Bivalves/ Lamellibranchia /Acephala) 2

Total Page:16

File Type:pdf, Size:1020Kb

Bivalves/ Lamellibranchia /Acephala) 2 Palaeontology 1 Unit II by. Prof. S.K. Kulshrestha Phylum-Mollusca Class - 1. Pelecypoda (Bivalves/ Lamellibranchia /Acephala) 2. Gastropoda 3. Cephalopoda Class-1 Pelecypoda (Bivalves)- Name Pelecypoda is coined from latin word Pelecys meaning sickle shaped or the blade of axe. They are also called Lamellibrachia sheet like or lamellar form of gills (respiratory organs). The soft body organs are well protected within two calcareous valves, which are joined along their dorsal margin and can articulate. The two valves are designated as right and left valves. Since these two valves are equal in shape and size but in equilateral. The name Clam may be applied to all pelcypods. Many fresh water and a few marine (e.g. Mytilus) Clams are called Mussels. Majority of Bivalves are aquatic (both freshwater and marine) a few can live on land (terrestrial) as well. Some are fast swimmer e.g. Lima and Pecten. Others are sluggish movers and bottom dwellers. A few forms can live firmly attached with bottom sediments. They are sedentary in nature. Attached by Byssal threads e.g. Mytilus. Attached by cementation e.g. Byssus ,Gryphea Some are burrowers or borers- a) Sand burrowers b) Mud burrowers c) Rock borers Department of Geology Palaeontology 2 d) Wood borers Shell Morphology- the Bivalve shell is more or less triangular in shape which is broadly rounded towards anterior side and tapering posterior. The earliest portion of the shell is known as beak, which normally points toward anterior, followed by a raised portion of the shell which is smooth is called Umbo. Rest of the external surface of the shell is marked by the concentric growth lines starting from the beak, and parallel to the free margin of the shell. Beside this, the external surface is variously ornamented by radial, ribs, ridges or reticulate pattern. The side on which the two valves are joined together and articulate is dorsal side and the opposite side/margin is ventral margin. On the internal surface of the shell, area is occupied by long platform known as Hinge plate. The area between the hinge plate and the dorsal margin is known as Cardinal area. In living forms this cardinal area (inter area) is occupied by linear depression in which the ligament is attached. The function of ligament is to open the two valves. The closure of the valves is performed by adductor muscles, which are represented as the inner surface by scar marks. The Ventral most limit of mantle cavity is marked Pallial line. Figure 1 Internal, external and dorsal view of shell of the bivalvia Department of Geology Palaeontology 3 Types of Ligaments- 1) Alivincular-e.g. Lima 2) Duplivincular- e.g. Arca 3) Multivincular- e.g. Gervilia 4) Perivincular- e.g. Venus Muscle Scars- 1) Monomyarian- when only one scar mark is present, it is always posterior in position. E.g. Pecten. 2) Dimyarian- when two scar marks present. a) Isomyarian-Two scar marks are similar in shape and size. E.g. Arca. b) Anisomyarian- Scar marks of dissimilar in shape and size E.g. Mytilus. DENTITION- The hinge plate is marked by various patterns of Hinge teeth (projections) and sockets (depressions). 1) EDANTULOUS- Hinge plate lacking teeth and sockets. E.g.- Edmonia (sea mussel) 2) TAXODONT- Characterized by numerous teeth on the hinge plate. E.g. Arca, Glycemeris. 3) HETERODONT- Characterized by hinge teeth of distinct type- Cardinals beneath the beak and lateral teeth. E.g. Lucina, Cyrima 4) ISODONT-Characterized by two subequal prominent hinge teeth on one valve and corresponding sockets in the opposite valve. E.g. Pecten 5) SCHIZODANT – having prominent bifurcating teeth and corresponding sockets. E.g. Trigonia 6) DYSODONT- Characterized by very rudimentary teeth or by absence of hinge teeth. E.g. Mytilus. 7) DESMODONT- Hinge teeth are absent and the hinge area is occupied by the enlargement of ligament. E.g. Mya. 8) PACHYDONT- Thickened specialized teeth developed as coral like valves in which right valve is in the form of deep hollow conical shape and left valve in the form of a flat lid, bearing 5 large teeth on its underside which hangs in conical right valve. E.g.