Combining Meteorites and Missions to Explore Mars SPECIAL FEATURE

Total Page:16

File Type:pdf, Size:1020Kb

Combining Meteorites and Missions to Explore Mars SPECIAL FEATURE Combining meteorites and missions to explore Mars SPECIAL FEATURE Timothy J. McCoy1, Catherine M. Corrigan, and Christopher D. K. Herd2 Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, 10th and Constitution Avenues NW, Washington, DC 20560-0119 Edited by Mark H. Thiemens, University of California San Diego, La Jolla, CA, and approved August 24, 2011 (received for review March 30, 2011) Laboratory studies of meteorites and robotic exploration of Mars can and must contribute to our understanding of all of these re- reveal scant atmosphere, no evidence of plate tectonics, past servoirs if we are to understand Mars as a system. evidence for abundant water, and a protracted igneous evolution. Among the meteorites now recognized as martian, the first Despite indirect hints, direct evidence of a martian origin came to be recovered fell October 3, 1815 in Chassigny, France, only with the discovery of trapped atmospheric gases in one meteorite. 20 y after meteorites were recognized to have an extraterrestrial Since then, the study of martian meteorites and findings from mis- origin. In hindsight, hints of a martian origin were available from sions have been linked. Although the meteorite source locations 1950, but final recognition awaited a remarkable finding in 1983. are unknown, impact ejection modeling and spectral mapping By that time, it was recognized that a duo of basaltic meteorites, of Mars suggest derivation from small craters in terrains of Ama- Shergotty and Zagami, differed from the abundant basaltic zonian to Hesperian age. Whereas most martian meteorites are eucrite meteorites. This duo (later joined by other meteorites to young (<1.3 Ga), the spread of whole rock isotopic compositions be called shergottites after the archetypal meteorite) was linked results from crystallization of a magma ocean >4.5 Ga and forma- to the pyroxenitic nakhlites and the olivine-rich dunite Chassigny tion of enriched and depleted reservoirs. However, the history through a common oxygen isotopic signature (1). The common inferred from martian meteorites conflicts with results from recent parent body to these disparate meteorites clearly produced a Mars missions, calling into doubt whether the igneous histor y in- diverse range of igneous lithologies. Further, all of these meteor- ferred from the meteorites is applicable to Mars as a whole. Allan ites shared apparently young ages of 1.3 Ga or less (2), either Hills 84001 dates to 4.09 Ga and contains fluid-deposited carbo- requiring resetting during heating in a later impact event or young nates. Accompanying debate about the mechanism and tempera- crystallization ages and a planet-sized body to explain recent, GEOLOGY ture of origin of the carbonates came several features suggestive near-surface igneous activity. Among the earliest suggestions of past microbial life in the carbonates. Although highly disputed, of a martian origin was that of McSween and Stolper (3) based the suggestion spurred interest in habitable extreme environments on similarities between the bulk compositions of these meteorites on Earth and throughout the Solar System. A flotilla of subsequent and soil compositions measured by the Viking lander. Direct evi- spacecraft has redefined Mars from a volcanic planet to a hydro- dence for a martian origin came with the discovery of high ratios 40 36 129 132 logically active planet that may have harbored life. Understanding of Ar∕ Ar and Xe∕ Xe in trapped gases in shock-altered the history and habitability of Mars depends on understanding the phases of the Antarctic meteorite Elephant Moraine A79001 that coupling of the atmosphere, surface, and subsurface. Sample re- closely resembled martian atmosphere measured by the Viking turn that brings back direct evidence from these diverse reservoirs lander (4). This remarkable discovery set the stage for three dec- is essential. ades of investigations about Mars that, like the initial findings, coupled laboratory analyses of these meteorites with observations aboratory studies of over 50 meteorites derived from Mars, from spacecraft. This approach recently came full circle with the Lplus data collected by numerous orbital and landed spacecraft, discovery on Meridiani Planum by the Mars Exploration Rover paint a picture of a rocky planet that evolved in a fundamentally Opportunity of an isolated rock whose textural, mineralogical different way than Earth. It has scant atmosphere, no evidence of and chemical properties are very similar to that of certain basaltic crustal recycling (plate tectonics), evidence for copious amounts shergottites, including Elephant Moraine (EET) A79001 (5) of water that—if still present—is frozen and largely underground, (Fig. 1). and crustal ages ranging from approximately 4.0 Ga to no more Among the earliest questions was how these meteorites than 180 Ma. reached Earth and where they originated on Mars. Initial skepti- Since its inception, the