Great Yarmouth Third River Crossing Document 6.2: Environmental

Total Page:16

File Type:pdf, Size:1020Kb

Great Yarmouth Third River Crossing Document 6.2: Environmental Great Yarmouth Third River Crossing Appendix 9C: Borehole Log Review and Deposit Modelling Report Document Reference: 6.2 Great Yarmouth Third River Crossing Application for Development Consent Order Document 6.2: Environmental Statement Volume II: Technical Appendix 9C: Borehole Log Review and Deposit Modelling Report Planning Act 2008 The Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009 (as amended) (“APFP”) APFP regulation Number: 5(2)(a) Planning Inspectorate Reference Number: TR010043 Author: Norfolk County Council Document Reference: 6.2 – Technical Appendix 9C Version Number: 0 – Revision for Submission Date: 30 April 2019 Great Yarmouth Third River Crossing Borehole log review and deposit modelling report Ref: 204901.01 September 2018 wessexarchaeology © Wessex Archaeology Ltd 2018, all rights reserved. Portway House Old Sarum Park Salisbury Wiltshire SP4 6EB www.wessexarch.co.uk Wessex Archaeology Ltd is a Registered Charity no. 287786 (England & Wales) and SC042630 (Scotland) Disclaimer The material contained in this report was designed as an integral part of a report to an individual client and was prepared solely for the benefit of that client. The material contained in this report does not necessarily stand on its own and is not intended to nor should it be relied upon by any third party. To the fullest extent permitted by law Wessex Archaeology will not be liable by reason of breach of contract negligence or otherwise for any loss or damage (whether direct indirect or consequential) occasioned to any person acting or omitting to act or refraining from acting in reliance upon the material contained in this report arising from or connected with any error or omission in the material contained in the report. Loss or damage as referred to above shall be deemed to include, but is not limited to, any loss of profits or anticipated profits damage to reputation or goodwill loss of business or anticipated business damages costs expenses incurred or payable to any third party (in all cases whether direct indirect or consequential) or any other direct indirect or consequential loss or damage. Document Information Document title Third River Crossing, Great Yarmouth Document subtitle Geoarchaeological borehole review and deposit modelling Document reference 204901.01 Client name WSP UK Ltd Address 3 White Rose Office Park Millshaw Park Lane Leeds LS11 0DL Site location Great Yarmouth County Norfolk National grid reference 652500 305920 (TG 52500 05920) Statutory designations Planning authority Norfolk County Council WA project name Great Yarmoth Third River Crossing WA project code 204901 (204900) Project management by Dave Norcott Document compiled by Claire Mellett Contributions from Holly Rodgers, Andrew Shaw Graphics by Nancy Dixon Quality Assurance Version & issue date Status Author Approved by V1 07/09/2018 External draft CLM DRN Third River Crossing, Great Yarmouth Geoarchaeological borehole review and deposit modelling Contents Summary .........................................................................................................................................ii Acknowledgements .......................................................................................................................... i 1 INTRODUCTION ................................................................................................................... 1 1.1 Project background ....................................................................................................... 1 1.2 Site location and geology .............................................................................................. 1 1.3 Summary of previous geoarchaeological work .............................................................. 3 1.4 Scope of document ....................................................................................................... 3 2 GEOARCHAEOLOGICAL BACKGROUND .......................................................................... 4 2.1 Lower Palaeolithic (800 – 243 ka) ................................................................................. 4 2.2 Middle Palaeolithic (243 – 36 ka) .................................................................................. 5 2.3 Early Upper Palaeolithic (36 – 13 ka) ............................................................................ 6 2.4 Late Upper Palaeolithic to Medieval (13,000 BC – AD 1500) ........................................ 6 3 AIMS AND OBJECTIVES ...................................................................................................... 7 4 METHODOLOGY .................................................................................................................. 7 4.1 Geotechnical data ......................................................................................................... 7 4.2 Review of geotechnical data ......................................................................................... 8 4.3 Deposit modelling ......................................................................................................... 8 5 RESULTS .............................................................................................................................. 9 5.1 Review of geotechnical logs ......................................................................................... 9 5.2 Deposit modelling ....................................................................................................... 10 6 DISCUSSION ...................................................................................................................... 11 6.1 Geoarchaeological potential........................................................................................ 