Cmse 520 Biomolecular Structure, Function And

Total Page:16

File Type:pdf, Size:1020Kb

Cmse 520 Biomolecular Structure, Function And CMSE 520 BIOMOLECULAR STRUCTURE, FUNCTION AND DYNAMICS (Computational Structural Biology) OUTLINE Review: Molecular biology Proteins: structure, conformation and function(5 lectures) Generalized coordinates, Phi, psi angles, DNA/RNA: structure and function (3 lectures) Structural and functional databases (PDB, SCOP, CATH, Functional domain database, gene ontology) Use scripting languages (e.g. python) to cross refernce between these databases: starting from sequence to find the function Relationship between sequence, structure and function Molecular Modeling, homology modeling Conservation, CONSURF Relationship between function and dynamics Confromational changes in proteins (structural changes due to ligation, hinge motions, allosteric changes in proteins and consecutive function change) Molecular Dynamics Monte Carlo Protein-protein interaction: recognition, structural matching, docking PPI databases: DIP, BIND, MINT, etc... References: CURRENT PROTOCOLS IN BIOINFORMATICS (e-book) (http://www.mrw.interscience.wiley.com/cp/cpbi/articles/bi0101/frame.html) Andreas D. Baxevanis, Daniel B. Davison, Roderic D.M. Page, Gregory A. Petsko, Lincoln D. Stein, and Gary D. Stormo (eds.) 2003 John Wiley & Sons, Inc. INTRODUCTION TO PROTEIN STRUCTURE Branden C & Tooze, 2nd ed. 1999, Garland Publishing COMPUTER SIMULATION OF BIOMOLECULAR SYSTEMS Van Gusteren, Weiner, Wilkinson Internet sources Ref: Department of Energy Rapid growth in experimental technologies Human Genome Projects Two major goals 1. DNA mapping 2. DNA sequencing Rapid growth in experimental technologies z Microrarray technologies – serial gene expression patterns and mutations z Time-resolved optical, rapid mixing techniques - folding & function mechanisms (Æ ns) z Techniques for probing single molecule mechanics (AFM, STM) (Æ pN) Æ more accurate models/data for computer-aided studies Weiss, S. (1999). Fluorescence spectroscopy of single molecules. Science 283, 1676-1683. function StructuralStructural Biology/MolecularBiology/Molecular BiophysicsBiophysics MostMost (all?)(all?) basicbasic “life“life processes”processes” areare mediatedmediated byby “machines”“machines” thatthat representrepresent thethe ultimateultimate miniaturizationminiaturization achievableachievable inin aa universeuniverse comprisedcomprised ofof atomsatoms andand molecules.molecules. TheThe goalgoal isis toto understandunderstand thethe underlyingunderlying principlesprinciples thatthat governgovern thethe operationoperation ofof thesethese molecularmolecular machines.machines. WhatWhat thththisisis coursecourse isis aboutabout overviewoverview ofof waysways inin whichwhich computerscomputers areare usedused toto solvesolve problemsproblems inin biologybiology supervisedsupervised learninglearning ofof illustrativeillustrative oror frequentlyfrequently--usedused algorithmsalgorithms andand programsprograms andand databasesdatabases supervisedsupervised learninglearning ofof programmingprogramming techniquestechniques andand algorithmsalgorithms selectedselected fromfrom thesethese usesuses StructureStructure WhatWhat dodo thethe moleculesmolecules looklook like?like? HowHow dodo wewe determinedetermine thatthat experimentally?experimentally? AreAre therethere generalgeneral structuralstructural principles?principles? HowHow isis thisthis informationinformation organized?organized? HowHow dodo structuralstructural generalizationsgeneralizations relaterelate toto simplesimple physical/chemicalphysical/chemical principles?principles? DynamicsDynamics TimeTime isis ofof thethe essenceessence inin biologicalbiological processesprocesses thereforetherefore howhow dodo wewe understandunderstand timetime--dependentdependent processesprocesses atat thethe molecularmolecular level?level? HowHow dodo wewe dodo thisthis experimentally?experimentally? HowHow dodo wewe dodo thisthis computationally?computationally? PromisingPromising FutureFuture forfor ComputationalComputational BiologyBiology Exponential growth in data Sequence and structure data from experiments Computational technology 12,665 structures as of July 11, 2000 22,810 structures as of October 7, 2003 35,026 structures as of February 7, 2006 Rost, B. (1998). Marrying structure and genomics. Structure 6, 259-263 Large databases Archival databanks of biological information Protein, DNA sequence databases Protein structure and nucleic acid databases Protein expression patterns Experimental Tecniques Derived databanks Sequence motifs Mutations and variations in