study of martian meteorites has been cism about a martian origin centered on the shock pressures intimately linked to the exploration of Mars by orbital and landed required for impact ejection, which should have produced com- spacecraft. The very recognition of martian meteorites was plete melting of the ejecta. Proof that meteorites could be ejected enabled by our exploration of Mars. From that initial stage, both unmelted from large bodies came with the discovery of the Allan the number of martian meteorites and missions to Mars has Hills (ALH) A81005 Antarctic meteorite and the recognition increased dramatically, unveiling fundamental insights into the of its lunar origin (6). Early analytical solutions to ejecting material as spallation blocks indicated that craters of the order of history of Mars and posing additional questions, many driven – by ground- and space-based technological advances. In most re- 10 15 km were required. Later workers called for a single, either spects, the studies of martian meteorites and martian rocks and very large [e.g., 200 km; (7)] or oblique (8) impact event on a terrains from missions have been highly complementary, with geologically diverse terrain with ejection of multimeter sized each asking questions and framing answers for the other. Among blocks and subsequent collisions in space to explain the diverse the most interesting areas of exploration—driven by a controver- cosmic-ray exposure ages. As the number of recognized martian sial finding from a martian meteorite—is the search for ancient meteorites increased, these latter models became increasingly or extant life. Achieving this goal requires a better understanding of linkages between the interior, crust, and atmosphere that have Author contributions: T.J.M. designed research; T.J.M., C.M.C., and C.D.K.H. performed driven, and may continue to drive, the evolution of the planet research; and T.J.M., C.M.C., and C.D.K.H. wrote the paper. and, ultimately, an increasingly necessary (if elusive) Mars sample The authors declare no conflict of interest. return mission. In this paper, we discuss how martian meteorites, This article is a PNAS Direct Submission. when coupled with Mars missions, have elucidated these impor- 1To whom correspondence should be addressed. E-mail: [email protected]. — tant reservoirs. We argue that Mars sample return which is 2Permanent address: Department of Earth and Atmospheric Sciences,University of Alberta, widely accepted as the highest priority for Mars exploration— 1–26 Earth Sciences Building, Edmonton, AB, Canada T6G 2E3. www.pnas.org/cgi/doi/10.1073/pnas.1013478108 PNAS Early Edition ∣ 1of6 Downloaded by guest on October 2, 2021 geologic context coupled with the apparent bias toward ejection of martian meteorites from younger geologic units is one of the most significant limitations in coupling martian meteorite and spacecraft-based studies to understand the history of Mars. With the availability of visible to near-infrared data from the OMEGA spectrometer on Mars Express, revisiting this exercise to identify possible source regions for the shergottites might prove pro- ductive. In spite of the lack of “field context,” detailed studies of these samples have yielded insights into the geologic evolution of Mars. Much of the first geochemical modeling of the martian interior derived from the analysis of radiogenic isotopes for geochronol- ogy. Results for the shergottites showed a significant and large variation in initial isotopic ratio, especially for Sr (12), and it was apparent that the initial 87Rb∕86Sr and 87Sr∕86Sr values for meteorite whole rock samples plot on a line with a slope corre- sponding to 4.5 Ga (13). This led to the postulation that 4.5 Ga was the true crystallization age of the shergottites, and that ap- proximately 180 Ma ages obtained by mineral separate Rb–Sr and Sm–Nd reflected resetting by impact metamorphism—a genuine concern because each meteorite experienced at least one impact event, associated with its liberation from Mars, with peak shock pressures in the range of 5–55 GPa and postshock heating up to 1,000 °C (14). This view was further supported by 39Ar–40Ar (giving ages of >250 Ma) and U–Th–Pb results (2). Following arguments that shock metamorphism is unable to fully reset isochrons (2, 12), an alternative view was proposed to explain the 4.5 Ga apparent age in which the spread of whole rock iso- topic compositions is attributed to mantle source characteristics or mixing (13, 15). In this scenario, isotopically enriched and depleted reservoirs are formed by 4.51 Ga (15), and remain un- Fig. 1. Images of martian meteorite Elephant Moraine (EET) A79001 (above) mixed and undisturbed until the melting event that makes a sher- and martian rock Bounce Rock (fasle color; below). Dark patches in EET gottite magma. The geochemical characteristics of a shergottite A79001 are shock-melt pockets containing trapped martian atmosphere. are dictated by which reservoir, or combination of reservoirs, is Scale cube above is 1 cm and length of Bounce Rock is approximately involved in melting.
