L'expérimentation Numérique Dans Les Sciences

Total Page:16

File Type:pdf, Size:1020Kb

L'expérimentation Numérique Dans Les Sciences L'exp´erimentation num´eriquedans les sciences : une br`eve histoire Jean-Ren´eChazottes ,∗ Marc Monticelli y 4 novembre 2014 R´esum´e Cet article retrace bri`evement quelques ´etapes marquantes de l'his- toire de l'exp´erimentation num´eriqueen math´ematiqueet en physique. Les exemples que nous abordons montrent une ´evolution rapide du statut des ordinateurs : de simples moulins `acalculs au d´epart,ils sont de- venus de v´eritablesinstruments de recherche permettant des d´ecouvertes impossibles par d'autres moyens. Le choix des exemples refl`etenos go^uts et nos connaissances. Nous nous sommes efforc´es de citer le nom des or- dinateurs et des programmeurs dans chaque exemple. 1 Introduction L'´emergencedes ordinateurs, acc´el´er´eepar la seconde Guerre mondiale, a donn´eune nouvelle dimension aux math´ematiquesexp´erimentales , c’est-`a- dire l'exploration des propri´et´esd'objets math´ematiquespar des calculs. Cette approche, qui a toujours exist´eavait vu son importance diminuer progressive- ment `apartir du XVIIe si`ecle en raison de la place grandissante de l'abstrac- tion. Au-del`ade l'extension stup´efiante du domaine des calculs possibles, de leur vitesse et de leur pr´ecision,les ordinateurs ont fourni un outil puissant : la visualisation, qui permet une exploration et la d´ecouverte de ph´enom`enesqui passeraient inaper¸cusautrement. Les sciences physiques ont tir´eun b´en´eficedes ordinateurs encore plus grand et plus profond que les math´ematiques.En effet, les ordinateurs permettent de faire des exp´eriencesnum´eriques`apartir des ´equationsgouvernant les ph´enom`e- nes que l'on d´esire´etudier,alors que les exp´eriences classiques peuvent ^etretrop compliqu´ees,trop co^uteuses,voire impossibles `ar´ealiser(comme en astrophy- sique, par exemple). Des exp´eriences{ dans le monde r´eel { ont m^eme´et´e suscit´eespar des exp´eriencesnum´eriques.Le terme anglo-saxon pour qualifier cette approche est simulation , qui est ´egalement utilis´epar les francophones, ∗Centre de Physique Th´eorique,UMR 7644 du CNRS, Ecole´ polytechnique, Palaiseau yLaboratoire de Math´ematiquesJ.A. Dieudonn´e,UMR 7351 du CNRS, Universit´ede Nice Sophia Antipolis 1 mais le mot exp´erimentation correspond beaucoup mieux `ace qu'est effec- tivement l'utilisation du num´eriquedans ces sciences. L'objet de cet article est d'illustrer comment l'exp´erimentation num´erique, devenue interactive au fil du temps, a permis des d´ecouvertes impossibles sans elle, ainsi que le renouvellement, voire la renaissance, de certains do- maines des math´ematiqueset de la phy- sique. Au-del`ade la recherche scienti- fique, les ordinateurs ont influenc´ela J. von Neumann et l'ENIAC (1952) didactique des math´ematiqueset de la physique. Citons comme exemple les livres de Hubbard et West [14] qui sont une introduction aux syst`emesdynamiques. Les grands inspirateurs de l'utilisation de l'exp´erimentation num´eriquesont Stanislas Ulam, John von Neumann et Alan Turing. Partant de ces figures incontournables, nous ´evoquerons plusieurs exemples, plus ou moins c´el`ebres,qui illustrent cette d´emarche. Note. Cet article est une adaptation d'un article originellement con¸cupour tablette tactile, avec des exp´eriencesnum´eriquesinteractives. Il en existe ´egale- ment une version con¸cuepour l'Internet qui contient des exp´eriencesnum´eriques interactives. 