proteins Classifications and or relationships Databanks of web sites Databanks of databanks containing biological information Links between databanks BIOINFORMATICS (definition) Definition by Luscombe et al., Yale, Dept. of Molecular Biophysics and Biochemistry, 2001 “Bioinformatics is conceptualizing biology in terms of macromolecules (in the sense of physical chemistry) and then applying ‘informatics’ techniques (derived from disciplines such as applied maths, computer science, and statistics) to understand and organize the information associated with these molecules, on a large-scale” COMPUTATIONAL BIOLOGY (definition) Definition by NIH (working definition) The development and application of data-analytical and theoretical methods, mathematical modeling and computational simulation techniques to the study of biological, behavioral, and social systems. InformationInformation flowflow AA majormajor tasktask inin computationalcomputational molecularmolecular biologybiology isis toto “decipher”“decipher” informationinformation containedcontained inin biologicalbiological sequencessequences SinceSince thethe nucleotidenucleotide sequencesequence ofof aa genomegenome containscontains allall informationinformation necessarynecessary toto produceproduce aa functionalfunctional organism,organism, wewe shouldshould inin theorytheory bebe ableable toto duplicateduplicate thisthis decodingdecoding usingusing computerscomputers http://www-fp.mcs.anl.gov/~gaasterland/sg-review-slides.html 5 Two major challenges after completion of the HGP: StructuralStructural GenomicsGenomics andand FunctionalFunctional GenomicsGenomics Schematic representation of the universe of proteins in a given organism Kim, S.H. (1998). Nature Struct.Biol. 5, 643-645 Aim: “to construct the complete scheme of biological functions and cellular pathways for the entire organism” What's E-Cell Project? E-Cell Project is an international research project aiming to model and reconstruct biological phenomena in silico, and developing necessary theoretical supports, technologies and software platforms to allow precise whole cell simulation. Metabolism model of the model cell constructed with 127 genes PROTEOMICSPROTEOMICS Covers the following areas (but not limited to): ¾Protein structure Primary Structure: sequence of amino acids Secondary Structure: local spatial arrangement Tertiary Structure: three dimensional native conformation ¾Protein Function related to 3-D shape of the protein ¾Protein clusters according to a specified characteristic ¾Protein-Protein Interaction interaction among a number of proteins ¾Protein-DNA Interaction interaction between one protein and the genome .
Recommended publications
  • Glossary - Cellbiology
    1 Glossary - Cellbiology Blotting: (Blot Analysis) Widely used biochemical technique for detecting the presence of specific macromolecules (proteins, mRNAs, or DNA sequences) in a mixture. A sample first is separated on an agarose or polyacrylamide gel usually under denaturing conditions; the separated components are transferred (blotting) to a nitrocellulose sheet, which is exposed to a radiolabeled molecule that specifically binds to the macromolecule of interest, and then subjected to autoradiography. Northern B.: mRNAs are detected with a complementary DNA; Southern B.: DNA restriction fragments are detected with complementary nucleotide sequences; Western B.: Proteins are detected by specific antibodies. Cell: The fundamental unit of living organisms. Cells are bounded by a lipid-containing plasma membrane, containing the central nucleus, and the cytoplasm. Cells are generally capable of independent reproduction. More complex cells like Eukaryotes have various compartments (organelles) where special tasks essential for the survival of the cell take place. Cytoplasm: Viscous contents of a cell that are contained within the plasma membrane but, in eukaryotic cells, outside the nucleus. The part of the cytoplasm not contained in any organelle is called the Cytosol. Cytoskeleton: (Gk. ) Three dimensional network of fibrous elements, allowing precisely regulated movements of cell parts, transport organelles, and help to maintain a cell’s shape. • Actin filament: (Microfilaments) Ubiquitous eukaryotic cytoskeletal proteins (one end is attached to the cell-cortex) of two “twisted“ actin monomers; are important in the structural support and movement of cells. Each actin filament (F-actin) consists of two strands of globular subunits (G-Actin) wrapped around each other to form a polarized unit (high ionic cytoplasm lead to the formation of AF, whereas low ion-concentration disassembles AF).
