, some of them identified at home in Gwent, south many times over. The situation Wales. I should point out that the turned out to be far more complex observations in Gwent were made than I ever imagined. The first almost exclusively on M. X surprise was, at least as far as soulangiana. Only one other type of gardens in Cornwall and Gwent were Sy was seen, namely the common concerned, the chief pollinators are blow-fiy, although midges were very not beetles, but various kinds of common at all times. flies! The four species of beetles seen My wife and I first noticed this were the wasp beetle (Clytus arietis), fact on a visit to Cotehele House in elm bark beetle (Scolytus scolytus), North Cornwall, in early ApriL The the carpet beetle (Attagenus pellio) various trees of M. stellata and M. and the weevil (Curculio nucum). X loebneri contained small Siss in Two spider species were also the fully, partly, and unopened identified. Diaea dorsata, which was Bowers. A few very tiny spiders were seen a number of times, and a also seen at this time in some rather rare spider, Misumena uatia, unopened Bowers. We also noticed which I only saw once, lying in wait that both bees and Siss were very for its prey, perched on the much in evidence around two large, gynoecium of an open Bower of M. tree-like specimens of M. X X soulangiana. This spider has the soulangiana. More insect life was remarkable ability to change color. found in other specimens of M. X On the occasion I saw it, the spider souiangiana, including a species of was pure white, to match the color damsel Sy, which flew off too rapidly of the flower tepals it was on. It is to be identified. also able to change to green or to Our next visit was to Antony yellow to suit its surroundings. House at Torpoint in northeast One of the beetle species that I Cornwall. Here we found the same was unable to identify positively was small Siss on M. X eoufangiana as possibly the furniture beetle, which well as in opened and unopened is reputed to eat pollen on occasion. Bowers of M. denudata and M. On many occasions I saw large sprengeri. numbers of very small Bies and Our last visit in CornwaU was to beetles which I could not identify. Burncoose and South Down On a few occasions I was lucky Nurseries. I soon found further enough to see the Sies Bibio examples of the same fly on M. hortulanus and Bibio marci with 18 some midges on receptive stigmas some M. X eoulongiana and M. with posen actually on their bodies. sregoto Bowers were still receptive According to my insect identification when su%ciently open to allow larger books both of these Siss are insects, such as bees, to enter. Later important pollinators of fruit trees. whilst quite a few M. X soufongiano Rather surprisingly, I did not Bowers were still opening, the observe any beetles until the number of insects of all kinds magnolias had been Bowering for seemed to decline greatly. This point some time, in fact, I had despaired seems strange to me, and I feel it of seeing them at all. They were must have some eFect on the never numerous, and can only pollination of later Sowers. account for one or two percent of One Snal point I must make is pollinations, by my calcuiatione. By that in the case of the bees, flies, contrast the Siss appear to be and midgee, I can say with certainty responsible for something like that these were not one-o8 visits. I ninety-Sve percent of poBinations. observed the insects hovering around A further point of interest, noted the magnolias in question, going in CornwaU and Gwent, was that from one Sower to another Sower. Raymond M. Sutton, Jr. specializing in Botanical and Horticultural Books (including Magnolia books) Rare, Out-of-Print and New Write for our latest We Buy and Sell Books Catalog P. O. Box 330, Williafnsburg, Kentucky 40769 (606) 549-3464 19 .
Recommended publications
  • Assessment of Forest Pests and Diseases in Protected Areas of Georgia Final Report
    Assessment of Forest Pests and Diseases in Protected Areas of Georgia Final report Dr. Iryna Matsiakh Tbilisi 2014 This publication has been produced with the assistance of the European Union. The content, findings, interpretations, and conclusions of this publication are the sole responsibility of the FLEG II (ENPI East) Programme Team (www.enpi-fleg.org) and can in no way be taken to reflect the views of the European Union. The views expressed do not necessarily reflect those of the Implementing Organizations. CONTENTS LIST OF TABLES AND FIGURES ............................................................................................................................. 3 ABBREVIATIONS AND ACRONYMS ...................................................................................................................... 6 EXECUTIVE SUMMARY .............................................................................................................................................. 7 Background information ...................................................................................................................................... 7 Literature review ...................................................................................................................................................... 7 Methodology ................................................................................................................................................................. 8 Results and Discussion ..........................................................................................................................................