- Hippurites. Department of Geology Palaeontology 4 Classification- Phylum-Mollusca Class- Bivalvia Sub-Class- I. Paleotarodonta-(Cambrian to Recent) Order-1 Nuculoida E.g. Nuculena Sub- class-II. Cryptodonta-(Ordovician to Recent) Order-1. Solemyoida-E.g. Solemya 2.Pre-cardioida-E.g. Cardiola Sub- class-III. Pteriomorpha-(Ordovician to Recent) Order 1. Arcoida E.g. Arca 2. Mytiloida E.g. Mytilus 3. Pteroida E.g. Pteria,Pecten Sub-class- IV Palaeoheterodonta (Palaeozoic to Recent) Order 1. Unionoida E.g. Unio 2. Trigonoida E.g. Trigonia Sub-class-V Heterodonta (Jurassic to Recent) Order 1.Veneroida E.g Venus,Cardita,Lucina 2. Myoida E.g. Mya 3. Hippuritoida E.g. Hippurites Sub-class VI- Anomalodesmata-(Ordovician to Recent) Order-1. Pholadomyoida E.g. Pholadomya Department of Geology Palaeontology 5 GEOLOGICAL HISTORY- The earliest known fossil record of Pelecypods is from lower Ordovician rocks. They are simple shell, examples are- Ctenodonta, Glysoterea, Modiolapsis. Before the close of Ordovician the bivalves diversified both in number and variety in the later part of Paleozoic. At the close of Paleozoic and beginning of Triassic many ancient genera became extinct and new genera appeared which have persisted to the present. During Mesozoic they reached their acme. Pelecypods have been used for deforming large units of Geologic time. Due to their slow rate of evolution they are of little use for correlation of further sub conclusion. Department of Geology Palaeontology 6 References 1. Palaeontology Palaeobiology By P C Jain Amp M S Anantharaman 2. Shrock, R. R. (1953). Principles of invertebrate paleontology. INTERNATIONAL SERIES IN THE EARTH SCIENCES. 3. Clarkson, E. N. K. (2009). Invertebrate palaeontology and evolution. John Wiley & Sons. 4. PALAEONTOLOGY INVERTEBRATE by Woods H. 5. Moore, F. R., Lalicker, C. G., & Fischer, A. G. (1952). Invertebrate Fossils. McGrawHill Book Co. Inc. Copyright. Department of Geology .
Recommended publications
  • Marine Bivalve Molluscs
    Marine Bivalve Molluscs Marine Bivalve Molluscs Second Edition Elizabeth Gosling This edition first published 2015 © 2015 by John Wiley & Sons, Ltd First edition published 2003 © Fishing News Books, a division of Blackwell Publishing Registered Office John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial Offices 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030‐5774, USA For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley‐blackwell. The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. Limit of Liability/Disclaimer of Warranty: While the publisher and author(s) have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose.
    [Show full text]
  • Cambrian Ordovician
    Open File Report LXXVI the shale is also variously colored. Glauconite is generally abundant in the formation. The Eau Claire A Summary of the Stratigraphy of the increases in thickness southward in the Southern Peninsula of Michigan where it becomes much more Southern Peninsula of Michigan * dolomitic. by: The Dresbach sandstone is a fine to medium grained E. J. Baltrusaites, C. K. Clark, G. V. Cohee, R. P. Grant sandstone with well rounded and angular quartz grains. W. A. Kelly, K. K. Landes, G. D. Lindberg and R. B. Thin beds of argillaceous dolomite may occur locally in Newcombe of the Michigan Geological Society * the sandstone. It is about 100 feet thick in the Southern Peninsula of Michigan but is absent in Northern Indiana. The Franconia sandstone is a fine to medium grained Cambrian glauconitic and dolomitic sandstone. It is from 10 to 20 Cambrian rocks in the Southern Peninsula of Michigan feet thick where present in the Southern Peninsula. consist of sandstone, dolomite, and some shale. These * See last page rocks, Lake Superior sandstone, which are of Upper Cambrian age overlie pre-Cambrian rocks and are The Trempealeau is predominantly a buff to light brown divided into the Jacobsville sandstone overlain by the dolomite with a minor amount of sandy, glauconitic Munising. The Munising sandstone at the north is dolomite and dolomitic shale in the basal part. Zones of divided southward into the following formations in sandy dolomite are in the Trempealeau in addition to the ascending order: Mount Simon, Eau Claire, Dresbach basal part. A small amount of chert may be found in and Franconia sandstones overlain by the Trampealeau various places in the formation.