Recommended publications
  • V Xanes in Spinels As an Oxy-Barometer in Meteorites with Implications for Redox Variations in the Inner Solar System
    V XANES IN SPINELS AS AN OXY-BAROMETER IN METEORITES WITH IMPLICATIONS FOR REDOX VARIATIONS IN THE INNER SOLAR SYSTEM. K. Righter1, S. Sutton2, L. Danielson3, K. Pando4, L. Le3, and M. Newville2. 1NASA-JSC, 2101 NASA Pkwy., Houston, TX 77058 ([email protected]), 2GSECARS Uni- versity of Chicago, 9700 South Cass Avenue, Bldg. 434A, Argonne, IL 60439; 3ESCG, Jacobs Engineering, Houston, TX 77058; 4ESCG, Hamilton Sundstrand, Houston, TX 77058 Introduction: The variation of oxygen fugacity edge peak) depend on oxidation state and coordination within inner solar system materials spans a range of (e.g., [4,5]). In the present work, the intensity of the nearly 15 orders of magnitiude [1]. Igneous and meta- XANES pre-edge morphic rocks commonly contain a mineral assemblage that allows oxygen fugacity to be calculated or con- strained such as FeTi oxides, olivine-opx-spinel, or some other oxybarometer [2]. Some rocks, however, contain a limited mineral assemblage and do not pro- vide constraints on fO2 using mineral equilibria. Good examples of the latter are orthopyroxenites or dunites, such as diogenites, ALH 84001, chassignites, or bra- chinites. In fact it is no surprise that the fO2 of many of these achondrites is not well known, other than being "reduced" and below the metal saturation value. In or- der to bridge this gap in our understanding, we have initiated a study of V in chromites in achondrite. Be- cause the V pre-edge peak intensity and energy in chro- mites varies with fO2 (Fig. 1) [3], and this has been Figure 1: Correlation of V K pre-edge peak intensity calibrated over a large fO2 range, we can apply this with IW for spinels in the experiments of [3].
    [Show full text]
  • Linking the Chassigny Meteorite and the Martian Surface Rock Backstay: Insights Into Igneous Crustal Differentiation Processes on Mars
    Meteoritics & Planetary Science 44, Nr 6, 853–869 (2009) Abstract available online at http://meteoritics.org Linking the Chassigny meteorite and the Martian surface rock Backstay: Insights into igneous crustal differentiation processes on Mars Hanna NEKVASIL*, Francis M. MCCUBBIN, Andrea HARRINGTON, Stephen ELARDO, and Donald H. LINDSLEY Department of Geosciences, Stony Brook University, Stony Brook, New York 11794–2100, USA *Corresponding author. E-mail: [email protected] (Received 05 August 2008; revision accepted 18 March 2009) Abstract–In order to use igneous surface lithologies to constrain Martian mantle characteristics, secondary processes that lead to compositional modification of primary mantle melts must be considered. Crystal fractionation of a mantle-derived magma at the base of the crust followed by separation and ascent of residual liquids to the surface is common in continental hotspot regions on Earth. The possibility that this process also takes place on Mars was investigated by experimentally determining whether a surface rock, specifically the hawaiite Backstay analyzed by the MER Spirit could produce a known cumulate lithology with a deep origin (namely the assemblages of the Chassigny meteorite) if trapped at the base of the Martian crust. Both the major cumulus and melt inclusion mineral assemblages of the Chassigny meteorite were produced experimentally by a liquid of Backstay composition within the pressure range 9.3 to 6.8 kbar with bulk water contents between 1.5 and 2.6 wt%. Experiments at 4.3 and 2.8 kbar did not produce the requisite assemblages. This agreement suggests that just as on Earth, Martian mantle-derived melts may rise to the surface or remain trapped at the base of the crust, fractionate, and lose their residual liquids.