    [Show full text]
  • Nematodes and Fungi) Against Curculio Nucum (Coleoptera: Curculionidae)
    saqarTvelos mecnierebaTa erovnuli akademiis moambe, t. 15, #2, 2021 BULLETIN OF THE GEORGIAN NATIONAL ACADEMY OF SCIENCES, vol. 15, no. 2, 2021 Parasitology The Effectivenes of Entomopathogenic Microorganizsms (Nematodes and Fungi) Against Curculio nucum (Coleoptera: Curculionidae) Oleg Gorgadze*, Madona Kuchava*, Manana Lortkipanidze*, Nana Gratiashvili*, Medea Burjanadze** *Institute of Zoology, Ilia State University, Tbilisi, Georgia **Vasil Gulisashvili Forest Institute, Agricultural University of Georgia, Tbilisi (Presented by Academy Member Irakli Eliava) The nut weevil (NW), Curculio nucum, is one of the main pests of hazelnuts which damages nut buds, leaves and especially fruits. Sometimes it destroys 80-90 percent of the crop. The study presents the results of using entomopathogenic microorganisms (nematodes and fungi) against NW. Local entomopathogenic nematodes (EPN) Steinernema borjomiense, S. thesami, Heterorhabditis sp. and Boverin's fungi were used against this pest. The tests were carried out in laboratory and field conditions. Nematodes of this species were first used against NW. The tests were carried out separately and together with different doses of nematode concentracions (100, 50 and 25 IJs/insect) and Boverin – (2 g/L and 4 g/L). Among the nematodes used separately against insect pests, S. borjomiense and Heterorhabditis sp. (in a dose of 100 IJs/insect) showed the greatest effect (100%). As for the separate application of Boverin, it turned out to be less effective (42.5% of adults and 43.2% of larvae died). On insect pests, a much greater effect was observed when using combined preparations of nematodes and fungi in laboratory and field trials. In the laboratory, after the use of combined preparations, 100% death of harmful insects is recorded.
    [Show full text]
  • Integration of Entomopathogenic Fungi Into IPM Programs: Studies Involving Weevils (Coleoptera: Curculionoidea) Affecting Horticultural Crops
    insects Review Integration of Entomopathogenic Fungi into IPM Programs: Studies Involving Weevils (Coleoptera: Curculionoidea) Affecting Horticultural Crops Kim Khuy Khun 1,2,* , Bree A. L. Wilson 2, Mark M. Stevens 3,4, Ruth K. Huwer 5 and Gavin J. Ash 2 1 Faculty of Agronomy, Royal University of Agriculture, P.O. Box 2696, Dangkor District, Phnom Penh, Cambodia 2 Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland 4350, Australia; [email protected] (B.A.L.W.); [email protected] (G.J.A.) 3 NSW Department of Primary Industries, Yanco Agricultural Institute, Yanco, New South Wales 2703, Australia; [email protected] 4 Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, New South Wales 2650, Australia 5 NSW Department of Primary Industries, Wollongbar Primary Industries Institute, Wollongbar, New South Wales 2477, Australia; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +61-46-9731208 Received: 7 September 2020; Accepted: 21 September 2020; Published: 25 September 2020 Simple Summary: Horticultural crops are vulnerable to attack by many different weevil species. Fungal entomopathogens provide an attractive alternative to synthetic insecticides for weevil control because they pose a lesser risk to human health and the environment. This review summarises the available data on the performance of these entomopathogens when used against weevils in horticultural crops. We integrate these data with information on weevil biology, grouping species based on how their developmental stages utilise habitats in or on their hostplants, or in the soil.