11 6.2 Potential impact .......................................................................................................... 13 7 RECOMMENDATIONS ....................................................................................................... 13 REFERENCES ............................................................................................................................. 15 Bibliography ......................................................................................................................... 15 Websites .............................................................................................................................. 16 Appendix 1 ........................................................................................................................... 17 List of Figures Figure 1 Site location plan showing transect Figure 2 Sub-surface transect across the site List of Tables Table 1 Stages of geoarchaeological assessment and recording Table 2 Stratigraphy of deposits with the proposed scheme i Doc ref 204901.01 Issue 1, Sept 2018 Third River Crossing, Great Yarmouth Geoarchaeological borehole review and deposit modelling Summary Wessex Archaeology was commissioned by WSP Ltd. to undertake a geoarchaeological assessment of geotechnical borehole data collected as part of ground investigation works in support of the proposed Third River Crossing, Great Yarmouth. The proposed scheme will provide a new bridge and associated transport links across the River Yare, which bisects the town. Construction activities include the installation of pile foundations to support the bridge structure, and ground works and landscaping associated with the new strategic road network. Previous archaeological investigations identified deposits of potential geoarchaeological significance within the proposed scheme boundary (WSP 2018; Wessex Archaeology 2018). These comprise peat and alluvium of the Breydon Formation, deposited in semi-terrestrial wetland environmental under the influence of post-glacial rising sea levels. To assess the distribution, depth and significance of the geoarchaeological resource, and therefore the possible impact of construction activities, a geoarchaeological review of 48 geotechnical borehole logs has been undertaken and the results used to construct a deposit model for the scheme area. Based on the borehole review, the stratigraphy of the site is characterised by London Clay overlain by Crag Group deposits, both of which pre-date human occupation and thus have no geoarchaeological potential. Sands and gravels of the Happisburgh Glacigenic Formation overlie Crag Group deposits, but as these were deposited during the Anglian glacial period, they have low geoarchaeological potential. The most geoarchaeologically significant deposits within the proposed scheme belong to the Breydon Formation. These deposits comprise peat and alluvium and were mapped on the western side of the River Yare. Peat deposits have high geoarchaeological potential as they may preserve palaeoenvironmental as well as archaeological material. These deposits are located at depths between -4 m OD and -10.35 m OD. Alluvial deposits overlie the peat and can be found at depths between -0.23 m OD and -10 m OD. These deposits have a lower organic content but the potential to preserve inorganic microfossils and are judged to be of medium geoarchaeological potential. On the eastern side of the River Yare, North Denes Formation is present where Breydon Formation is absent. North Denes Formation comprises sand and gravel that was deposited as part of a coastal spit/ barrier that developed from AD 500 onwards. The geoarchaeological potential of these deposits is low, although it is possible that they may contain
Recommended publications
  • Assessing the Chronostratigraphic Fidelity of Sedimentary Geological Outcrops in the Pliocene–Pleistocene Red Crag Formation, Eastern England
    Downloaded from http://jgs.lyellcollection.org/ by guest on September 25, 2021 Research article Journal of the Geological Society Published Online First https://doi.org/10.1144/jgs2019-056 Where does the time go? Assessing the chronostratigraphic fidelity of sedimentary geological outcrops in the Pliocene–Pleistocene Red Crag Formation, eastern England Neil S. Davies1*, Anthony P. Shillito1 & William J. McMahon2 1 Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK 2 Faculty of Geosciences, Utrecht University, Princetonlaan 8a, Utrecht 3584 CB, Netherlands NSD, 0000-0002-0910-8283; APS, 0000-0002-4588-1804 * Correspondence: [email protected] Abstract: It is widely understood that Earth’s stratigraphic record is an incomplete record of time, but the implications that this has for interpreting sedimentary outcrop have received little attention. Here we consider how time is preserved at outcrop using the Neogene–Quaternary Red Crag Formation, England. The Red Crag Formation hosts sedimentological and ichnological proxies that can be used to assess the time taken to accumulate outcrop expressions of strata, as ancient depositional environments fluctuated between states of deposition, erosion and stasis. We use these to estimate how much time is preserved at outcrop scale and find that every outcrop provides only a vanishingly small window onto unanchored weeks to months within the 600–800 kyr of ‘Crag-time’. Much of the apparently missing time may be accounted for by the parts of the formation at subcrop, rather than outcrop: stratigraphic time has not been lost, but is hidden. The time-completeness of the Red Crag Formation at outcrop appears analogous to that recorded in much older rock units, implying that direct comparison between strata of all ages is valid and that perceived stratigraphic incompleteness is an inconsequential barrier to viewing the outcrop sedimentary-stratigraphic record as a truthful chronicle of Earth history.