    [Show full text]
  • Unit 2 Cell Biology Page 1 Sub-Topics Include
    Sub-Topics Include: 2.1 Cell structure 2.2 Transport across cell membranes 2.3 Producing new cells 2.4 DNA and the production of proteins 2.5 Proteins and enzymes 2.6 Genetic Engineering 2.7 Respiration 2.8 Photosynthesis Unit 2 Cell Biology Page 1 UNIT 2 TOPIC 1 1. Cell Structure 1. Types of organism Animals and plants are made up of many cells and so are described as multicellular organisms. Similar cells doing the same job are grouped together to form tissues. Animals and plants have systems made up of a number of organs, each doing a particular job. For example, the circulatory system is made up of the heart, blood and vessels such as arteries, veins and capillaries. Some fungi such as yeast are single celled while others such as mushrooms and moulds are larger. Cells of animals plants and fungi have contain a number of specialised structures inside their cells. These specialised structures are called organelles. Bacteria are unicellular (exist as single cells) and do not have organelles in the same way as other cells. 2. Looking at Organelles Some organelles can be observed by staining cells and viewing them using a light microscope. Other organelles are so small that they cannot be seen using a light microscope. Instead, they are viewed using an electron microscope, which provides a far higher magnification than a light microscope. Most organelles inside cells are surrounded by a membrane which is similar in composition (make-up) to the cell membrane. Unit 2 Cell Biology Page 2 3. A Typical Cell ribosome 4.
    [Show full text]
  • The Architecture of the Protein Domain Universe
    The architecture of the protein domain universe Nikolay V. Dokholyan Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599 ABSTRACT Understanding the design of the universe of protein structures may provide insights into protein evolution. We study the architecture of the protein domain universe, which has been found to poses peculiar scale-free properties (Dokholyan et al., Proc. Natl. Acad. Sci. USA 99: 14132-14136 (2002)). We examine the origin of these scale-free properties of the graph of protein domain structures (PDUG) and determine that that the PDUG is not modular, i.e. it does not consist of modules with uniform properties. Instead, we find the PDUG to be self-similar at all scales. We further characterize the PDUG architecture by studying the properties of the hub nodes that are responsible for the scale-free connectivity of the PDUG. We introduce a measure of the betweenness centrality of protein domains in the PDUG and find a power-law distribution of the betweenness centrality values. The scale-free distribution of hubs in the protein universe suggests that a set of specific statistical mechanics models, such as the self-organized criticality model, can potentially identify the principal driving forces of molecular evolution. We also find a gatekeeper protein domain, removal of which partitions the largest cluster into two large sub- clusters. We suggest that the loss of such gatekeeper protein domains in the course of evolution is responsible for the creation of new fold families. INTRODUCTION The principles of molecular evolution remain elusive despite fundamental breakthroughs on the theoretical front 1-5 and a growing amount of genomic and proteomic data, over 23,000 solved protein structures 6 and protein functional annotations 7-9.