1 Nous remercions des relecteurs anonymes de la Gazette qui ont contribu´e`al'am´eliorationde ce texte. 2 John von Neumann & Stanislas Ulam : les pr´ecurseurs John von Neumann et Stanislas Ulam sont les premiers `aavoir compris le potentiel des ordinateurs en math´ematiqueet en physique. Voici ce qu'´ecrit Ulam : Presque imm´ediatement apr`esla guerre, John von Neumann et moi-m^emeavons commenc´e`adiscuter la possibilit´ed'utiliser les ordinateurs de fa¸conheuristique, pour essayer d'obtenir quelques lumi`eressur des questions de math´ematiquespures. En produisant des exemples et en observant les propri´et´esde certains objets math´e- matiques, on peut esp´ererobtenir des ´el´ements de r´eponse quant au comportement des lois g´en´erales.Lors des ann´eesqui ont suivi j'ai sugg´er´e,et dans certains cas r´esolu,une vari´et´ede probl`emesde math´ematiquespures en exp´erimentant ou m^emetout simplement 2 en observant. (Extrait de l'autobiographie de S. Ulam, Adventures of a Mathe- matician, 2d ed., Berkeley, 1991) 1. http://experiences.math.cnrs.fr/L-experimentation-numerique-dans-50.html 2. Il sous-entend bien s^ur `al'ordinateur 2 Ulam propose d'utiliser les ordinateurs non pas comme un simple moulin `acalculs mais comme un outil d'exp´erimentation permettant d'explorer les solutions des ´equationsque l'on ´etudie. La vision d'Ulam a ´et´einfluenc´eepar la physique, plus pr´ecis´ement l'´etudenum´eriquede mod`elessimplifi´esde diffusion des neutrons, en lien avec la bombe atomique. Notons que les premiers calculs pour une r´eactionen cha^ınesont r´ealis´espar Nicholas Metropolis en 1947, sur l'ENIAC. Dans un texte ´ecriten 1947 intitul´e The Mathematician , von Neumann fait le bi- lan de ses travaux et se demande si les math´ematiquessont une science empirique. Il tente de r´epondre `acette question par une confrontation avec les d´emarches de la phy- sique th´eorique.Pour lui, il y a une base em- pirique aux math´ematiquesqui a ´et´eoccult´ee par leur d´eveloppement. Mais quand des tendances `adevenir baroque se font jour, le signal de danger doit ^etre´emis et le seul S. Ulam rem`edeest, selon lui, la r´e-injectiond'id´eesplus ou moins directement empi- riques. Dans cet esprit, Ulam cherche `ad´evelopper une pratique des exp´eriences num´eriques,d'abord dans le domaine de la combinatoire et de la th´eoriedes nombres. Avec ses collaborateurs, il s'int´eresseensuite `al'exploration du com- portement d'it´erationsde transformations non lin´eairesqui sont le pendant en temps discret des ´equationsdiff´erentielles. Ils utilisent un syst`emeconnect´e`a l'ordinateur permettant la visualisation des it´erations.C'est une nouvelle fa¸con d'´etudierles it´erationsnon lin´eairesqui nous para^ıtaujourd'hui ´evidente. Ces analyses posent de nouveaux probl`emes et ouvrent de nouvelles perspectives. 