    [Show full text]
  • Assessing the Chronostratigraphic Fidelity of Sedimentary Geological Outcrops in the Pliocene–Pleistocene Red Crag Formation, Eastern England
    Downloaded from http://jgs.lyellcollection.org/ by guest on September 27, 2021 Research article Journal of the Geological Society Published online August 14, 2019 https://doi.org/10.1144/jgs2019-056 | Vol. 176 | 2019 | pp. 1154–1168 Where does the time go? Assessing the chronostratigraphic fidelity of sedimentary geological outcrops in the Pliocene–Pleistocene Red Crag Formation, eastern England Neil S. Davies1*, Anthony P. Shillito1 & William J. McMahon2 1 Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK 2 Faculty of Geosciences, Utrecht University, Princetonlaan 8a, Utrecht 3584 CB, Netherlands NSD, 0000-0002-0910-8283; APS, 0000-0002-4588-1804 * Correspondence: [email protected] Abstract: It is widely understood that Earth’s stratigraphic record is an incomplete record of time, but the implications that this has for interpreting sedimentary outcrop have received little attention. Here we consider how time is preserved at outcrop using the Neogene–Quaternary Red Crag Formation, England. The Red Crag Formation hosts sedimentological and ichnological proxies that can be used to assess the time taken to accumulate outcrop expressions of strata, as ancient depositional environments fluctuated between states of deposition, erosion and stasis. We use these to estimate how much time is preserved at outcrop scale and find that every outcrop provides only a vanishingly small window onto unanchored weeks to months within the 600–800 kyr of ‘Crag-time’. Much of the apparently missing time may be accounted for by the parts of the formation at subcrop, rather than outcrop: stratigraphic time has not been lost, but is hidden. The time-completeness of the Red Crag Formation at outcrop appears analogous to that recorded in much older rock units, implying that direct comparison between strata of all ages is valid and that perceived stratigraphic incompleteness is an inconsequential barrier to viewing the outcrop sedimentary-stratigraphic record as a truthful chronicle of Earth history.
    [Show full text]
  • An Overview of the Lithostratigraphical Framework for the Quaternary Deposits on the United Kingdom Continental Shelf
    An overview of the lithostratigraphical framework for the Quaternary deposits on the United Kingdom continental shelf Marine Geoscience Programme Research Report RR/11/03 HOW TO NAVIGATE THIS DOCUMENT Bookmarks The main elements of the table of contents are book- marked enabling direct links to be followed to the principal section headings and sub- headings, figures, plates and tables irrespective of which part of the document the user is viewing. In addition, the report contains links: from the principal section and subsection headings back to the contents page, from each reference to a figure, plate or table directly to the corresponding figure, plate or table, from each page number back to the contents page. RETURN TO CONTENTS PAGE BRITISH GEOLOGICAL SURVEY MARINE GEOSCIENCE PROGRAMME The National Grid and other RESEARCH REPORT RR/11/03 Ordnance Survey data are used with the permission of the Controller of Her Majesty’s Stationery Office. Licence No: 100017897/2011. Keywords Group; Formation; Atlantic margin; North Sea; English Channel; Irish An overview of the lithostratigraphical Sea; Quaternary. Front cover framework for the Quaternary deposits Seismic cross section of the Witch Ground Basin, central North on the United Kingdom continental Sea (BGS 81/04-11); showing flat-lying marine sediments of the Zulu Group incised and overlain shelf by stacked glacial deposits of the Reaper Glacigenic Group. Bibliographical reference STOKER, M S, BALSON, P S, LONG, D, and TAppIN, D R. 2011. An overview of the lithostratigraphical framework for the Quaternary deposits on the United Kingdom continental shelf. British Geological Survey Research Report, RR/11/03.