    [Show full text]
  • 2006 Published of Articles Number 0 Ecology Evolution Speciation
    10 Evolutionary consequences of predation: avoidance, escape, reproduction, and diversification R. Brian Langerhans Department of OrganismicBiology, Campus and Evolutionary Box 1229, WashingtonBiology, 26 OxfordUniversity, St., St. HarvardLouis, MO University, 63130-4899, Cambridge, [email protected] MA 02138, [email protected] 10.1 Abstract One of the most important and obvious forces shaping organismal traits is predation. Prey have evolved diverse means of enhancing the probability of survival in the face of predation, and these means fall into two classes of antipredator strategies: (1) avoidance of predatory encounters, and (2) escaping after encountering a predator. A range of antipredator defenses— including behavioral, morphological, physiological, and chemical defenses—serve to either reduce the probability of detection by a predator or enhance the probability of surviving after detection by a predator. However, the recognition that reproductive strategies (e.g. offspring number, reproductive lifespan) are typically strongly influenced by mortality regimes induced by predators, highlights that most but not all “antipredator traits” fall into one of these two categories—that is, some life history traits influence only fecundity, not survival. Life history evolution has not traditionally been included in reviews of antipredator adaptations, however this chapter reveals that the conceptual link between life histories and predation broadens and refines our understanding of predation’s role in phenotype evolution. While ecologists have long recognized the importance of predation in population- and community-level dynamics, a varied history exists for the study of predation’s role in influencing evolutionary change. Despite the wealth of antipredator adaptations present in organisms, research investigating the significance of predation in biological evolution has received considerably less attention than other ecological factors (e.g.
    [Show full text]
  • Longhorn Beetles (Coleoptera, Cerambycidae) Christian Cocquempot, Ake Lindelöw
    Longhorn beetles (Coleoptera, Cerambycidae) Christian Cocquempot, Ake Lindelöw To cite this version: Christian Cocquempot, Ake Lindelöw. Longhorn beetles (Coleoptera, Cerambycidae). Alien terrestrial arthropods of Europe, 4 (1), Pensoft Publishers, 2010, BioRisk, 978-954-642-554-6. 10.3897/biorisk.4.56. hal-02823535 HAL Id: hal-02823535 https://hal.inrae.fr/hal-02823535 Submitted on 6 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A peer-reviewed open-access journal BioRisk 4(1): 193–218 (2010)Longhorn beetles (Coleoptera, Cerambycidae). Chapter 8.1 193 doi: 10.3897/biorisk.4.56 RESEARCH ARTICLE BioRisk www.pensoftonline.net/biorisk Longhorn beetles (Coleoptera, Cerambycidae) Chapter 8.1 Christian Cocquempot1, Åke Lindelöw2 1 INRA UMR Centre de Biologie et de Gestion des Populations, CBGP, (INRA/IRD/CIRAD/Montpellier SupAgro), Campus international de Baillarguet, CS 30016, 34988 Montférrier-sur-Lez, France 2 Swedish university of agricultural sciences, Department of ecology. P.O. Box 7044, S-750 07 Uppsala, Sweden Corresponding authors: Christian Cocquempot ([email protected]), Åke Lindelöw (Ake.Linde- [email protected]) Academic editor: David Roy | Received 28 December 2009 | Accepted 21 May 2010 | Published 6 July 2010 Citation: Cocquempot C, Lindelöw Å (2010) Longhorn beetles (Coleoptera, Cerambycidae).
    [Show full text]
  • Descriptors for Hazelnut (Corylus Avellana L.)
