Aperiodic Tiling ______

Total Page:16

File Type:pdf, Size:1020Kb

Aperiodic Tiling ______ . Andrew Glassner’s Notebook http://www.research.microsoft.com/research/graphics/glassner Aperiodic Tiling ____________________________________ eople love patterns. We find recurring patterns tals” will be nothing but collections of polygons in the Andrew Peverywhere we look—in the structures of rocks, the plane. It’s well known that there are only three regular Glassner personalities of our friends, and the cycle of seasons in ploygons that can tile the plane, as shown in Figure 1. the natural world around us. Theme and variation have Here the verb “tile” means to cover the infinite plane Microsoft been a staple of creative invention since time immemo- with a set of polygons so that no gaps or overlaps exist Research rial, spanning every form of creative endeavor. I suggest among the polygons. Each polygon is called a “tile,” and that theme and variation represent a balance between the composite pattern is called a “tiling.” the extremes of regularity and sheer randomness. The tilings in Figure 1 may be theoretically interest- Imagine a million grains of sand, placed one next to the ing, but because they’re so perfectly repetitive, they look other in a straight line. Dullsville. Now imagine those boring. Usually when you use one of these patterns to grains of sand scattered at random over a rocky surface. cover a wall or floor, you decorate the tiles with colors That’s just as dull as before. But take those grains and stack or shapes to make the whole thing a little more inter- them up, let the wind play over them and shape them into esting—again balancing the tiling’s regularity with the dunes, and you’ve got something beautiful and interesting. variation in the tiles themselves. I did this in Figure 1 by Balancing between repetition and randomness can lead using two or three colors, but it didn’t help much. You to patterns that draw us in and keep our interest. can generate more interest by allowing more than one One of the most interesting ways of assembling small regular polygon in the game, resulting in the semi-reg- units is along one of the lattices that make up crystals. ular tilings in Figure 2. This looks better, but regularity In this column I’ll live entirely in a 2D world, so our “crys- still dominates the patterns. (a) (b) (c) (a) 2 Eleven semi- regular tilings 1 Three regular made of one or tilings made of more regular many copies of polygons. Every a single regular vertex contains (b) polygon. the same kinds of polygons (d) (e) meeting in the same order. (c) (f) (g) (h) IEEE Computer Graphics and Applications 83 . Andrew Glassner’s Notebook 3 Matching rules. (a) Vertex rules. Corre- sponding colors must overlap. (b) Edge rules. The deformed (a) edges must link together. (c) Face rules. The decoration on the faces (a) (b) (c) must be continuous. We can control our tiling patterns by adopting match- ing rules. These describe the permitted ways in which tiles can be placed next to each other. Figure 3 shows a few examples for assembling such a tiling from a single piece. All the examples in this figure share a matching rule that says tiles may only be placed so that the shared edge is of the same length (that is, we can’t push a short edge up against a long one). I also distinguished the two short ends. In Figure 3a, I used a matching rule that says adja- cent vertices must have the same color. Figure 3b enforces (b) the same result by modifying the common edge into a mountain, so the tiles can only interlock in the desired 4 (a) Isosceles triangles can tile the plane periodically. way. In Figure 3c the rule stipulates that colored bands (b) The same triangles can create a radial tiling, which must be continuous across tile edges. Whether described is not periodic. as vertex, edge, or face rules, we get the same pattern. The patterns in Figures 1, 2, and 3 are periodic. Essen- tially this means you find a group of tiles that you can definition is important. Figure 4a shows a periodic tiling pick up and use as a rubber stamp. In other words, the built from an isosceles triangle. Figure 4b shows a rota- pattern is created by a single patch—called the funda- tionally symmetric pattern built from the same triangle, mental cell—that repeats by translation to cover the but this one isn’t a periodic tiling, even though there’s plane. The distance from one copy to the next is called obviously a great deal of internal structure. the period of