3 Enrico Fermi, John Pasta, Stanislas Ulam & Mary Tsingou A` Los Alamos, au d´ebutdes ann´ees 1950, Enrico Fermi, John Pasta et Stanislas Ulam proposent un mod`elepour comprendre l'´evolution vers l'´equilibrethermique dans un cristal. Leur mod`eleest suffisamment simple pour ^etre´etudi´eavec un ordinateur de l'´epoque. Il s'agit d'une cha^ıneunidimensionnelle de masses identiques reli´eesentre elles par des ressorts. Quand on ´ecarteune masse de sa position d'´equilibre,elle subit une force de rappel qui n'est pas proportionnelle `ala distance par rapport `ala position d'´equilibre. Ce mod`eleest diff´erent de celui ´etudi´edans les cours de physique o`uil y a proportionnalit´e(on dit que la cha^ıned'oscillateurs est harmonique , ce qui rend le mod`ele lin´eaire et donc r´esoluble).M^emela faible anharmonicit´e introduite par Fermi, Pasta et Ulam rend le mod`ele tr`escompliqu´eet n´ecessiteson exploration par une exp´eriencenum´erique,sans 3 doute la premi`eredu genre. Ils consid`erent 16, 32 puis 64 masses et, `aleur grande surprise, ils d´ecouvrent que le syst`eme,loin de tendre vers l'´equipartition de l'´energie(synonyme de thermalisation), pr´esente au contraire des solutions quasi-p´eriodiques, en contradiction avec l'hypoth`eseergodique qu'on pensait alors v´erifi´eedans ce cas. En 1955, ils ´ecrivent un rapport interne [10] dans lequel ils mentionnent que l'´ecriturede l'algorithme et la programmation du MANIAC I furent la t^ache de Mary Tsingou [7]. Ces exp´eriencesouvrirent la voie `atoute une classe de probl`emesnouveaux concernant les syst`emesdynamiques non ergodiques et constitu`erent le point de d´epartde ce qui est maintenant une discipline `apart enti`ere: la physique num´erique,qu'on peut consid´erercomme une branche interm´ediaireentre la physique th´eorique et la physique exp´erimentale. 4 La morphogen`ese selon Alan Turing Un des probl`emesque s'´etaitpos´ele biologiste D'Arcy Thompson est l'apparition de formes similaires pour des organismes non-apparent´es, donc non explicables par des facteurs purement g´en´etiques. Turing postula qu'il devait y avoir un processus g´en´eral`al’œuvre ob´eissant `ades lois physico-chimiques. Il s'attela donc `ala mise en place d'un mod`elemath´ematiquedont le but ´etaitde rendre compte de la morphogen`ese , c’est-`a-dire,le passage d'un ´etatd'´equilibreinitial sym´etrique,`aun nouvel ´etatd'´equilibrenon-sym´etrique qui constitue une forme. Ce passage devrait r´esulterd'une r´eaction-diffusion dans la chimie des composants du syst`eme. En 1952 Turing publie un article c´el`ebreintitul´e The chemical basis of morphogenesis [21] dans lequel il propose un tel mod`eleet discute no- tamment deux exemples : { la constitution de taches qui font penser `acelle qu'on voit sur certains pelages d'animaux ; { l'hydre d'eau douce qui d´eveloppe de cinq `adix tentacules `apar- Turing (debout) et le MARK I tir d'une forme initiale tubu- laire sym´etrique. Dans son article, Turing fait la plupart de ses calculs `ala main mais montre un exemple num´eriquer´ealis´eavec l'ordinateur de Manchester (le MARK I). Du point de vue qui nous int´eresseici, Turing sugg`ereque l'exp´erimentation num´eriquedoit devenir un v´eritableinstrument dans l'investigation de la nature. Il le confirme lui-m^emedans ses travaux ult´erieursconsacr´es`ala botanique, plus pr´ecis´ement en phyllotaxie. 3 Il faudra attendre 1990 pour obtenir des structures de Turing dans une v´eritableexp´eriencede chimie [5].