    [Show full text]
  • Ctenoides Ales) Lindsey F
    © 2017. Published by The Company of Biologists Ltd | Biology Open (2017) 6, 648-653 doi:10.1242/bio.024570 RESEARCH ARTICLE Do you see what I see? Optical morphology and visual capability of ‘disco’ clams (Ctenoides ales) Lindsey F. Dougherty1,2,3,*, Richard R. Dubielzig4, Charles S. Schobert4, Leandro B. Teixeira4 and Jingchun Li2,3 ABSTRACT considering the evolution of vision, simple light-sensitive cells can The ‘disco’ clam Ctenoides ales (Finlay, 1927) is a marine bivalve that evolve to a complex camera-type eye in a mere few hundred has a unique, vivid flashing display that is a result of light scattering by thousand years (Nilsson and Pelger, 1994), which may explain the silica nanospheres and rapid mantle movement. The eyes of C. ales extreme diversity of vision throughout the animal kingdom. were examined to determine their visual capabilities and whether the Mollusks (bivalves, gastropods, cephalopods, chitons, etc.) have clams can see the flashing of conspecifics. Similar to the congener the most diverse eye morphologies of any phylum (Serb and C. scaber, C. ales exhibits an off-response (shadow reflex) and an on- Eernisse, 2008). Several eye types have evolved within Mollusca: response (light reflex). In field observations, a shadow caused a pit eyes can differentiate between light and shade but do not form significant increase in flash rate from a mean of 3.9 Hz to 4.7 Hz images, and exist in some bivalves and gastropods; pinhole eyes, (P=0.0016). In laboratory trials, a looming stimulus, which increased which provide the directionality of light but poor image quality, light intensity, caused a significant increase in flash rate from a exist in the nautilus and the giant clam; compound eyes, which have median of 1.8 Hz to 2.2 Hz (P=0.0001).
    [Show full text]
  • Freshwater Mussels of the Pacific Northwest
    Freshwater Mussels of the Pacifi c Northwest Ethan Nedeau, Allan K. Smith, and Jen Stone Freshwater Mussels of the Pacifi c Northwest CONTENTS Part One: Introduction to Mussels..................1 What Are Freshwater Mussels?...................2 Life History..............................................3 Habitat..................................................5 Role in Ecosystems....................................6 Diversity and Distribution............................9 Conservation and Management................11 Searching for Mussels.............................13 Part Two: Field Guide................................15 Key Terms.............................................16 Identifi cation Key....................................17 Floaters: Genus Anodonta.......................19 California Floater...................................24 Winged Floater.....................................26 Oregon Floater......................................28 Western Floater.....................................30 Yukon Floater........................................32 Western Pearlshell.................................34 Western Ridged Mussel..........................38 Introduced Bivalves................................41 Selected Readings.................................43 www.watertenders.org AUTHORS Ethan Nedeau, biodrawversity, www.biodrawversity.com Allan K. Smith, Pacifi c Northwest Native Freshwater Mussel Workgroup Jen Stone, U.S. Fish and Wildlife Service, Columbia River Fisheries Program Offi ce, Vancouver, WA ACKNOWLEDGEMENTS Illustrations,
    [Show full text]
  • Transposed Hinge Structures in Lamellibranches
    TRANSACTIONS OF THE • SAN DIEGO SOCIETY OF NATURAL HISTORY ,/ VoLUME VII, No. 26, pp. 299-318, plate 19 • TRANSPOSED HINGE STRUCTURES IN LAMELLIBRANCHS BY P. PoPENOE AND FINDLAY W. W. A. • Balch Graduate School of the Geological Sciences California Institute of Technology Pasadena, California SAN DIEGO, CALIFORNIA PRINTED FOR THE SOCIETY OCTOBER 6, 1933 • • COMMITTEE ON PUBLICATION U.S. GRANT, IV, Chairman FRED BAKER CLINTON G. ABBOTT, Editor • TRANSPOSED HINGE STRUCTURES IN LAMELLIBRANCHS 1 BY W. P. PoPENOE AND W. A. FINDLAY California Institute of Technology INTRODUCTION In the course of study of a collection of Eocene fossils from Claiborne Bluff, Alabama, the senior author of tl1is paper noticed two valves, one right and one left, of the lamellibranch Venericardia parva Lea, in whicl1 the dentition is partially transposed. Subsequently, the authors made an examination of more than five thousand lamellibranch valves, representit1g both recent and fossil shells, in search of further exa1nples of hinge-trans­ position. We have found a total number of twenty-six valves exhibiting this variation. Study of these specimens has revealed some hitherto unreported facts regarding the principles of hinge-transposition. Therefore in this paper, we shall describe and discuss these specimens, and shall present such con­ clusions as seem justified by the data assembled. Citations to the literature are made by author, date, and page, referring to the list at the end of the paper. DEFINITION OF T ERMS A transposed lamellibranch hinge is defined as one that exhibits in the right valve the hinge ele1nents normally occurring in the left valve, and vice-versa.