    [Show full text]
  • RR 01 07 Lake District Report.Qxp
    A stratigraphical framework for the upper Ordovician and Lower Devonian volcanic and intrusive rocks in the English Lake District and adjacent areas Integrated Geoscience Surveys (North) Programme Research Report RR/01/07 NAVIGATION HOW TO NAVIGATE THIS DOCUMENT Bookmarks The main elements of the table of contents are bookmarked enabling direct links to be followed to the principal section headings and sub-headings, figures, plates and tables irrespective of which part of the document the user is viewing. In addition, the report contains links: from the principal section and subsection headings back to the contents page, from each reference to a figure, plate or table directly to the corresponding figure, plate or table, from each figure, plate or table caption to the first place that figure, plate or table is mentioned in the text and from each page number back to the contents page. RETURN TO CONTENTS PAGE BRITISH GEOLOGICAL SURVEY RESEARCH REPORT RR/01/07 A stratigraphical framework for the upper Ordovician and Lower Devonian volcanic and intrusive rocks in the English Lake The National Grid and other Ordnance Survey data are used with the permission of the District and adjacent areas Controller of Her Majesty’s Stationery Office. Licence No: 100017897/2004. D Millward Keywords Lake District, Lower Palaeozoic, Ordovician, Devonian, volcanic geology, intrusive rocks Front cover View over the Scafell Caldera. BGS Photo D4011. Bibliographical reference MILLWARD, D. 2004. A stratigraphical framework for the upper Ordovician and Lower Devonian volcanic and intrusive rocks in the English Lake District and adjacent areas. British Geological Survey Research Report RR/01/07 54pp.
    [Show full text]
  • North Sea Geology
    Technical Report TR_008 Technical report produced for Strategic Environmental Assessment – SEA2 NORTH SEA GEOLOGY Produced by BGS, August 2001 © Crown copyright TR_008.doc Strategic Environmental Assessment - SEA2 Technical Report 008 - Geology NORTH SEA GEOLOGY Contributors: Text: Peter Balson, Andrew Butcher, Richard Holmes, Howard Johnson, Melinda Lewis, Roger Musson Drafting: Paul Henni, Sheila Jones, Paul Leppage, Jim Rayner, Graham Tuggey British Geological Survey CONTENTS Summary...............................................................................................................................3 1. Geological history and petroleum geology including specific SEA2 areas ......................5 1.1 Northern and central North Sea...............................................................................5 1.1.1 Geological history ........................................................................................5 1.1.1.1 Palaeozoic ....................................................................................5 1.1.1.2 Mesozoic ......................................................................................5 1.1.1.3 Cenozoic.......................................................................................8 1.1.2 Petroleum geology.......................................................................................9 1.1.3 Petroleum geology of SEA2 Area 3 .............................................................9 1.2 Southern North Sea...............................................................................................10
    [Show full text]
  • English Nature Research Report
    Yatural Area: 23. Lincolnshire Marsh and Geological Significance: Notable Coast (provisional) General geological character: The solid geology of the Lincolnshire Marsh and Coast Natural Area is bminated by Cretaceous chalk (approximately 97-83 Ma) although the later Quaternary deposits (the last 2 Ma) give thc area its overall. charactcr. 'The chalk is only well exposed on thc south bank of the Humber, where quarries and cuttings providc exposures of the Upper Cretaceous Chalk. 