Recommended publications
  • Frontiers of Quantum and Mesoscopic Thermodynamics 29 July - 3 August 2013, Prague, Czech Republic
    Frontiers of Quantum and Mesoscopic Thermodynamics 29 July - 3 August 2013, Prague, Czech Republic Under the auspicies of Ing. Milosˇ Zeman President of the Czech Republic Milan Stˇ echˇ President of the Senate of the Parliament of the Czech Republic Prof. Ing. Jirˇ´ı Drahos,ˇ DrSc., dr. h. c. President of the Academy of Sciences of the Czech Republic Dominik Cardinal Duka OP Archbishop of Prague Supported by • Committee on Education, Science, Culture, Human Rights and Petitions of the Senate of the Parliament of the Czech Republic • Institute of Physics, the Academy of Sciences of the Czech Republic • Institute for Theoretical Physics, University of Amsterdam, The Netherlands • Department of Physics, Texas A&M University, USA • Institut de Physique Theorique,´ CEA/CNRS Saclay, France Topics • Foundations of quantum physics • Non-equilibrium statistical physics • Quantum thermodynamics • Quantum measurement, entanglement and coherence • Dissipation, dephasing, noise and decoherence • Quantum optics • Macroscopic quantum behavior, e.g., cold atoms, Bose-Einstein condensates • Physics of quantum computing and quantum information • Mesoscopic, nano-electromechanical and nano-optical systems • Biological systems, molecular motors • Cosmology, gravitation and astrophysics Scientific Committee Chair: Theo M. Nieuwenhuizen (University of Amsterdam) Co-Chair: Vaclav´ Spiˇ ckaˇ (Institute of Physics, Acad. Sci. CR, Prague) Raymond Dean Astumian (University of Maine, Orono) Roger Balian (IPhT, Saclay) Gordon Baym (University of Illinois at Urbana
    [Show full text]
  • Dark-Bright Solitons in Boseâ•fi-Einstein
    DARK-BRIGHT SOLITONS IN BOSE-EINSTEIN CONDENSATES: DYNAMICS, SCATTERING, AND OSCILLATION by Majed O. D. Alotaibi c Copyright by Majed O. D. Alotaibi, 2018 All Rights Reserved A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Physical Science). Golden, Colorado Date Signed: Majed O. D. Alotaibi Signed: Prof. Lincoln Carr Thesis Advisor Golden, Colorado Date Signed: Prof. Uwe Greife Professor and Head Department of Physics ii ABSTRACT In this thesis, we have studied the behavior of two-component dark-bright solitons in multicomponent Bose-Einstein condensates (BECs) analytically and numerically in different situations. We utilized various analytical methods including the variational method and perturbation theory. By imprinting a linear phase on the bright component only, we were able to impart a velocity relative to the dark component and thereby we obtain an internal oscillation between the two components. We find that there are two modes of the oscillation of the dark-bright soliton. The first one is the famous Goldstone mode. This mode represents a moving dark-bright soliton without internal oscillation and is related to the continuous translational symmetry of the underlying equations of motion in the uniform potential. The second mode is the oscillation of the two components relative to each other. We compared the results obtained from the variational method with numerical simulations and found that the oscillation frequency range is 90 to 405 Hz and therefore observable in multicomponent Bose-Einstein condensate experiments. Also, we studied the binding energy and found a critical value for the breakup of the dark-bright soliton.
    [Show full text]
  • Coupled Oscillator Models with No Scale Separation
    Coupled Oscillator Models with no Scale Separation Philip Du Toit a;∗, Igor Mezi´c b, Jerrold Marsden a aControl and Dynamical Systems, California Institute of Technology, MC 107-81, Pasadena, CA 91125 bDepartment of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106 Abstract We consider a class of spatially discrete wave equations that describe the motion of a system of linearly coupled oscillators perturbed by a nonlinear potential. We show that the dynamical behavior of this system cannot be understood by considering the slowest modes only: there is an \inverse cascade" in which the effects of changes in small scales are felt by the largest scales and the mean-field closure does not work. Despite this, a one and a half degree of freedom model is derived that includes the influence of the small-scale dynamics and predicts global conformational changes accurately. Thus, we provide a reduced model for a system in which there is no separation of scales. We analyze a specific coupled-oscillator system that models global conformation change in biomolecules, introduced in [4]. In this model, the conformational states are stable to random perturbations, yet global conformation change can be quickly and robustly induced by the action of a targeted control. We study the efficiency of small-scale perturbations on conformational change and show that \zipper" traveling wave perturbations provide an efficient means for inducing such change. A visualization method for the transport barriers in the reduced model yields insight into the mechanism by which the conformation change occurs. Key words: coarse variables, reduced model, coupled oscillators, dynamics of biomolecules PACS: 87.15.hp, 87.15.hj ∗ Corresponding author.