    [Show full text]
  • Chapter 13 Protein Structure Learning Objectives
    Chapter 13 Protein structure Learning objectives Upon completing this material you should be able to: ■ understand the principles of protein primary, secondary, tertiary, and quaternary structure; ■use the NCBI tool CN3D to view a protein structure; ■use the NCBI tool VAST to align two structures; ■explain the role of PDB including its purpose, contents, and tools; ■explain the role of structure annotation databases such as SCOP and CATH; and ■describe approaches to modeling the three-dimensional structure of proteins. Outline Overview of protein structure Principles of protein structure Protein Data Bank Protein structure prediction Intrinsically disordered proteins Protein structure and disease Overview: protein structure The three-dimensional structure of a protein determines its capacity to function. Christian Anfinsen and others denatured ribonuclease, observed rapid refolding, and demonstrated that the primary amino acid sequence determines its three-dimensional structure. We can study protein structure to understand problems such as the consequence of disease-causing mutations; the properties of ligand-binding sites; and the functions of homologs. Outline Overview of protein structure Principles of protein structure Protein Data Bank Protein structure prediction Intrinsically disordered proteins Protein structure and disease Protein primary and secondary structure Results from three secondary structure programs are shown, with their consensus. h: alpha helix; c: random coil; e: extended strand Protein tertiary and quaternary structure Quarternary structure: the four subunits of hemoglobin are shown (with an α 2β2 composition and one beta globin chain high- lighted) as well as four noncovalently attached heme groups. The peptide bond; phi and psi angles The peptide bond; phi and psi angles in DeepView Protein secondary structure Protein secondary structure is determined by the amino acid side chains.
    [Show full text]
  • Course Outline for Biology Department Adeyemi College of Education
    COURSE CODE: BIO 111 COURSE TITLE: Basic Principles of Biology COURSE OUTLINE Definition, brief history and importance of science Scientific method:- Identifying and defining problem. Raising question, formulating Hypotheses. Designing experiments to test hypothesis, collecting data, analyzing data, drawing interference and conclusion. Science processes/intellectual skills: (a) Basic processes: observation, Classification, measurement etc (b) Integrated processes: Science of Biology and its subdivisions: Botany, Zoology, Biochemistry, Microbiology, Ecology, Entomology, Genetics, etc. The Relevance of Biology to man: Application in conservation, agriculture, Public Health, Medical Sciences etc Relation of Biology to other science subjects Principles of classification Brief history of classification nomenclature and systematic The 5 kingdom system of classification Living and non-living things: General characteristics of living things. Differences between plants and animals. COURSE OUTLINE FOR BIOLOGY DEPARTMENT ADEYEMI COLLEGE OF EDUCATION COURSE CODE: BIO 112 COURSE TITLE: Cell Biology COURSE OUTLINE (a) A brief history of the concept of cell and cell theory. The structure of a generalized plant cell and generalized animal cell, and their comparison Protoplasm and its properties. Cytoplasmic Organelles: Definition and functions of nucleus, endoplasmic reticulum, cell membrane, mitochondria, ribosomes, Golgi, complex, plastids, lysosomes and other cell organelles. (b) Chemical constituents of cell - salts, carbohydrates, proteins, fats
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • Inference and Analysis of Population Structure Using Genetic Data and Network Theory
    | INVESTIGATION Inference and Analysis of Population Structure Using Genetic Data and Network Theory Gili Greenbaum,*,†,1 Alan R. Templeton,‡,§ and Shirli Bar-David† *Department of Solar Energy and Environmental Physics and †Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990 Midreshet Ben-Gurion, Israel, ‡Department of Biology, Washington University, St. Louis, Missouri 63130, and §Department of Evolutionary and Environmental Ecology, University of Haifa, 31905 Haifa, Israel ABSTRACT Clustering individuals to subpopulations based on genetic data has become commonplace in many genetic studies. Inference about population structure is most often done by applying model-based approaches, aided by visualization using distance- based approaches such as multidimensional scaling. While existing distance-based approaches suffer from a lack of statistical rigor, model-based approaches entail assumptions of prior conditions such as that the subpopulations are at Hardy-Weinberg equilibria. Here we present a distance-based approach for inference about population structure using genetic data by defining population structure using network theory terminology and methods. A network is constructed from a pairwise genetic-similarity matrix of all sampled individuals. The community partition, a partition of a network to dense subgraphs, is equated with population structure, a partition of the population to genetically related groups. Community-detection algorithms are used to partition the network into communities, interpreted as a partition of the population to subpopulations. The statistical significance of the structure can be estimated by using permutation tests to evaluate the significance of the partition’s modularity, a network theory measure indicating the quality of community partitions.