the pattern. The translational part of the You can create tilings in surprising ways. Figure 5 shows a spiral tiling (which is also nonperiodic), inspired by a con- struction by Heinz Voderberg. Although I used colors for decora- tion, this pattern is made up of many copies of only one tile. I found that the easiest way to construct a cell for this sort of tiling is to start with an acute isoceles triangle, as shown in Figure 6. The tiling works if the acute angle goes into 360 degrees an 5 A spiral tiling even number of times (I used 16 for made of a single this figure, so the acute angle is tile. The tiling 360/16 = 22.5 degrees). Let’s see can be extend- how this works. First, create a par- ed to cover the allelogram from the triangle. Draw entire plane. a curve, and then rotate that curve by 180 degrees to get it to match up with the opposite corner. Now take another copy of the triangle and move its acute point to the lower right corner of the parallelogram. Make a copy of the curve and rotate it around the lower right corner of the parallelogram by the acute angle. Now join the sides of the 84 May/June 1998 . (a) (d) (a) 7 (a) The tile made in Figure 6. (b) This tile fits into itself by (b) (e) rotation. (c) The tile also fits into itself by a verti- cal reflection, making a block that can tile the plane periodi- (b) cally. (c) (f) (g) (c) 6 Creating a tile for Figure 5. (a) Start with an isosceles triangle with an angle of 360/n degrees (here n = 16). (b) Make a parallelogram. (c) Find the midpoint. (d) Draw a curve from the upper right corner to the midpoint. (e) Rotate the curve 180 degrees. (f) Rotate around the lower right corner by an angle equal to the 8 (a) The rec- acute angle of the triangle. (g) Join the edges. tangle can tile the plane peri- odically. (b) The curves, and voilá. The only tricky part is ensuring the rectangle can curves don’t intersect each other. also tile nonpe- Figure 7 shows that a tile produced this way has two riodically. important properties: it fits into itself both by a small rotation equal to the acute angle of the original triangle and by a full 180-degree rotation. Notice that the spiral (a) (b) tiling in Figure 5 uses both properties: the two centers use slightly rotated copies of the tile, and they join each other with a half-rotated pair. From there it’s pretty since they can be coerced into a periodic pattern. If straightforward to add tiles and follow the spiral out- there’s a set of one or more tiles that fit together to cre- wards. Notice, though, the pattern changes slightly each ate exclusively nonperiodic tilings, that set of tiles—and time it wraps around 180 degrees. the resulting pattern—is called aperiodic. Typically in any periodic tiling an infinite number of To my eye, aperiodic tilings made of a few distinct tiles fundamental cells exist, but often there’s only one small- fit into that desirable class of patterns that balance reg- est such cell. For example, in Figure 1b the smallest fun- ularity (because of the recurring instances of just a few damental cell is a single square, but you could use two tile shapes) and randomness (because the pattern never squares adjacent horizontally or vertically, or a 2-by-2 repeats). This column is the first of two that talk about square of squares, and so on. aperiodic tiles, how to make them, and what you might It’s easy to build nonperiodic tilings—simply don’t do with them. The second column will focus on the create periodic patterns. Figure 8a shows a periodic details of a specific family of tiles. tiling of rectangles, and 8b shows the same rectangles in a nonperiodic tiling. Theoretically we could extend the From 20,000 to 2 pattern of Figure 8b, always mixing things up, so that The question of whether any aperiodic sets of tiles the final result is not periodic. existed at all went unanswered until recently. In 1961 Can you create tiles that only tile the plane nonperi- Hao Wang conjectured that there were no aperiodic tiles. odically? The rectangles of Figure 8 don’t fill the bill, That is, any set of tiles that could tile the plane aperiod- IEEE Computer Graphics and Applications 85 . Andrew Glassner’s Notebook Fa Fb Fa Fc Fa Fb Fc 9 The Robinson Fe tiles. Pieces can Fc Fd only go togeth- Fa Fe er so that the Fa tabs fit the slots and the corners are covered. 10 Building a 3-by-3 Robinson block. Fe Ff Fa Fe Ff Fe Fa Fa Fa Fe Fb Fe Fc Fc Fb Fe 11 A 3-by-3 Robinson block Fa Fc Fa Fa Fc (shaded grey) Ff 12 A decoration of Figure 11.