    [Show full text]
  • Lecture Notes on the Fermi-Pasta-Ulam-Tsingou Problem
    Lecture Notes on the Fermi-Pasta-Ulam-Tsingou Problem Andrew Larkoski November 9, 2016 Because this is a short week, we're going to just discuss some fun aspects of computational physics. Also, because last week's topic was the final homework (due the following Friday), just sit back and relax and forget about everything you have to do. Just kidding. Today, I'm going to discuss the Fermi-Pasta-Ulam-Tsingou (FPUT), problem. Actually, Laura Freeman did her thesis on this topic at Reed in 2008; you can pick up her thesis in the lounge or on the Reed Senior Thesis digital collections if you are interested. Laura actually interviewed Mary Tsingou for her thesis, so this is actually a fascinating historical document. In the early 1950's, Enrico Fermi, John Pasta, Stanislaw Ulam, and Mary Tsingou per- formed some of the earliest computer simulations on the MANIAC system at Los Alamos. (Remember MANIAC? Metropolis was the leader!) Their problem was very simple, but their results profound. They attempted to simulate a non-linear harmonic oscillator (i.e., spring) on a grid. Recall that Newton's equations for a spring on a grid is: mx¨j = k(xj+1 − 2xj + xj−1) ; (1) which is just a linear problem and so normal modes and eigenfrequencies can be found exactly, etc. The grid spacing is ∆x and so position xj is at xj = j∆x : (2) The problem that FPUT studied was slightly different, modified by non-linearities in x: mx¨j = k(xj+1 − 2xj + xj−1)[1 + α(xj+1 − xj−1)] : (3) When α = 0, this of course returns the linear system, but for α 6= 0 it is non-linear.
    [Show full text]
  • Real-Time Evolution of Quenched Quantum Systems
    Real-time evolution of quenched quantum systems Michael M¨ockel M¨unchen 2009 c Michael M¨ockel 2009 Selbstverlag Berger Straße 19, 95119 Naila, Germany All rights reserved This publication is in copyright. Subject to statutory exceptions no reproduction of any part may take place without the written permission of Michael M¨ockel. In particular, this applies to any hardcopy, printout, storage, or distribution of any electronic version of this publication. ISBN 978-3-00-028464-9 First published 2009 Printed in Germany Real-time evolution of quenched quantum systems Michael M¨ockel Doktorarbeit an der Fakult¨at f¨urPhysik der Ludwig–Maximilians–Universit¨at M¨unchen vorgelegt von Michael M¨ockel aus Naila M¨unchen, den 30. April 2009 Erstgutachter: Prof. Dr. Stefan Kehrein Zweitgutachter: Prof. em. Dr. Herbert Wagner Tag der m¨undlichen Pr¨ufung: 24. Juni 2009 Meinen Eltern Siegfried und Brigitte Percy Bysshe Shelley (1792 – 1822) Invocation Rarely, rarely comest thou, I love all that thou lovest, Spirit of Delight! Spirit of Delight! Wherefore hast thou left me now The fresh Earth in new leaves drest Many a day and night? And the starry night; Many a weary night and day Autumn evening, and the morn ‘Tis since thou art fled away. When the golden mists are born. How shall ever one like me I love snow and all the forms Win thee back again? Of the radiant frost; With the joyous and the free I love waves, and winds, and storms, Thou wilt scoffat pain. Everything almost Spirit false! thou hast forgot Which is Nature‘s, and may be All but those who need thee not.