    [Show full text]
  • Widespread Crater-Related Pitted Materials on Mars: Further Evidence for the Role of Target Volatiles During the Impact Process ⇑ Livio L
    Icarus 220 (2012) 348–368 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Widespread crater-related pitted materials on Mars: Further evidence for the role of target volatiles during the impact process ⇑ Livio L. Tornabene a, , Gordon R. Osinski a, Alfred S. McEwen b, Joseph M. Boyce c, Veronica J. Bray b, Christy M. Caudill b, John A. Grant d, Christopher W. Hamilton e, Sarah Mattson b, Peter J. Mouginis-Mark c a University of Western Ontario, Centre for Planetary Science and Exploration, Earth Sciences, London, ON, Canada N6A 5B7 b University of Arizona, Lunar and Planetary Lab, Tucson, AZ 85721-0092, USA c University of Hawai’i, Hawai’i Institute of Geophysics and Planetology, Ma¯noa, HI 96822, USA d Smithsonian Institution, Center for Earth and Planetary Studies, Washington, DC 20013-7012, USA e NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA article info abstract Article history: Recently acquired high-resolution images of martian impact craters provide further evidence for the Received 28 August 2011 interaction between subsurface volatiles and the impact cratering process. A densely pitted crater-related Revised 29 April 2012 unit has been identified in images of 204 craters from the Mars Reconnaissance Orbiter. This sample of Accepted 9 May 2012 craters are nearly equally distributed between the two hemispheres, spanning from 53°Sto62°N latitude. Available online 24 May 2012 They range in diameter from 1 to 150 km, and are found at elevations between À5.5 to +5.2 km relative to the martian datum. The pits are polygonal to quasi-circular depressions that often occur in dense clus- Keywords: ters and range in size from 10 m to as large as 3 km.
    [Show full text]
  • Physical Properties of Martian Meteorites: Porosity and Density Measurements
    Meteoritics & Planetary Science 42, Nr 12, 2043–2054 (2007) Abstract available online at http://meteoritics.org Physical properties of Martian meteorites: Porosity and density measurements Ian M. COULSON1, 2*, Martin BEECH3, and Wenshuang NIE3 1Solid Earth Studies Laboratory (SESL), Department of Geology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada 2Institut für Geowissenschaften, Universität Tübingen, 72074 Tübingen, Germany 3Campion College, University of Regina, Regina, Saskatchewan S4S 0A2, Canada *Corresponding author. E-mail: [email protected] (Received 11 September 2006; revision accepted 06 June 2007) Abstract–Martian meteorites are fragments of the Martian crust. These samples represent igneous rocks, much like basalt. As such, many laboratory techniques designed for the study of Earth materials have been applied to these meteorites. Despite numerous studies of Martian meteorites, little data exists on their basic structural characteristics, such as porosity or density, information that is important in interpreting their origin, shock modification, and cosmic ray exposure history. Analysis of these meteorites provides both insight into the various lithologies present as well as the impact history of the planet’s surface. We present new data relating to the physical characteristics of twelve Martian meteorites. Porosity was determined via a combination of scanning electron microscope (SEM) imagery/image analysis and helium pycnometry, coupled with a modified Archimedean method for bulk density measurements. Our results show a range in porosity and density values and that porosity tends to increase toward the edge of the sample. Preliminary interpretation of the data demonstrates good agreement between porosity measured at 100× and 300× magnification for the shergottite group, while others exhibit more variability.