Recommended publications
  • ICES REPORT 14-22 Characterization, Enumeration and Construction Of
    ICES REPORT 14-22 August 2014 Characterization, Enumeration and Construction of Almost-regular Polyhedra by Muhibur Rasheed and Chandrajit Bajaj The Institute for Computational Engineering and Sciences The University of Texas at Austin Austin, Texas 78712 Reference: Muhibur Rasheed and Chandrajit Bajaj, "Characterization, Enumeration and Construction of Almost-regular Polyhedra," ICES REPORT 14-22, The Institute for Computational Engineering and Sciences, The University of Texas at Austin, August 2014. Characterization, Enumeration and Construction of Almost-regular Polyhedra Muhibur Rasheed and Chandrajit Bajaj Center for Computational Visualization Institute of Computational Engineering and Sciences The University of Texas at Austin Austin, Texas, USA Abstract The symmetries and properties of the 5 known regular polyhedra are well studied. These polyhedra have the highest order of 3D symmetries, making them exceptionally attractive tem- plates for (self)-assembly using minimal types of building blocks, from nanocages and virus capsids to large scale constructions like glass domes. However, the 5 polyhedra only represent a small number of possible spherical layouts which can serve as templates for symmetric assembly. In this paper, we formalize the notion of symmetric assembly, specifically for the case when only one type of building block is used, and characterize the properties of the corresponding layouts. We show that such layouts can be generated by extending the 5 regular polyhedra in a sym- metry preserving way. The resulting family remains isotoxal and isohedral, but not isogonal; hence creating a new class outside of the well-studied regular, semi-regular and quasi-regular classes and their duals Catalan solids and Johnson solids. We also show that this new family, dubbed almost-regular polyhedra, can be parameterized using only two variables and constructed efficiently.
    [Show full text]
  • Simple Rules for Incorporating Design Art Into Penrose and Fractal Tiles
    Bridges 2012: Mathematics, Music, Art, Architecture, Culture Simple Rules for Incorporating Design Art into Penrose and Fractal Tiles San Le SLFFEA.com [email protected] Abstract Incorporating designs into the tiles that form tessellations presents an interesting challenge for artists. Creating a viable M.C. Escher-like image that works esthetically as well as functionally requires resolving incongruencies at a tile’s edge while constrained by its shape. Escher was the most well known practitioner in this style of mathematical visualization, but there are significant mathematical objects to which he never applied his artistry including Penrose Tilings and fractals. In this paper, we show that the rules of creating a traditional tile extend to these objects as well. To illustrate the versatility of tiling art, images were created with multiple figures and negative space leading to patterns distinct from the work of others. 1 1 Introduction M.C. Escher was the most prominent artist working with tessellations and space filling. Forty years after his death, his creations are still foremost in people’s minds in the field of tiling art. One of the reasons Escher continues to hold such a monopoly in this specialty are the unique challenges that come with creating Escher type designs inside a tessellation[15]. When an image is drawn into a tile and extends to the tile’s edge, it introduces incongruencies which are resolved by continuously aligning and refining the image. This is particularly true when the image consists of the lizards, fish, angels, etc. which populated Escher’s tilings because they do not have the 4-fold rotational symmetry that would make it possible to arbitrarily rotate the image ± 90, 180 degrees and have all the pieces fit[9].
    [Show full text]
  • Omputational Design and Fabrication with Auxetic Materials
    Beyond Developable: Computational Design and Fabrication with Auxetic Materials Mina Konakovic´ Keenan Crane Bailin Deng Sofien Bouaziz Daniel Piker Mark Pauly EPFL CMU University of Hull EPFL EPFL Figure 1: Introducing a regular pattern of slits turns inextensible, but flexible sheet material into an auxetic material that can locally expand in an approximately uniform way. This modified deformation behavior allows the material to assume complex double-curved shapes. The shoe model has been fabricated from a single piece of metallic material using a new interactive rationalization method based on conformal geometry and global, non-linear optimization. Thanks to our global approach, the 2D layout of the material can be computed such that no discontinuities occur at the seam. The center zoom shows the region of the seam, where one row of triangles is doubled to allow for easy gluing along the boundaries. The base is 3D printed. Abstract 1 Introduction We present a computational method for interactive 3D design and Recent advances in material science and digital fabrication provide rationalization of surfaces via auxetic materials, i.e., flat flexible promising opportunities for industrial and product design, engi- material that can stretch uniformly up to a certain extent. A key neering, architecture, art and science [Caneparo 2014; Gibson et al. motivation for studying such material is that one can approximate 2015]. To bring these innovations to fruition, effective computational doubly-curved surfaces (such as the sphere) using only flat pieces, tools are needed that link creative design exploration to material making it attractive for fabrication. We physically realize surfaces realization. A versatile approach is to abstract material and fabrica- by introducing cuts into approximately inextensible material such tion constraints into suitable geometric representations which are as sheet metal, plastic, or leather.