    [Show full text]
  • Dissipative Phase Transitions in Open Quantum Lattice Systems Florent Storme
    Dissipative phase transitions in open quantum lattice systems Florent Storme To cite this version: Florent Storme. Dissipative phase transitions in open quantum lattice systems . Physics [physics]. Université Paris Diderot (Paris 7), Sorbonne Paris Cité, 2017. English. tel-01665356 HAL Id: tel-01665356 https://tel.archives-ouvertes.fr/tel-01665356 Submitted on 15 Dec 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Remerciement Une thèse est un ouvrage collectif. C’est donc avec une réelle reconnaissance que je remercie l’ensemble des personnes qui m’ont soutenues dans ce travail. La première d’entre elles est bien sûr Cristiano Ciuti, qui a dirigé ma thèse. C’est son imagination et ses talents scientifiques qui ont rendu possible les différents résultats présentés ici. De plus, il a toujours su suscité l’intérêt pour de nouveaux projets et ainsi me transmettre le goût du défi. Je me dois aussi de le remercier pour la patience dont il a fait preuve pendant la préparation de ce manuscrit. Je remercie aussi tout particulièrement les membres de mon jury Angela Vasanelli, Michiel Wouters et les deux rapporteurs de ma thèse Juan-José Garcia Ripoll et Sebas- tian Schmidt.
    [Show full text]
  • Modulation Instability and Fermi-Pasta-Ulam-Tsingou Recurrences
    UNIVERSITÉ DE LILLE Doctoral school, ED SMRE University Department Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM) Thesis defended by Corentin NAVEAU on 11th October 2019 In order to become a Doctor from Université de Lille Academic Field Physics Speciality Diluted Media and Optics Modulation instability and Fermi-Pasta-Ulam-Tsingou recurrences in optical fibres Thesis supervised by Arnaud MUSSOT Supervisor Pascal SZRIFTGISER Supervisor Committee members Referees Hervé MAILLOTTE Université de Franche-Comté - CNRS Benoît BOULANGER Université Grenoble Alpes Examiners Camille-Sophie BRES EPFL Stefano TRILLO Università degli studi di Ferrara Matteo CONFORTI Université de Lille - CNRS President Alexandre KUDLINSKI Université de Lille Supervisors Arnaud MUSSOT Université de Lille Pascal SZRIFTGISER Université de Lille - CNRS UNIVERSITÉ DE LILLE Ecole doctorale, ED SMRE Unité de recherche Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM) Thèse présentée par Corentin NAVEAU le 11 Octobre 2019 En vue de l’obtention du grade de docteur de l’Université de Lille Discipline Physique Spécialité Milieux dilués et optique Instabilité de modulation et récurrences de Fermi-Pasta-Ulam-Tsingou dans les fibres optiques Thèse dirigée par Arnaud MUSSOT Directeur Pascal SZRIFTGISER Directeur Composition du jury Rapporteurs Hervé MAILLOTTE Université de Franche-Comté - CNRS Benoît BOULANGER Université Grenoble Alpes Examinateurs Camille-Sophie BRES EPFL Stefano TRILLO Università degli studi di Ferrara Matteo CONFORTI Université de Lille - CNRS Président Alexandre KUDLINSKI Université de Lille Directeurs de thèse Arnaud MUSSOT Université de Lille Pascal SZRIFTGISER Université de Lille - CNRS À mes parents, v Abstract: This work deals with the investigation of the modulation instability pro- cess in optical fibres and in particular its nonlinear stage.