    [Show full text]
  • Early Ontogeny of Jurassic Bakevelliids and Their Bearing on Bivalve Evolution
    Early ontogeny of Jurassic bakevelliids and their bearing on bivalve evolution NIKOLAUS MALCHUS Malchus, N. 2004. Early ontogeny of Jurassic bakevelliids and their bearing on bivalve evolution. Acta Palaeontologica Polonica 49 (1): 85–110. Larval and earliest postlarval shells of Jurassic Bakevelliidae are described for the first time and some complementary data are given concerning larval shells of oysters and pinnids. Two new larval shell characters, a posterodorsal outlet and shell septum are described. The outlet is homologous to the posterodorsal notch of oysters and posterodorsal ridge of arcoids. It probably reflects the presence of the soft anatomical character post−anal tuft, which, among Pteriomorphia, was only known from oysters. A shell septum was so far only known from Cassianellidae, Lithiotidae, and the bakevelliid Kobayashites. A review of early ontogenetic shell characters strongly suggests a basal dichotomy within the Pterio− morphia separating taxa with opisthogyrate larval shells, such as most (or all?) Praecardioida, Pinnoida, Pterioida (Bakevelliidae, Cassianellidae, all living Pterioidea), and Ostreoida from all other groups. The Pinnidae appear to be closely related to the Pterioida, and the Bakevelliidae belong to the stem line of the Cassianellidae, Lithiotidae, Pterioidea, and Ostreoidea. The latter two superfamilies comprise a well constrained clade. These interpretations are con− sistent with recent phylogenetic hypotheses based on palaeontological and genetic (18S and 28S mtDNA) data. A more detailed phylogeny is hampered by the fact that many larval shell characters are rather ancient plesiomorphies. Key words: Bivalvia, Pteriomorphia, Bakevelliidae, larval shell, ontogeny, phylogeny. Nikolaus Malchus [[email protected]], Departamento de Geologia/Unitat Paleontologia, Universitat Autòno− ma Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain.
    [Show full text]
  • Mechanics Unlocks the Morphogenetic Puzzle of Interlocking Bivalved Shells
    Mechanics unlocks the morphogenetic puzzle of interlocking bivalved shells Derek E. Moultona,1 , Alain Gorielya , and Regis´ Chiratb aMathematical Institute, University of Oxford, Oxford, OX2 6GG, United Kingdom; and bCNRS 5276, LGL-TPE (Le Laboratoire de Geologie´ de Lyon: Terre, Planetes,` Environnement), Universite´ Lyon 1, 69622 Villeurbanne Cedex, France Edited by Sean H. Rice, Texas Tech University, Lubbock, TX, and accepted by Editorial Board Member David Jablonski November 11, 2019 (received for review September 24, 2019) Brachiopods and mollusks are 2 shell-bearing phyla that diverged tal events causing shell injuries. Yet, in all cases the interlocking from a common shell-less ancestor more than 540 million years ago. of the 2 shell edges is tightly maintained. These observations Brachiopods and bivalve mollusks have also convergently evolved imply that the interlocking pattern emerges as the result of epi- a bivalved shell that displays an apparently mundane, yet strik- genetic interactions modulating the behavior of the secreting ing feature from a developmental point of view: When the shell mantle during shell development. is closed, the 2 valve edges meet each other in a commissure that Here, we provide a geometric and mechanical explanation forms a continuum with no gaps or overlaps despite the fact that for this morphological trait based on a detailed analysis of the each valve, secreted by 2 mantle lobes, may present antisymmet- shell geometry during growth and the physical interaction of the ric ornamental patterns of varying regularity and size. Interlock- shell-secreting soft mantle with both the rigid shell edge and ing is maintained throughout the entirety of development, even the opposing mantle lobe.