'me chalk is a very pure limestone deposited on the floor of a tropical sea. During Quaternary timcs, the area was glaciated on several occasions and as a result the area is covered by a variety of glacial deposits, representing an unknown number of glacial ('lcc Age') and interglacial phases. rhe glacial deposits consist mainly of sands, gravels and clays in variable thicknesses. These are derived primarily from the erosion of surrounding bedrock and therefore tend to have similar lithological characteristics, usually with a high chalk content. The glacial deposits are particularly important because of the controversy surrounding their correlation with the timing and sequence in other parts of England, especially East Anglia. The Quaternary deposits are well exposed in coastal cliffs of the area. Key geological features: Coastal cliffs consisting of glacial sands, gravels and clays Exposures of Cretaceous chalk Number of GCR sites: Oxfordian: 1 Kimmeridgian: I Aptian-Rlbian: i Quaternary of Eastern England: 1 ~ ~ ~ ~ ~ ~~~ ~ ~ ~~ GeologicaVgeomorphological SSSI coverage: 'here are 2 (P)SSSIs in the Natural Area covering 4 GCR SlLs which represent 4 different GCR networks. The site coverage includes South Ferriby Chalk Pit SSSI which contains an important Upper Jurassic succession, overlain by Cretaceous deposits.
    [Show full text]
  • Journal of the Geological Society
    Accepted Manuscript Journal of the Geological Society Where does the time go? Assessing the chronostratigraphic fidelity of sedimentary rock outcrops in the Pliocene- Pleistocene Red Crag Formation, eastern England Neil S. Davies, Anthony P. Shillito & William J. McMahon DOI: https://doi.org/10.1144/jgs2019-056 Received 29 March 2019 Revised 24 June 2019 Accepted 28 June 2019 © 2019 The Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/). Published by The Geological Society of London. Publishing disclaimer: www.geolsoc.org.uk/pub_ethics Supplementary material at https://doi.org/10.6084/m9.figshare.c.4561001 To cite this article, please follow the guidance at http://www.geolsoc.org.uk/onlinefirst#cit_journal Manuscript version: Accepted Manuscript This is a PDF of an unedited manuscript that has been accepted for publication. The manuscript will undergo copyediting, typesetting and correction before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Although reasonable efforts have been made to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record once published for full citation and copyright details, as permissions may be required. Downloaded from https://pubs.geoscienceworld.org/jgs/article-pdf/doi/10.1144/jgs2019-056/4791669/jgs2019-056.pdf by guest on 25 July 2019 Where does the time go? Assessing the chronostratigraphic fidelity of sedimentary rock outcrops in the Pliocene-Pleistocene Red Crag Formation, eastern England Neil S.
    [Show full text]
  • Environment Agency Anglian Region Strategy for Groundwater
    £A-Ari0liAn W-uVer R^'Source.a ^ o x i3 Environment Agency Anglian Region Strategy for Groundwater Investigations and Modelling: Yare and North Norfolk Areas Scoping Study 27 January 2000 Entec UK Limited E n v ir o n m e n t A g e n c y NATIONAL LIBRARY & INFORMATION SERVICE ANGLIAN REGION Kingfisher House, Goldhay Way, Orton Goldhay. Peterborough PE2 5ZR En v ir o n m e n t Ag e n c y Report for Environment Agency Environment Agency Kingfisher House Anglian Region Goldhay Way Orton Goldhay Peterborough Strategy for PE2OZR Groundwater Main Contributors Investigations and Stuart Sutton Modelling: Yare and Tim Lewis Ben Fretwell North Norfolk Areas Issued by Scoping Study Tim Lewis 27 January 2000 Entec UK Limited Approved by Stuart Sutton Entec UK Limited 160-162 Abbey Forcgatc Shrewsbury Shropshire SY26BZ England Tel: +44 (0) 1743 342000 Fax: +44 (0) 1743 342010 f:\data\data\projects\hm-250\0073 2( 15770)\docs\n085i 3 .doc Certificate No. FS 34171 In accordance with an environmentally responsible approach, this report is printed on recycled paper produced from 100V. post-consumer waste. Contents 1. Introduction 1 1.1 Strategy for Groundwater Investigations and Modelling 1 1.2 Structure of Strategy Projects and Approach to Seeking Approval 2 1.3 Organisation of this Report 3 2. Description of the Yare & North Norfolk Groundwater Resource Investigation Area and Current Understanding of the Hydrogeological System 7 2.1 Introduction 7 2.2 Location 7 2.3 Geology 7 2.4 Hydrology and Drainage 8 2.5 Basic Conceptual Hydrogeological Understanding 9 2.6 Water Resources 11 2.7 Conservation Interest 13 3.