    [Show full text]
  • Quantized Intrinsically Localized Modes of the Fermi–Pasta–Ulam Lattice Sukalpa Basua and Peter S
    XML Template (2011) [22.8.2011–5:09pm] [1–11] K:/TPHM/TPHM_A_607141.3d (TPHM) [PREPRINTER stage] Philosophical Magazine Vol. ??, No. ??, Month?? 2011, 1–11 Quantized intrinsically localized modes of the Fermi–Pasta–Ulam lattice Sukalpa Basua and Peter S. Riseboroughb* aValley Forge Military College, Wayne Pa 19087; bTemple University, 5 Philadelphia Pa 19122 (Received 3 May 2011; final version received 18 July 2011) We have examined the quantized n ¼ 2 excitation spectrum of the Fermi– Pasta–Ulam lattice. The spectrum is composed of a resonance in the two- phonon continuum and a branch of infinitely long-lived excitations which 10 splits off from the top of the two-phonon creation continuum. We calculate the zero-temperature limit of the many-body wavefunction and show that this mode corresponds to an intrinsically localized mode (ILM). In one dimension, we find that there is no lower threshold value of the repulsive interaction that must be exceeded if the ILM is to be formed. However, the 15 spatial extent of the ILM wavefunction rapidly increases as the interaction is decreased to zero. The dispersion relation shows that the discrete n ¼ 2 ILM and the resonance hybridize as the center of mass wavevector q is increased towards the zone boundary. The many-body wavefunction shows that as the zone boundary is approached, there is a destructive resonance 20 which occurs between pairs of sites separated by an odd number of lattice spacings. We compare our theoretical results with the recent experimental observation of a discrete ILM in NaI by Manley et al. Keywords: intrinsically localized modes; discrete breathers; quantized excitations; Fermi–Pasta–Ulam model 25 1.
    [Show full text]
  • From Fermi-Pasta-Ulam Problem to Galaxies: the Quest for Relaxation
    FROM FERMI-PASTA-ULAM PROBLEM TO GALAXIES: THE QUEST FOR RELAXATION A.E.ALLAHVERDYAN1,2 AND V.G.GURZADYAN2,3 1. SPhT, CEA Saclay, 91191 Gif-sur-Yvette cedex, France; 2.Yerevan Physics Institute, Yerevan, Armenia; 3.ICRA, Department of Physics, University of Rome La Sapienza, Rome, Italy The major problem posed by the Fermi-Pasta-Ulam work was the relaxation (ther- malization) of a many-body system. We review two approaches to this problem, the ergodic theory and Langevin (stochastic) equation ones, which have been applied for the description of statistical mechanics of stellar systems. Among the particular problems that we consider, are 1-dimensional long-range interacting systems and iterated maps and 3-dimensional N-body gravitating systems. 1 The Fermi-Pasta-Ulam system: Historical introduction The numerical experiment by Fermi, Pasta and Ulam opened several new fields of research and appeared to be an invaluable source of inspiration for generations of physicists. This work is outstanding at least by the following reasons: 1. It represents the first computer study of a nonlinear system; 2. The results contradicted the belief held since Poincare. Fermi had con- sidered it ’a little discovery’ (as quoted by Ulam), thus immediately evaluating their extraordinary importance; 3. It was one of last Fermi’s works, completed after his ultimate death in 1954; 4. Remained unpublished during a decade; 5. Coincides in time with Kolmogorov’s theorem (1954), though FPU and Kolmogorov-Arnold-Moser (KAM) theory ’met’ only in 1966. 6. Inspired the discovery of solitons and numerous other studies; 7. Its results are not fully understood till now and the FPU model con- tinues its inspiring mission also today, after half a century.