    [Show full text]
  • Wednesday, March 22, 2017 [W453] MARTIAN METEORITE MADNESS: MIXING on a VARIETY of SCALES 1:30 P.M
    Lunar and Planetary Science XLVIII (2017) sess453.pdf Wednesday, March 22, 2017 [W453] MARTIAN METEORITE MADNESS: MIXING ON A VARIETY OF SCALES 1:30 p.m. Waterway Ballroom 5 Chairs: Arya Udry Geoffrey Howarth 1:30 p.m. Nielsen S. G. * Magna T. Mezger K. The Vanadium Isotopic Composition of Mars and Evidence for Solar System Heterogeneity During Planetary Accretion [#1225] Vanadium isotope composition of Mars distinct from Earth and chondrites. 1:45 p.m. Tait K. T. * Day J. M. D. Highly Siderophile Element and Os-Sr Isotope Systematics of Shergotittes [#3025] The shergottite meteorites represent geochemically diverse, broadly basaltic, and magmatically-derived rocks from Mars. New samples were processed and analyzed. 2:00 p.m. Armytage R. M. G. * Debaille V. Brandon A. D. Agee C. B. The Neodymium and Hafnium Isotopic Composition of NWA 7034, and Constraints on the Enriched End-Member for Shergottites [#1065] Couple Sm-Nd and Lu-Hf isotopic systematics in NWA 7034 suggest that such a crust is not the enriched end-member for shergottites. 2:15 p.m. Howarth G. H. * Udry A. Nickel in Olivine and Constraining Mantle Reservoirs for Shergottite Meteorites [#1375] Ni enrichment in olivine from enriched versus depleted shergottites provide evidence for constraining mantle reservoirs on Mars. 2:30 p.m. Jean M. M. * Taylor L. A. Exploring Martian Mantle Heterogeneity: Multiple SNC Reservoirs Revealed [#1666] The objective of the present study is to assess how many mixing components can be recognized, and address ongoing debates within the martian isotope community. 2:45 p.m. Udry A. * Day J.
    [Show full text]
  • Magnetite Biomineralization and Ancient Life on Mars Richard B Frankel* and Peter R Buseckt
    Magnetite biomineralization and ancient life on Mars Richard B Frankel* and Peter R Buseckt Certain chemical and mineral features of the Martian meteorite with a mass distribution unlike terrestrial PAHs or those from ALH84001 were reported in 1996 to be probable evidence of other meteorites; thirdly, bacterium-shaped objects (BSOs) ancient life on Mars. In spite of new observations and up to several hundred nanometers long that resemble fos­ interpretations, the question of ancient life on Mars remains silized terrestrial microorganisms; and lastly, 10-100 nm unresolved. Putative biogenic, nanometer magnetite has now magnetite (Fe304), pyrrhotite (Fel_xS), and greigite (Fe3S4) become a leading focus in the debate. crystals. These minerals were cited as evidence because of their similarity to biogenic magnetic minerals in terrestrial Addresses magnetotactic bacteria. *Department of Physics, California Polytechnic State University, San Luis Obispo, California 93407, USA; e-mail: [email protected] The ancient life on Mars hypothesis has been extensively tDepartments of Geology and Chemistry/Biochemistry, Arizona State challenged, and alternative non-biological processes have University, Tempe, Arizona 85287-1404, USA; e-mail: [email protected] been proposed for each of the four features cited by McKay et al. [4]. In this paper we review the current situa­ tion regarding their proposed evidence, focusing on the Abbreviations putative biogenic magnetite crystals. BCM biologically controlled mineralization BIM biologically induced mineralization BSO bacterium-shaped object Evidence for and against ancient Martian life PAH polycyclic aromatic hydrocarbon PAHs and BSOs Reports of contamination by terrestrial organic materials [5°,6°] and the similarity of ALH84001 PAHs to non-bio­ genic PAHs in carbonaceous chondrites [7,8] make it Introduction difficult to positively identify PAHs of non-terrestrial, bio­ A 2 kg carbonaceous stony meteorite, designated genic origin.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • Chapter 5: Shock Metamorphism and Impact Melting