    [Show full text]
  • Paper Pentasia: an Aperiodic Surface in Modular Origami
    Paper Pentasia: An Aperiodic Surface in Modular Origami a b Robert J. Lang ∗ and Barry Hayes † aLangorigami.com, Alamo, California, USA, bStanford University, Stanford, CA 2013-05-26 Origami, the Japanese art of paper-folding, has numerous connections to mathematics, but some of the most direct appear in the genre of modular origami. In modular origami, one folds many sheets into identical units (or a few types of unit), and then fits the units together into larger constructions, most often, some polyhedral form. Modular origami is a diverse and dynamic field, with many practitioners (see, e.g., [12, 3]). While most modular origami is created primarily for its artistic or decorative value, it can be used effectively in mathematics education to provide physical models of geometric forms ranging from the Platonic solids to 900-unit pentagon-hexagon-heptagon torii [5]. As mathematicians have expanded their catalog of interesting solids and surfaces, origami designers have followed not far behind, rendering mathematical forms via folding, a notable recent example being a level-3 Menger Sponge folded from 66,048 business cards by Jeannine Mosely and co-workers [10]. In some cases, the origami explorations themselves can lead to new mathematical structures and/or insights. Mosely’s developments of business-card modulars led to the discovery of a new fractal polyhedron with a novel connection to the famous Snowflake curve [11]. One of the most popular geometric mathematical objects has been the sets of aperiodic tilings developed by Roger Penrose [14, 15], which acquired new significance with the dis- covery of quasi-crystals, their three-dimensional analogs in the physical world, in 1982 by Daniel Schechtman, who was awarded the 2011 Nobel Prize in Chemistry for his discovery.
    [Show full text]
  • Generating Apparently-Random Colour Patterns
    Computational Aesthetics in Graphics, Visualization, and Imaging (2012) D. Cunningham and D. House (Editors) Random Discrete Colour Sampling Henrik Lieng Christian Richardt Neil A. Dodgson Generating apparently-randomUniversity of Cambridge colour patterns Used with permission of the authors Figure 1: We present an algorithm that distributes colours randomly using a human-centric definition of randomness. Left: Colours distributed using Matlab’s random-number generator. Middle: Result of our algorithm. Notice that our algorithm does not produce any distinctive patterns. Right: An image similar to one of Damien Hirst’s spot paintings. Abstract Apparently-random distributions of colours in a discrete setting have been used by many artists and craftsmen in the past century. Manual colourisation is a tedious and difficult process. Automatic colourisation, on the other hand, tends not to not look ‘random’ to a human, as randomly-generated clusters and patterns stimulate human perception and break the appearance of randomness. We propose an algorithm that minimises these apparent patterns, making the distribution of colours look as if they have been distributed randomly by a human. We show that our approach is superior to current solutions, especially for small numbers of colours. Our algorithm is easily extendible to non-regular patterns in any coordinate system. Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications; I.3.m [Com- puter Graphics]: Miscellaneous—Visual Arts; J.5 [Arts and Humanities]: Fine Arts. 1. Introduction Random colour sampling in the spatially discrete space was used in the early twentieth-century by numerous artists such as Jean Arp, Sophie Tauber and Vilmos Huszár.
    [Show full text]
  • Eindhoven University of Technology MASTER Lateral Stiffness Of
    Eindhoven University of Technology MASTER Lateral stiffness of hexagrid structures de Meijer, J.H.M. Award date: 2012 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain ‘Lateral Stiffness of Hexagrid Structures’ - Master’s thesis – - Main report – - A 2012.03 – - O 2012.03 – J.H.M. de Meijer 0590897 July, 2012 Graduation committee: Prof. ir. H.H. Snijder (supervisor) ir. A.P.H.W. Habraken dr.ir. H. Hofmeyer Eindhoven University of Technology Department of the Built Environment Structural Design Preface This research forms the main part of my graduation thesis on the lateral stiffness of hexagrids. It explores the opportunities of a structural stability system that has been researched insufficiently.
