This article has been published in Oceanography, Volume 15, Number 1, a quarterly journal of The Oceanography Society. Copyright 2001 by The Oceanography Society. All rights reserved. Reproduction of any portion of this article by photocopy machine, reposting, or other means without prior authorization of The Oceanography Society is strictly prohibited. Send all correspondence to:
[email protected], or 5912 LeMay Road, Rockville, MD 20851-2326, USA. SPECIAL ISSUE – NAVY OPERATIONAL MODELS: TEN YEARS LATER Navy Real-time Global Modeling Systems Robert C. Rhodes, Harley E. Hurlburt, Alan J. Wallcraft, Charlie N. Barron, Paul J. Martin, E. Joseph Metzger, Jay F. Shriver, Dong S. Ko Naval Research Laboratory • Stennis Space Center, Mississippi USA Ole Martin Smedstad Planning Systems, Inc. • Stennis Space Center, Mississippi USA Scott L. Cross Naval Oceanographic Office • Stennis Space Center, Mississippi USA A. Birol Kara Florida State University • Tallahassee, Florida USA Introduction The global ocean has its own “weather” phenome- Oceanographic Office (NAVOCEANO). NRL research na, although with greatly different time and space dating back to the early 1980s, which focused on high scales compared to the atmosphere. Oceanic mesoscale horizontal resolution, satellite altimeter data assimila- eddies are typically about 100 km in diameter which tion, and statistical downward projection of surface makes them 20–30 times smaller than comparable satellite observations has led to a system made up of atmospheric highs and lows. The ocean’s “jet streams” three main components: the Modular Ocean Data are the western boundary currents and their extensions Assimilation System (MODAS), the NRL Layered into the interior ocean. The currents have speeds on the Ocean Model (NLOM), and the NRL Coastal Ocean order of 1 m/s compared to atmospheric speeds that Model (NCOM).