    Descriptors for Hazelnut(Corylus avellana L.) List of Descriptors Allium (E, S) 2001 Pearl millet (E/F) 1993 Almond (revised)* (E) 1985 Pepino (E) 2004 Apple* (E) 1982 Phaseolus acutifolius (E) 1985 Apricot* (E) 1984 Phaseolus coccineus* (E) 1983 Avocado (E/S) 1995 Phaseolus lunatus (P) 2001 Bambara groundnut (E, F) 2000 Phaseolus vulgaris* (E, P) 1982 Banana (E, S, F) 1996 Pigeonpea (E) 1993 Barley (E) 1994 Pineapple (E) 1991 Beta (E) 1991 Pistachio (A, R, E, F) 1997 Black pepper (E/S) 1995 Pistacia (excluding Pistacia vera) (E) 1998 Brassica and Raphanus (E) 1990 Plum* (E) 1985 Brassica campestris L. (E) 1987 Potato variety* (E) 1985 Buckwheat (E) 1994 Quinua* (E) 1981 Cañahua (S) 2005 Rambutan 2003 Capsicum (E/S) 1995 Rice* (E) 2007 Cardamom (E) 1994 Rocket (E, I) 1999 Carrot (E, S, F) 1998 Rye and Triticale* (E) 1985 Cashew* (E) 1986 Safflower* (E) 1983 Cherry* (E) 1985 Sesame (E) 2004 Chickpea (E) 1993 Setaria italica and S. pumilia (E) 1985 Citrus (E, F, S) 1999 Shea tree (E) 2006 Coconut (E) 1995 Sorghum (E/F) 1993 Coffee (E, S, F) 1996 Soyabean* (E/C) 1984 Cotton (revised)* (E) 1985 Strawberry (E) 1986 Cowpea (E, P)* 1983 Sunflower* (E) 1985 Cultivated potato* (E) 1977 Sweet potato (E/S/F) 1991 Date Palm (F) 2005 Taro (E, F, S) 1999 Durian (E) 2007 Tea (E, S, F) 1997 Echinochloa millet* (E) 1983 Tomato (E, S, F) 1996 Eggplant (E/F) 1990 Tropical fruit (revised)* (E) 1980 Faba bean* (E) 1985 Ulluco (S) 2003 Fig (E) 2003 Vigna aconitifolia and V.
    [Show full text]
  • Pre-Dispersal Seed Predation by Weevils (Curculio Spp.): the Role of Host-Specificity, Resource Availability and Environmental Factors
    Pre-dispersal seed predation by weevils (Curculio spp.): The role of host-specificity, resource availability and environmental factors Harold Arias-LeClaire Aquesta tesi doctoral està subjecta a la llicència Reconeixement- NoComercial – CompartirIgual 4.0. Espanya de Creative Commons. Esta tesis doctoral está sujeta a la licencia Reconocimiento - NoComercial – CompartirIgual 4.0. España de Creative Commons. This doctoral thesis is licensed under the Creative Commons Attribution-NonCommercial- ShareAlike 4.0. Spain License. Pre-dispersal seed predation by weevils (Curculio spp.) The role of host-specificity, resource availability and environmental factors HAROLD ARIAS-LECLAIRE Barcelona, 2018 Pre-dispersal seed predation by weevils (Curculio spp.): The role of host-specificity, resource availability and environmental factors This page intentionally left blank Pre-dispersal seed predation by weevils (Curculio spp.): The role of host-specificity, resource availability and environmental factors Harold Arias-LeClaire Barcelona, 2018 This page intentionally left blank Pre-dispersal seed predation by weevils (Curculio spp.): The role of host-specificity, resource availability and environmental factors Harold Arias-LeClaire Thesis to be eligible for the Doctor degree and submitted in fulfillment of the requirements of Academic Doctoral program in Biodiversity with the supervision and approval of Dr. Josep Maria Espelta Morral Dr. Raúl Bonal Andrés Universitat de Barcelona Barcelona, 2018 This page intentionally left blank Facultat de Biologia Department de Biologia Evolutiva, Ecologia i Ciències Ambientals Pre-dispersal seed predation by weevils (Curculio spp.): The role of host-specificity, resource availability and environmental factors Research memory presented by Harold Arias-LeClaire for the degree of Doctor at the Universitat de Barcelona Biodiversity Program with the approval of Dr.