    [Show full text]
  • Geological Landscapes of the Norfolk Coast
    Geological Landscapes of the Norfolk Coast Introducing five areas of striking geodiversity in the Norfolk Coast Area of Outstanding Natural Beauty Dersingham National Nature Reserve CONTENTS [clicking on relevant content lines will take you straight to the page] 1.0 Introduction---------------------------------------------------------------------------------------- 3 2.0 An overview of the Geodiversity of the Norfolk Coast Area of Outstanding Natural Beauty ------------------------------------------------------------------------------------ 4 3.0 Geological Landscapes------------------------------------------------------------------------ 7 3.1 WEST NORFOLK SANDSTONES ------------------------------------------------------ 7 3.2 HUNSTANTON GLACIAL----------------------------------------------------------------10 3.3 NORTH NORFOLK COASTAL ---------------------------------------------------------13 3.4 CROMER RIDGE ---------------------------------------------------------------------------18 3.5 EAST NORFOLK COASTAL ------------------------------------------------------------22 APPENDIX 1 – Summary of Geological Stratigraphy in the Norfolk Coast Area of Outstanding Natural Beauty-----------------------------------------------------------------25 APPENDIX 2 – Glossary -------------------------------------------------------------------------------27 APPENDIX 3 Geodiversity Characterisation & Conservation------------------------30 A3.1 WEST NORFOLK SANDSTONES Conservation and enhancement --------32 A3.2 HUNSTANTON GLACIAL Conservation and enhancement
    [Show full text]
  • Continental Shelf Environments: Seabed Exploitation Options and Approaches
    Continental Shelf Environments: Seabed Exploitation Options and Approaches by Dr. Justin Dix The LRET Research Collegium Southampton, 16 July – 7 September 2012 1 Continental Shelf Environments: Seabed Exploitation Options and Approaches Dr Justin Dix Offshore Diamond Mining • De Beers has led the way in offshore diamond mining on the West Coast of Africa associated with the offshore deposits of the drainage basins (particularly the Orange River) of the Kaapvaal Craton. • Deposits associated with the Pleistocene- Holocene aeolian/fluvial/marine deposits along the submerged shelf. • Exploration extensively by ROV and AUV mounted sonar systems. • Due to extensive weathering only most robust diamonds tend to survive such that marine diamonds have a very high ratio of gem quality diamonds (up to 95%) • Still major source of supply in 2011 Namdeb Holdings (50/50 Joint Venture between Nambian Government/De Beers) extracted Corbett & Burrell, 2001 990000 carats from their marine activities. Offshore Aggregate Mining • Aggregates are mixtures of sands, gravel and crushed rock/other bulk mineral used for construction (principally as a component of concrete) and in civil engineering. • Approximately 20% of sand and gravel used in England and Wales is supplied by the marine aggregates industry. • In south-east England this represents 33% of sand and gravel for construction. • Currently 70 production licenses exist which accounts for 21 millon tonnes per annum. • These licenses only cover 0.12% of UK continental shelf and of this only c. 8% per annum (105 km2 in 2010). • Main areas: Humber, East Coast, Thames Estuary, Eastern English Channel, South West and North West. UK Offshore Wind • First near shore project in Blyth Harbour in 2001.