    5. Shock Metamorphism and Impact Melting ❖❖❖ Shock-metamorphic products have become one of the diagnostic tools of impact cratering studies. They have become the main criteria used to identify structures of impact origin. They have also been used to map the distribution of shock-pressures throughout an impact target. The diverse styles of shock metamorphism include fracturing of crystals, formation of microcrystalline planes of glass through crystals, conversion of crystals to high-pressure polymorphs, conversion of crystals to glass without loss of textural integrity, conversion of crystals to melts that may or may not mix with melts from other crystals. Shock-metamorphism of target lithologies at the crater was first described by Barringer (1905, 1910) and Tilghman (1905), who recognized three different products. The first altered material they identified is rock flour, which they concluded was pulverized Coconino sandstone. Barringer observed that rock flour was composed of fragmented quartz crystals that were far smaller in size than the unaffected quartz grains in normal Coconino sandstone. Most of the pulverized silica he examined passed through a 200 mesh screen, indicating grain sizes <74 µm (0.074 mm), which is far smaller than the 0.2 mm average detrital grain size in normal Coconino (Table 2.1). Fairchild (1907) and Merrill (1908) also report a dramatic comminution of Coconino, although only 50% of Fairchild’s sample of rock flour passed through a 100 mesh screen, indicating grain sizes <149 µm. Heterogeneity of the rock flour is evident in areas where sandstone clasts survive within the rock flour. The rock flour is pervasive and a major component of the debris at the crater.
    [Show full text]
  • Lunar Meteorites: Impact Melt and Regolith Breccias and Large-Scale Heterogeneities of the Upper Lunar Crust
    Meteoritics & Planetary Science 40, Nr 7, 989–1014 (2005) Abstract available online at http://meteoritics.org “New” lunar meteorites: Impact melt and regolith breccias and large-scale heterogeneities of the upper lunar crust Paul H. WARREN*, Finn ULFF-MØLLER, and Gregory W. KALLEMEYN Institute of Geophysics, University of California—Los Angeles, Los Angeles, California 90095–1567, USA *Corresponding author. E-mail: [email protected] (Received 06 May 2002; revision accepted 24 April 2005) Abstract–We have analyzed nine highland lunar meteorites (lunaites) using mainly INAA. Several of these rocks are difficult to classify. Dhofar 081 is basically a fragmental breccia, but much of its groundmass features a glassy-fluidized texture that is indicative of localized shock melting. Also, much of the matrix glass is swirly-brown, suggesting a possible regolith derivation. We interpret Dar al Gani (DaG) 400 as an extremely immature regolith breccia consisting mainly of impact-melt breccia clasts; we interpret Dhofar 026 as an unusually complex anorthositic impact-melt breccia with scattered ovoid globules that formed as clasts of mafic, subophitic impact melt. The presence of mafic crystalline globules in a lunar material, even one so clearly impact-heated, suggests that it may have originated as a regolith. Our new data and a synthesis of literature data suggest a contrast in Al2O3- incompatible element systematics between impact melts from the central nearside highlands, where Apollo sampling occurred, and those from the general highland surface of the Moon. Impact melts from the general highland surface tend to have systematically lower incompatible element concentration at any given Al2O3 concentration than those from Apollo 16.
    [Show full text]
  • Pre-Mission Insights on the Interior of Mars Suzanne E
    Pre-mission InSights on the Interior of Mars Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, Ulrich Christensen, Véronique Dehant, Mélanie Drilleau, William Folkner, Nobuaki Fuji, et al. To cite this version: Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, et al.. Pre-mission InSights on the Interior of Mars. Space Science Reviews, Springer Verlag, 2019, 215 (1), pp.1-72. 10.1007/s11214-018-0563-9. hal-01990798 HAL Id: hal-01990798 https://hal.archives-ouvertes.fr/hal-01990798 Submitted on 23 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte (OATAO ) OATAO is an open access repository that collects the wor of some Toulouse researchers and ma es it freely available over the web where possible. This is an author's version published in: https://oatao.univ-toulouse.fr/21690 Official URL : https://doi.org/10.1007/s11214-018-0563-9 To cite this version : Smrekar, Suzanne E. and Lognonné, Philippe and Spohn, Tilman ,... [et al.]. Pre-mission InSights on the Interior of Mars. (2019) Space Science Reviews, 215 (1).