    [Show full text]
  • Eureka Issue 61
    Eureka 61 A Journal of The Archimedeans Cambridge University Mathematical Society Editors: Philipp Legner and Anja Komatar © The Archimedeans (see page 94 for details) Do not copy or reprint any parts without permission. October 2011 Editorial Eureka Reinvented… efore reading any part of this issue of Eureka, you will have noticed The Team two big changes we have made: Eureka is now published in full col- our, and printed on a larger paper size than usual. We felt that, with Philipp Legner Design and Bthe internet being an increasingly large resource for mathematical articles of Illustrations all kinds, it was necessary to offer something new and exciting to keep Eu- reka as successful as it has been in the past. We moved away from the classic Anja Komatar Submissions LATEX-look, which is so common in the scientific community, to a modern, more engaging, and more entertaining design, while being conscious not to Sean Moss lose any of the mathematical clarity and rigour. Corporate Ben Millwood To make full use of the new design possibilities, many of this issue’s articles Publicity are based around mathematical images: from fractal modelling in financial Lu Zou markets (page 14) to computer rendered pictures (page 38) and mathemati- Subscriptions cal origami (page 20). The Showroom (page 46) uncovers the fundamental role pictures have in mathematics, including patterns, graphs, functions and fractals. This issue includes a wide variety of mathematical articles, problems and puzzles, diagrams, movie and book reviews. Some are more entertaining, such as Bayesian Bets (page 10), some are more technical, such as Impossible Integrals (page 80), or more philosophical, such as How to teach Physics to Mathematicians (page 42).
    [Show full text]
  • Beyond Developable: Omputational Design and Fabrication with Auxetic Materials
    Beyond Developable: Computational Design and Fabrication with Auxetic Materials Mina Konakovic´ Keenan Crane Bailin Deng Sofien Bouaziz Daniel Piker Mark Pauly EPFL CMU University of Hull EPFL EPFL Figure 1: Introducing a regular pattern of slits turns inextensible, but flexible sheet material into an auxetic material that can locally expand in an approximately uniform way. This modified deformation behavior allows the material to assume complex double-curved shapes. The shoe model has been fabricated from a single piece of metallic material using a new interactive rationalization method based on conformal geometry and global, non-linear optimization. Thanks to our global approach, the 2D layout of the material can be computed such that no discontinuities occur at the seam. The center zoom shows the region of the seam, where one row of triangles is doubled to allow for easy gluing along the boundaries. The base is 3D printed. Abstract 1 Introduction We present a computational method for interactive 3D design and Recent advances in material science and digital fabrication provide rationalization of surfaces via auxetic materials, i.e., flat flexible promising opportunities for industrial and product design, engi- material that can stretch uniformly up to a certain extent. A key neering, architecture, art and science [Caneparo 2014; Gibson et al. motivation for studying such material is that one can approximate 2015]. To bring these innovations to fruition, effective computational doubly-curved surfaces (such as the sphere) using only flat pieces, tools are needed that link creative design exploration to material making it attractive for fabrication. We physically realize surfaces realization. A versatile approach is to abstract material and fabrica- by introducing cuts into approximately inextensible material such tion constraints into suitable geometric representations which are as sheet metal, plastic, or leather.
    [Show full text]
  • Math and Art of Tessellation Xuan Liang Math of Universe Paper 3 July 31, 2017
    Duke Summer Program Math and Art of Tessellation Xuan Liang Math of Universe Paper 3 July 31, 2017 Introduction Tessellation is one of the most magnificent parts of geometry. According to many researches, Sumerian who lived in the Euphrates basin created it. In the early stage, tessellations, made by stuck colorful stones, were just simple shapes mainly used to decorate ground. During the second century B.C, tessellation was spread to Rome and Greek where people apply it to decoration of walls and ceilings. As tessellation gradually became popular in Europe, this kind of art developed with great brilliance. After then, M. C. Escher applied some basic patterns to tessellation, accompanying with many mathematic methods, such as reflecting, translating, and rotating, which extraordinarily enriched tessellation. Experiencing centuries of change and participation of various cultures, tessellation contains both plentiful mathematic knowledge and unequaled beauty. Math of Tessellation A tessellation is created when one or more shapes is repeated over and over again covering a plane without any gaps or overlaps. Another word for a tessellation is a tiling. Mathematicians use some technical terms when discussing tiling. An edge is the intersection between two bordering tiles; it is often a straight line. A vertex is the point of intersection of three or more bordering tiles. Tessellation can be generally divided into 2 types: regular tessellations and semi- regular tessellations. A regular tessellation means a tessellation made up of congruent regular polygons. [Remember: Regular means that the sides and angles of the polygon are all equivalent (i.e., the polygon is both equiangular and equilateral).