    [Show full text]
  • The Structure and Function of Large Biological Molecules 5
    The Structure and Function of Large Biological Molecules 5 Figure 5.1 Why is the structure of a protein important for its function? KEY CONCEPTS The Molecules of Life Given the rich complexity of life on Earth, it might surprise you that the most 5.1 Macromolecules are polymers, built from monomers important large molecules found in all living things—from bacteria to elephants— can be sorted into just four main classes: carbohydrates, lipids, proteins, and nucleic 5.2 Carbohydrates serve as fuel acids. On the molecular scale, members of three of these classes—carbohydrates, and building material proteins, and nucleic acids—are huge and are therefore called macromolecules. 5.3 Lipids are a diverse group of For example, a protein may consist of thousands of atoms that form a molecular hydrophobic molecules colossus with a mass well over 100,000 daltons. Considering the size and complexity 5.4 Proteins include a diversity of of macromolecules, it is noteworthy that biochemists have determined the detailed structures, resulting in a wide structure of so many of them. The image in Figure 5.1 is a molecular model of a range of functions protein called alcohol dehydrogenase, which breaks down alcohol in the body. 5.5 Nucleic acids store, transmit, The architecture of a large biological molecule plays an essential role in its and help express hereditary function. Like water and simple organic molecules, large biological molecules information exhibit unique emergent properties arising from the orderly arrangement of their 5.6 Genomics and proteomics have atoms. In this chapter, we’ll first consider how macromolecules are built.
    [Show full text]
  • Action of Multiple Rice -Glucosidases on Abscisic Acid Glucose Ester
    International Journal of Molecular Sciences Article Action of Multiple Rice β-Glucosidases on Abscisic Acid Glucose Ester Manatchanok Kongdin 1, Bancha Mahong 2, Sang-Kyu Lee 2, Su-Hyeon Shim 2, Jong-Seong Jeon 2,* and James R. Ketudat Cairns 1,* 1 School of Chemistry, Institute of Science, Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; [email protected] 2 Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea; [email protected] (B.M.); [email protected] (S.-K.L.); [email protected] (S.-H.S.) * Correspondence: [email protected] (J.-S.J.); [email protected] (J.R.K.C.); Tel.: +82-31-2012025 (J.-S.J.); +66-44-224304 (J.R.K.C.); Fax: +66-44-224185 (J.R.K.C.) Abstract: Conjugation of phytohormones with glucose is a means of modulating their activities, which can be rapidly reversed by the action of β-glucosidases. Evaluation of previously characterized recombinant rice β-glucosidases found that nearly all could hydrolyze abscisic acid glucose ester (ABA-GE). Os4BGlu12 and Os4BGlu13, which are known to act on other phytohormones, had the highest activity. We expressed Os4BGlu12, Os4BGlu13 and other members of a highly similar rice chromosome 4 gene cluster (Os4BGlu9, Os4BGlu10 and Os4BGlu11) in transgenic Arabidopsis. Extracts of transgenic lines expressing each of the five genes had higher β-glucosidase activities on ABA-GE and gibberellin A4 glucose ester (GA4-GE). The β-glucosidase expression lines exhibited longer root and shoot lengths than control plants in response to salt and drought stress.