    [Show full text]
  • Fermi, Pasta, Ulam and a Mysterious Lady
    Fermi, Pasta, Ulam and a mysterious lady Thierry DAUXOIS Universit´ede Lyon, CNRS, Laboratoire de Physique, Ecole´ Normale Sup´erieure de Lyon, 46 All´ee d’Italie, 69364 Lyon c´edex 07, France [email protected] It is reported that the numerical simulations of the Fermi-Pasta-Ulam problem were performed by a young lady, Mary Tsingou. After 50 years of omission, it is time for a proper recognition of her decisive contribution to the first ever numerical experiment, central in the solitons and chaos theories, but also one of the very first out-of-equilibrium statistical mechanics study. Let us quote from now on the Fermi-Pasta-Ulam-Tsingou problem. The Fermi-Pasta-Ulam problem [1] was named after tion of the Los Alamos report. This paper marked indeed the three scientists who proposed to study how a crys- a true change in modern science, both making the birth tal evolves towards thermal equilibrium. The idea was of a new field, Nonlinear Science, and entering in the to simulate a chain of particles, linked by a linear in- age of computational science: the problem is indeed the teraction but adding also a weak nonlinear one. FPU first landmark in the development of physics computer thought that, due to this additional term, the energy in- simulations. troduced into a single Fourier mode should slowly drift There was however very few mentions of an intriguing to the other modes, until the equipartition of energy pre- point. On the first page of the FPU Los Alamos report dicted by statistical physics is reached.
    [Show full text]
  • Mathematicians Solve 60-Year-Old Problem 23 March 2015
    Mathematicians solve 60-year-old problem 23 March 2015 researchers Enrico Fermi, John Pasta, Stanislaw Ulam, and Mary Tsingou as a means to study how heat is conducted in solids and metals. At the time the researchers proposed the problem, they expected their numerical calculations would reveal that the system reaches a state of thermal equilibrium - similar to thermal equilibrium exhibited by gasses - in which the energy within the system is evenly divided among each possible movement (called "modes"). When the problem was first simulated with the Mathematical Numerical Integrator and Computer (MANIAC), one of the first digital computers, the researchers were puzzled to discover that after many iterations, energy within the system periodically dispersed and then concentrated to 97 percent of energy within a single mode. This phenomenon became known as "FPU recurrence" and spawned a wealth of questions and research, in addition to thousands of research papers, becoming the foundation of experimental Graphical representation of the resonance manifold in mathematics. the Fermi-Pasta-Ulam problem, plotted in Mathematica. Credit: Yuri Lvov Decades later, using far more powerful computers to run the simulation for greater lengths of time, researchers discovered that energy within the system did eventually reach equilibrium, but the A team of researchers, led by Rensselaer question remained: how precisely was this Polytechnic Institute professor Yuri Lvov, has happening? In the paper "Route to thermalization in found an elegant explanation for the long-standing the ?-Fermi-Pasta-Ulam system," the researchers Fermi-Pasta-Ulam (FPU) problem, first proposed in led by Lvov offer a simple and elegant explanation.
    [Show full text]
  • Chapter Six Conclusion: the Super, the System, and Its Critical Problems
    Chapter Six Conclusion: The Super, The System, and Its Critical Problems A decade passed between the time Fermi first proposed the idea of a fusion bomb until the Mike test. Compared to the wartime fission weapon project, Los Alamos appeared to take a considerably longer time to complete research and development of an H-bomb. It is difficult to compare the two projects, however, because the weapons technologies differed from one another excessively, and so did the systems they were developed in. In addition, the Laboratory focused on the Classical Super configuration for the majority of the time, with greater seriousness directed at it than towards any other theory. Up until 1951, the Super represented almost the entire Los Alamos thermonuclear program, with the Alarm Clock and Booster as the only theoretical alternatives. The length of time the U.S. took to develop and test a viable hydrogen bomb, too, is problematic in that it has taken on the form of historical myth. I will elaborate on this later. The period of time that Los Alamos needed to develop and test a fusion device is relative historically. When comparing the time it took Los Alamos to develop a fission bomb as opposed to a fusion bomb it is necessary to consider the characteristics of each project, and the conditions surrounding their development: Compared with the gun and implosion bombs, a fusion weapon involved a much more complicated set of physical problems to solve, 287 fewer people participated in this work, no deadline had been set, and no military directive for this project existed.
    [Show full text]