    [Show full text]
  • From Meteorites to Evolution and Habitability of Planets
    Planetary and Space Science 72 (2012) 3–17 Contents lists available at SciVerse ScienceDirect Planetary and Space Science journal homepage: www.elsevier.com/locate/pss From meteorites to evolution and habitability of planets Dehant Ve´ronique a,n, Breuer Doris b, Claeys Philippe c, Debaille Vinciane d, De Keyser Johan e, Javaux Emmanuelle f, Goderis Steven c, Karatekin O¨ zgur a, Spohn Tilman b, Vandaele Ann Carine e, Vanhaecke Frank g, Van Hoolst Tim a, Wilquet Vale´rie e a Royal Observatory of Belgium, 3 avenue Circulaire, Brussels, B-1180, Belgium b Deutsche Zentrum fur¨ Luft- und Raumfahrt, Berlin, Germany c Vrije Universiteit Brussel, Brussels, Belgium d Universite´ Libre de Bruxelles, Brussels, Belgium e Belgian Institute for Space Aeronomy, Brussels, Belgium f Universite´ de Liege, 4000 Liege 1, Belgique g Universiteit Gent, Brussels, Belgium article info abstract Article history: The evolution of planets is driven by the composition, structure, and thermal state of their internal core, Received 31 March 2012 mantle, lithosphere, and crust, and by interactions with a possible ocean and/or atmosphere. A planet’s Accepted 29 May 2012 history is a long chronology of events with possibly a sequence of apocalyptic events in which asteroids, Available online 23 June 2012 comets and their meteorite offspring play an important role. Large meteorite impacts on the young Keywords: Earth could have contributed to the conditions for life to appear, and similarly large meteorite impacts Terrestrial planets could also create the conditions to erase life or drastically decrease biodiversity on the surface of the Habitability planet. Meteorites also contain valuable information to understand the evolution of a planet through Meteorites their gas inclusion, their composition, and their cosmogenic isotopes.
    [Show full text]
  • Aqueous Alteration in Martian Meteorites: Comparing Mineral Relations in Igneous-Rock Weathering of Martian Meteorites and in the Sedimentary Cycle of Mars
    AQUEOUS ALTERATION IN MARTIAN METEORITES: COMPARING MINERAL RELATIONS IN IGNEOUS-ROCK WEATHERING OF MARTIAN METEORITES AND IN THE SEDIMENTARY CYCLE OF MARS MICHAEL A. VELBEL Department of Geological Sciences, 206 Natural Science Building, Michigan State University, East Lansing, Michigan 48824-1115 USA e-mail: [email protected] ABSTRACT: Many of the minerals observed or inferred to occur in the sediments and sedimentary rocks of Mars, from a variety of Mars-mission spacecraft data, also occur in Martian meteorites. Even Martian meteorites recovered after some exposure to terrestrial weathering can preserve preterrestrial evaporite minerals and useful information about aqueous alteration on Mars, but the textures and textural contexts of such minerals must be examined carefully to distinguish preterrestrial evaporite minerals from occurrences of similar minerals redistributed or formed by terrestrial processes. Textural analysis using terrestrial microscopy provides strong and compelling evidence for preterrestrial aqueous alteration products in a numberof Martian meteorites. Occurrences of corroded primary rock-forming minerals and alteration products in meteorites from Mars cover a range of ages of mineral–water interaction, from ca. 3.9 Ga (approximately mid-Noachian), through one or more episodes after ca. 1.3 Ga (approximately mid–late Amazonian), through the last half billion years (late Amazonian alteration in young shergottites), to quite recent. These occurrences record broadly similar aqueous corrosion processes and formation of soluble weathering products over a broad range of times in the paleoenvironmental history of the surface of Mars. Many of the same minerals (smectite-group clay minerals, Ca-sulfates, Mg-sulfates, and the K-Fe–sulfate jarosite) have been identified both in the Martian meteorites and from remote sensing of the Martian surface.
    [Show full text]