    [Show full text]
  • Atlas of the Freshwater Mussels (Unionidae)
    1 Atlas of the Freshwater Mussels (Unionidae) (Class Bivalvia: Order Unionoida) Recorded at the Old Woman Creek National Estuarine Research Reserve & State Nature Preserve, Ohio and surrounding watersheds by Robert A. Krebs Department of Biological, Geological and Environmental Sciences Cleveland State University Cleveland, Ohio, USA 44115 September 2015 (Revised from 2009) 2 Atlas of the Freshwater Mussels (Unionidae) (Class Bivalvia: Order Unionoida) Recorded at the Old Woman Creek National Estuarine Research Reserve & State Nature Preserve, Ohio, and surrounding watersheds Acknowledgements I thank Dr. David Klarer for providing the stimulus for this project and Kristin Arend for a thorough review of the present revision. The Old Woman Creek National Estuarine Research Reserve provided housing and some equipment for local surveys while research support was provided by a Research Experiences for Undergraduates award from NSF (DBI 0243878) to B. Michael Walton, by an NOAA fellowship (NA07NOS4200018), and by an EFFRD award from Cleveland State University. Numerous students were instrumental in different aspects of the surveys: Mark Lyons, Trevor Prescott, Erin Steiner, Cal Borden, Louie Rundo, and John Hook. Specimens were collected under Ohio Scientific Collecting Permits 194 (2006), 141 (2007), and 11-101 (2008). The Old Woman Creek National Estuarine Research Reserve in Ohio is part of the National Estuarine Research Reserve System (NERRS), established by section 315 of the Coastal Zone Management Act, as amended. Additional information on these preserves and programs is available from the Estuarine Reserves Division, Office for Coastal Management, National Oceanic and Atmospheric Administration, U. S. Department of Commerce, 1305 East West Highway, Silver Spring, MD 20910.
    [Show full text]
  • Download Complete Work
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Laseron, C. F., 1956. A revision of the New South Wales Leptonidae (Mollusca: Pelecypoda). Records of the Australian Museum 24(2): 7–22. [23 November 1956]. doi:10.3853/j.0067-1975.24.1956.640 ISSN 0067-1975 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia 7 A REVISION OF THE NEW SOUTH WALES LEPTONIDAE (MOLLUSCA: Pelecypoda) (l!"igs. 1-27) By CHARLES F. LASERON, F.R.Z.S. (This research has been assisted by a gTant from tbe Science and Industry Endowment Fund.) INTRODUCTION. Th~ group of bivalves dealt with in this paper has been classified differently by AustralasIan cO~lChologists. Hedley in his check list, 1918, used Leptonidae as a family name.. Powell In "~~ellfish of New Zealand", 1937, divided the group into two families Lasa81dae and Erycll1ldae. Ootton and Godfrey, "The Mollusca of South Australia", 1938, used Leptonacea as a superfamily, divided into two families, Leptonidae and Montacutidae. POivell again, in a second edition, 1946, reverted to the single family Leptonidae . .Th.at arrangement is followed here. The group, whether considered as a family or superfamlly, seems a natural one, and the characters, both anatomical and of the shell, are reasonably definable. Many of the genera are nestling, others are reputecl to be either commensal or parasitic, but the latter habits have Hot been 1l0ticeil in any of the Peronian forms.
    [Show full text]
  • Bivalvos Siluro-Devonicos De Bolivia, Cuanto Sabemos De Su Taxonomia?
    V Congreso Latinoamericano de Paleontología. Santa Cruz de la Sierra, Bolivia. Agosto, 2002 BIVALVOS SILURO-DEVONICOS DE BOLIVIA, CUANTO SABEMOS DE SU TAXONOMIA? Alejandra DALENZ-FARJAT XR s.r.l. Exploracionistas Regionales, Parque General Belgrano 1era Etapa, Manzana N Casa 14, 4400 Salta, Argentina. Email: [email protected] RESUMEN Se dan a conocer la totalidad de géneros y especies de la Clase Bivalvia que se registran hasta hoy en la cuenca siluro-devónica de Bolivia. Se tienen 25 géneros y 39 especies colectados en secuencias desde ludlowianas hasta frasnianas. Por otro lado, se incluyen los resultados de investigaciones recientes donde se revisaron la mayoría de los puntos fosilíferos del país con malacofauna, dando a conocer nuevos hallazgos, tanto en el Altiplano, la Cordillera, el Interandino, el Subandino norte y sur como así también algunas referencias en afloramientos de la llanura beniana. Finalmente se evalúa cuanto se sabe sobre la taxonomía de bivalvos y cuales las pautas para continuar su investigación. ABSTRACT This paper propose an up-to-date of genus and species of Bivalvia Class recorded until now, in Silurian-Devonian basin of Bolivia. We know 25 genus and 39 species collected in ludlowian to frasnian sequences. Recent research is included where most of the fossiliferous sites of malacofaune have been revised, making known new rewards, from Altiplano, Cordillera, Interandean, north and south of Subandean and Benian plain. Finally, it is evaluated how much do we know until now about bivalves taxonomy and how to continue this research. Palabras claves: Bivalvos, Siluro-Devónico, Taxonomía, Paleogeografía, Bolivia INTRODUCCION Este trabajo tiene como objetivo preguntarnos y evaluar cuanto hemos avanzado hasta la fecha, en la taxonomía de bivalvos siluro-devónicos de Bolivia.