    [Show full text]
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Prescribed fire and tanoak (Notholithocarpus densiflorus) associated cultural plant resources of the Karuk and Yurok Peoples of California Permalink https://escholarship.org/uc/item/02r7x8r6 Author Halpern, Arielle Publication Date 2016 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Prescribed fire and tanoak (Notholithocarpus densiflorus) associated cultural plant resources of the Karuk and Yurok Peoples of California by Arielle Anita Halpern A dissertation in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Wayne P. Sousa, Co-Chair Professor Thomas J. Carlson, Co-Chair Professor Scott L. Stephens Frank K. Lake, Ph.D. Spring 2016 Abstract Prescribed fire and tanoak (Notholithocarpus densiflorus) associated cultural plant resources of the Karuk and Yurok Peoples of California by Arielle Anita Halpern Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Wayne P. Sousa and Professor Thomas J. Carlson, Co-Chairs The targeted application of prescribed fire has long been used by Native Californian peoples to manage plant resources of cultural value. Their ability to employ this management tool has been increasingly restricted by local, state and federal agencies in response to recent drought conditions and the highly flammable state of most western U.S. forests, where, for decades, fires of any magnitude have been suppressed as a matter of policy. This diminished access to cultural prescribed fire has impacted tribal access to many of the plant resources and cultural activities upon which Karuk and Yurok cultures are based.
    [Show full text]
  • PDF Download Wasp Ebook Free Download
    WASP PDF, EPUB, EBOOK Eric Frank Russell | 192 pages | 09 May 2013 | Orion Publishing Co | 9780575129047 | English | London, United Kingdom 25 Types of Wasps and Hornets - ProGardenTips Megascolia procer , a giant solitary species from Java in the Scoliidae. This specimen's length is 77mm and its wingspan is mm. Megarhyssa macrurus , a parasitoid. The body of a female is 50mm long, with a c. Tarantula hawk wasp dragging an orange-kneed tarantula to her burrow; it has the most painful sting of any wasp. Of the dozens of extant wasp families, only the family Vespidae contains social species, primarily in the subfamilies Vespinae and Polistinae. All species of social wasps construct their nests using some form of plant fiber mostly wood pulp as the primary material, though this can be supplemented with mud, plant secretions e. Wood fibres are gathered from weathered wood, softened by chewing and mixing with saliva. The placement of nests varies from group to group; yellow jackets such as Dolichovespula media and D. Other wasps, like Agelaia multipicta and Vespula germanica , like to nest in cavities that include holes in the ground, spaces under homes, wall cavities or in lofts. While most species of wasps have nests with multiple combs, some species, such as Apoica flavissima , only have one comb. The vast majority of wasp species are solitary insects. There are some species of solitary wasp that build communal nests, each insect having its own cell and providing food for its own offspring, but these wasps do not adopt the division of labour and the complex behavioural patterns adopted by eusocial species.