    [Show full text]
  • Visualization of Regular Maps
    Symmetric Tiling of Closed Surfaces: Visualization of Regular Maps Jarke J. van Wijk Dept. of Mathematics and Computer Science Technische Universiteit Eindhoven [email protected] Abstract The first puzzle is trivial: We get a cube, blown up to a sphere, which is an example of a regular map. A cube is 2×4×6 = 48-fold A regular map is a tiling of a closed surface into faces, bounded symmetric, since each triangle shown in Figure 1 can be mapped to by edges that join pairs of vertices, such that these elements exhibit another one by rotation and turning the surface inside-out. We re- a maximal symmetry. For genus 0 and 1 (spheres and tori) it is quire for all solutions that they have such a 2pF -fold symmetry. well known how to generate and present regular maps, the Platonic Puzzle 2 to 4 are not difficult, and lead to other examples: a dodec- solids are a familiar example. We present a method for the gener- ahedron; a beach ball, also known as a hosohedron [Coxeter 1989]; ation of space models of regular maps for genus 2 and higher. The and a torus, obtained by making a 6 × 6 checkerboard, followed by method is based on a generalization of the method for tori. Shapes matching opposite sides. The next puzzles are more challenging. with the proper genus are derived from regular maps by tubifica- tion: edges are replaced by tubes. Tessellations are produced us- ing group theory and hyperbolic geometry. The main results are a generic procedure to produce such tilings, and a collection of in- triguing shapes and images.
    [Show full text]
  • Wang Tile and Aperiodic Sets of Tiles
    Wang Tile and Aperiodic Sets of Tiles Chao Yang Guangzhou Discrete Mathematics Seminar, 2017 Room 416, School of Mathematics Sun Yat-Sen University, Guangzhou, China Hilbert’s Entscheidungsproblem The Entscheidungsproblem (German for "decision problem") was posed by David Hilbert in 1928. He asked for an algorithm to solve the following problem. I Input: A statement of a first-order logic (possibly with a finite number of axioms), I Output: "Yes" if the statement is universally valid (or equivalently the statement is provable from the axioms using the rules of logic), and "No" otherwise. Church-Turing Theorem Theorem (1936, Church and Turing, independently) The Entscheidungsproblem is undecidable. Wang Tile In order to study the decidability of a fragment of first-order logic, the statements with the form (8x)(9y)(8z)P(x; y; z), Hao Wang introduced the Wang Tile in 1961. Wang’s Domino Problem Given a set of Wang tiles, is it possible to tile the infinite plane with them? Hao Wang Hao Wang (Ó, 1921-1995), Chinese American philosopher, logician, mathematician. Undecidability and Aperiodic Tiling Conjecture (1961, Wang) If a finite set of Wang tiles can tile the plane, then it can tile the plane periodically. If Wang’s conjecture is true, there exists an algorithm to decide whether a given finite set of Wang tiles can tile the plane. (By Konig’s infinity lemma) Domino problem is undecidable Wang’s student, Robert Berger, gave a negative answer to the Domino Problem, by reduction from the Halting Problem. It was also Berger who coined the term "Wang Tiles".
    [Show full text]
  • How to Make a Penrose Tiling
    How to make a Penrose tiling A tiling is a way to cover a flat surface using a fixed collection of shapes. In the left-hand picture the tiles are rectangles, while in the right- hand picture they are octagons and squares. You have probably seen many different tilings around your home or in the streets! In each of these examples, you could draw the tiling pattern on tracing paper and then shift the paper so that the lines once again match up with the tiles. Mathematicians wondered whether it was possible to make a tiling which didn’t have this property: a tiling where the tracing paper would never match the pattern again, no matter how far you moved it or in which direction. Such a tiling is called aperiodic and there are actually many examples of them. The most famous example of an aperiodic tiling is called a Penrose tiling, named after the mathematician and physicist Roger Penrose. A Penrose tiling uses only two shapes, with rules on how they are allowed to go together. These shapes are called kites and darts, and in the version given here the red dots have to line up when the shapes are placed next to each other. This means, for example, that the dart cannot sit on top of the kite. Three possible ways Kite Dart to start a Penrose tiling are given below: they are called the ‘star’, ‘sun’ and ‘ace’ respectively. There are 4 other ways to arrange the tiles around a point: can you find them all? (Answer on the other side!) Visit mathscraftnz.org | Tweet to #mathscraftnz | Email [email protected] Here are the 7 ways to fit the tiles around a point.
    [Show full text]