    [Show full text]
  • The Geology and Petrology of the Ennerdale
    THE GEOLOGY AND PETROLOGY OF THE ENNERDALE GRANOPHYRE. ITS__ METAMORPHIC AUREOLE __AND ASSOCIATED MINERALIZATION A Thesis presented for the Degree of Doctor of Philosophy by Lewis Clark. Department of Geology, The University of Leeds. June, 1963. a b s t r a c t The E n n e r d a l e G r a n o p h y r e occurs in the Latte District between Buttermere and Wasdale. It is a stocK shaped, composite intrusion which was emplaced at the close of the Caledonian earth movements. The country rocks of the granophyre are the Borrowdale Volcanic Series and the Skiddaw Slates. The oldest rocks in the Ennerdale Granophyre are a series of dioritic rocks which have been largely metasomatised by the later granophyre magma into a series of granodioritic hybrids. Eighty percent of the outcrop of the Ennerdale Granophyre is occupied by a fine grained granophyre, the Main Granophyre. The youngest rocks associated with the granophyre: are a series of fine aplitic microgranites and rhyolitic felsites. Metamorphism by the granophyre has been very slight. The main changes in the Skiddaw Slates are a change in colour and an increase in hardness, but the slates in places in Ennerda.le have been soda—metasomatised. Macroscopic changes in the Berrowdale /olcanic Series are negligible, but there have been important mineralogicalL changes within a narrow aureole adjacent to the granophyre. ACKNOWLEDGEMENTS This research was made possible by the award of a D.S.I.R. Research Studentship. I am extremely grateful to the Department of Scientific and Industrial Research and Professor W.
    [Show full text]
  • National Geological Screening: East Anglia Region
    National Geological Screening: East Anglia region Minerals and Waste Programme Commissioned Report CR/17/100 BRITISH GEOLOGICAL SURVEY MINERALS AND WASTE PROGRAMME COMMISSIONED REPORT CR/17/100 National Geological Screening: East Anglia region M A Woods1, D Schofield1, T Pharaoh2, R Haslam2, E Crane3, J P Bloomfield3, J R Lee4, B Baptie4, R P Shaw5, T Bide5 and F M McEvoy 1Rock type, 2Rock structure, 3Groundwater, 4Natural processes, 5Resources Contributors/editors L P Field, R Terrington, P Williamson, I Mosca, N J P Smith, D E Evans, C Gent, M Barron, A Howard, G Baker, R M Lark, A Lacinska, S Thorpe, H Holbrook, I Longhurst and L Hannaford The National Grid and other Ordnance Survey data © Crown Copyright and database rights 7. Ordnance Survey Licence No. 100021290 EUL. Keywords National geological screening, GDF, East Anglia, rock type, structure, groundwater, natural processes, resources Bibliographical reference WOODS, M A, SCHOFIELD, D, PHARAOH, T, HASLAM, R, CRANE, E, BLOOMFIELD, J P, LEE, J R, BAPTIE, B, SHAW, R P, BIDE T AND F M MCEVOY. 2018. National geological screening: East Anglia region. British Geological Survey Commissioned Report, CR/17/100. 69pp. BRITISH GEOLOGICAL SURVEY The full range of our publications is available from BGS shops at Nottingham, Edinburgh, London and Cardiff (Welsh British Geological Survey offices publications only), See contact details below or shop online at www.geologyshop.com Environmental Science Centre, Keyworth, Nottingham The London Information Office also maintains a reference NG12 5GG collection of BGS publications, including maps, for Tel 0115 936 3100 consultation. We publish an annual catalogue of our maps and other BGS Central Enquiries Desk publications; this catalogue is available online or from any of Tel 0115 936 3143 the BGS shops.
    [Show full text]