    [Show full text]
  • 5 Chemical Ecology of Cerambycids
    5 Chemical Ecology of Cerambycids Jocelyn G. Millar University of California Riverside, California Lawrence M. Hanks University of Illinois at Urbana-Champaign Urbana, Illinois CONTENTS 5.1 Introduction .................................................................................................................................. 161 5.2 Use of Pheromones in Cerambycid Reproduction ....................................................................... 162 5.3 Volatile Pheromones from the Various Subfamilies .................................................................... 173 5.3.1 Subfamily Cerambycinae ................................................................................................ 173 5.3.2 Subfamily Lamiinae ........................................................................................................ 176 5.3.3 Subfamily Spondylidinae ................................................................................................ 178 5.3.4 Subfamily Prioninae ........................................................................................................ 178 5.3.5 Subfamily Lepturinae ...................................................................................................... 179 5.4 Contact Pheromones ..................................................................................................................... 179 5.5 Trail Pheromones ......................................................................................................................... 182 5.6 Mechanisms for
    [Show full text]
  • Mimicry Some Heliconius (Heliconiinae) from Peru and Colombia, So He Assumed the Resemblance Was the Result of Some Inorganic Mathieu Joron Or Environmental Factors
    Preprint for: Joron, M. 2003. In Encyclopedia of insects (R. T. Cardé & V. H. Resh, eds), pp. 714-726. Academic Press, New York. Melinaea, Mechanitis (Ithomiinae), Lycorea (Danainae), and Mimicry some Heliconius (Heliconiinae) from Peru and Colombia, so he assumed the resemblance was the result of some inorganic Mathieu Joron or environmental factors. In 1879, German naturalist Fritz Leiden University, The Netherlands Müller was the first to develop a mathematical demonstration that two unpalatable prey could benefit from mutual resem- imicry is the adaptive resemblance in signal be- blance. He understood that, if the community of predators tween several species in a locality. The most had to kill a certain (fixed) number of prey to learn to avoid M spectacular and intriguing cases are of course them, two indistinguishable distasteful species would to- those of accurate resemblance between distantly related spe- gether suffer this mortality and both reduce their death rate cies, such as spiders mimicking ants. Closely related animals per unit time. Müller actually showed that this benefit was can also benefit from mutual resemblance, in which case biased in favor of the rarer species, to a factor equal to the mimicry results from selection against signal divergence. square of the ratio of the species’ abundance. Therefore, un- equal population sizes translate into even more unequal, The vast majority of the hundreds of thousands of insect spe- although still mutual, benefits: Müllerian mimicry, thus de- cies are described and identifiable on the basis of fined, could be beneficial for both species, and perhaps also morphological characters. This bewildering diversity is, how- for the predators, in contrast to parasitic Batesian mimicry.
    [Show full text]
  • Beetle News Vol
    Beetle News Vol. 3:1 March 2011 Beetle News ISSN 2040-6177 Circulation: An informal email newsletter circulated periodically to those interested in British beetles Copyright: Text & drawings © 2010 Authors Photographs © 2010 Photographers Citation: Beetle News 3.1, March 2011 Editor: Richard Wright, 70, Norman road, Rugby, CV21 1DN Email:[email protected] Contents Editorial - Richard Wright 1 Northern Coleopterists’ Meeting - Tom Hubball 1 Beetles of Warwickshire - atlas for free download- Richard Wright 1 The Leicestershire Museum Coleoptera Collection - Steve Lane 2 Buglife oil beetle survey - Andrew Whitehouse 3 A good year for 7-spots? - Richard Wright 3 Paracorymbia fulva in Leicestershire - Graham Calow 4 Some phytophagous beetles from garden plants – an addendum - Clive Washington 4 Interesting beetles found in Gloucestershire in 2010 - John Widgery 5 Photographs of Geotrupes mandibles - John H. Bratton 6 Beginner’s Guide :Common longhorn beetles of England - Richard Wright 7 Editorial Beetles of Warwickshire - atlas for free Richard Wright download Thanks to all contributors to this issue. The response to my Steve Lane and I produced an atlas of appeal for more contributions in the last issue has been excellent Warwickshire beetles in 2008, up to date to and I am particularly pleased to see articles from new people. I the end of 2007, which was distributed on CD hope to return to the planned four issues per year in 2011 so ROM. I have now made this available as a please keep the articles coming. free download (63 megabytes). The link is : Geotrupidae Guide - important correction http://dl.dropbox.com/u/1708278/Beetles%20 In the last issue (2.2 December 2010) Conrad Gillett and Aleš Sedláček produced an excellent introduction to the Geotrupidae.
    [Show full text]