    [Show full text]
  • Deep Conservation of Bivalve Nacre Proteins Highlighted by Shell Matrix Proteomics of the Unionoida Elliptio Complanata and Villosa Lienosa
    Deep conservation of bivalve nacre proteins highlighted by shell matrix proteomics of the Unionoida Elliptio complanata and Villosa lienosa. Benjamin Marie, Jaison Arivalagan, Lucrèce Mathéron, Gérard Bolbach, Sophie Berland, Arul Marie, Frédéric Marin To cite this version: Benjamin Marie, Jaison Arivalagan, Lucrèce Mathéron, Gérard Bolbach, Sophie Berland, et al.. Deep conservation of bivalve nacre proteins highlighted by shell matrix proteomics of the Unionoida Elliptio complanata and Villosa lienosa.. Journal of the Royal Society Interface, the Royal Society, 2017, 14 (126), pp.20160846. 10.1098/rsif.2016.0846. hal-01470764 HAL Id: hal-01470764 https://hal.archives-ouvertes.fr/hal-01470764 Submitted on 27 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Deep conservation of bivalve nacre proteins highlighted by shell matrix 2 proteomics of the Unionoida Elliptio complanata and Villosa lienosa 3 4 Benjamin Marie1,*, Jaison Arivalagan1, Lucrèce Mathéron2, Gérard Bolbach2, Sophie Berland3, 5 Arul Marie1, Frédéric Marin4 6 7 1UMR 7245 CNRS/MNHN
    [Show full text]
  • Reproductive Characteristics and Strategies of Reducing-System Bivalves
    Comparative Biochemistry and Physiology Part A 126 (2000) 1–16 www.elsevier.com/locate/cbpa Review Reproductive characteristics and strategies of reducing-system bivalves Marcel Le Pennec a, Peter G. Beninger b,* a Institut Uni6ersitaire Europe´endelaMer, Place Nicolas Copernic, Technopoˆle Brest-Iroise, 29280 Plouzane´, France b Laboratoire de Biologie Marine, Faculte´ des Sciences, Uni6ersite´ de Nantes, 44322 Nantes ce´dex, France Received 23 September 1999; received in revised form 15 February 2000; accepted 25 February 2000 Abstract The reproductive biology of Type 3 reducing-system bivalves (those whose pallial cavity is irrigated with water rich in reducing substances) is reviewed, with respect to size-at-maturity, sexuality, reproductive cycle, gamete size, symbiont transmission, and larval development/dispersal strategies. The pattern which emerges from the fragmentary data is that these organisms present reproductive particularities associated with their habitat, and with their degree of reliance on bacterial endosymbionts. A partial exception to this pattern is the genus Bathymodiolus, which also presents fewer trophic adaptations to the reducing environment, suggesting a bivalent adaptive strategy. A more complete understand- ing of the reproductive biology of Type 3 bivalves requires much more data, which may not be feasible for some aspects in the deep-sea species. © 2000 Elsevier Science Inc. All rights reserved. Keywords: Reproduction; Bivalves; Reducing; Hydrothermal 1. Introduction 1979; Jannasch 1985; Smith 1985; Morton 1986; Reid and Brand, 1986; Distel and Felbeck 1987; Interest in the biology of marine reducing sys- Diouris et al. 1989; Tunnicliffe 1991; Le Pennec et tems has surged since the discovery of deep-sea al., 1995a). In contrast, general principles of the vents and associated fauna (Corliss et al., 1979).
    [Show full text]