    [Show full text]
  • Evolution of Biomolecular Structure Class II Trna-Synthetases and Trna
    University of Illinois at Urbana-Champaign Luthey-Schulten Group Theoretical and Computational Biophysics Group Evolution of Biomolecular Structure Class II tRNA-Synthetases and tRNA MultiSeq Developers: Prof. Zan Luthey-Schulten Elijah Roberts Patrick O’Donoghue John Eargle Anurag Sethi Dan Wright Brijeet Dhaliwal March 2006. A current version of this tutorial is available at http://www.ks.uiuc.edu/Training/Tutorials/ CONTENTS 2 Contents 1 Introduction 4 1.1 The MultiSeq Bioinformatic Analysis Environment . 4 1.2 Aminoacyl-tRNA Synthetases: Role in translation . 4 1.3 Getting Started . 7 1.3.1 Requirements . 7 1.3.2 Copying the tutorial files . 7 1.3.3 Configuring MultiSeq . 8 1.3.4 Configuring BLAST for MultiSeq . 10 1.4 The Aspartyl-tRNA Synthetase/tRNA Complex . 12 1.4.1 Loading the structure into MultiSeq . 12 1.4.2 Selecting and highlighting residues . 13 1.4.3 Domain organization of the synthetase . 14 1.4.4 Nearest neighbor contacts . 14 2 Evolutionary Analysis of AARS Structures 17 2.1 Loading Molecules . 17 2.2 Multiple Structure Alignments . 18 2.3 Structural Conservation Measure: Qres . 19 2.4 Structure Based Phylogenetic Analysis . 21 2.4.1 Limitations of sequence data . 21 2.4.2 Structural metrics look further back in time . 23 3 Complete Evolutionary Profile of AspRS 26 3.1 BLASTing Sequence Databases . 26 3.1.1 Importing the archaeal sequences . 26 3.1.2 Now the other domains of life . 27 3.2 Organizing Your Data . 28 3.3 Finding a Structural Domain in a Sequence . 29 3.4 Aligning to a Structural Profile using ClustalW .
    [Show full text]
  • Glossary of Notations
    108 GLOSSARY OF NOTATIONS A = Earthquake peak ground acceleration. IρM = Soil influence coefficient for moment. = A0 Cross-sectional area of the stream. K1, K2, = aB Barge bow damage depth. K3, and K4 = Scour coefficients that account for the nose AF = Annual failure rate. shape of the pier, the angle between the direction b = River channel width. of the flow and the direction of the pier, the BR = Vehicular braking force. streambed conditions, and the bed material size. = BRa Aberrancy base rate. Kp = Rankine coefficient. = = bx Bias of ¯x x/xn. KR = Pile flexibility factor, which gives the relative c = Wind analysis constant. stiffness of the pile and soil. C′=Response spectrum modeling parameter. L = Foundation depth. = CE Vehicular centrifugal force. Le = Effective depth of foundation (distance from = CF Cost of failure. ground level to point of fixity). = CH Hydrodynamic coefficient that accounts for the effect LL = Vehicular live load. of surrounding water on vessel collision forces. LOA = Overall length of vessel. = CI Initial cost for building bridge structure. LS = Live load surcharge. = Cp Wind pressure coefficient. max(x) = Maximum of all possible x values. = CR Creep. M = Moment capacity. = cap CT Expected total cost of building bridge structure. M = Moment capacity of column. = col CT Vehicular collision force. M = Design moment. = design CV Vessel collision force. n = Manning roughness coefficient. = D Diameter of pile or column. N = Number of vessels (or flotillas) of type i. = i DC Dead load of structural components and nonstructural PA = Probability of aberrancy. attachments. P = Nominal design force for ship collisions. DD = Downdrag. B P = Base wind pressure.
    [Show full text]
  • What Do Molecular Biologists Mean When They Say 'Structure Determines
    What do molecular biologists mean when they say `structure determines function'? Gregor P. Greslehner∗ University of Salzburg & ERC IDEM, ImmunoConcept, CNRS/University of Bordeaux October 2018 Abstract `Structure' and `function' are both ambiguous terms. Discriminating different meanings of these terms sheds light on research and explanatory practice in molecular biology, as well as clarifying central theoretical concepts in the life sciences like the sequence{structure{function relationship and its corresponding scientific \dogmas". The overall project is to answer three questions, primarily with respect to proteins: (1) What is structure? (2) What is function? (3) What is the relation between structure and function? The results of addressing these questions lead to an answer to the title question, what the statement `structure determines function' means. ∗Email: [email protected] 1 Keywords: philosophy of biology, molecular biology, protein structure, biological function, scientific practice 1 Introduction `Structure' and `function' are abundantly used terms in biological findings. Frequently, the conjunct phrase `structure and function' or the directional phrase `from structure to function' is to be found, indicating that there is a special relation connecting these two concepts. The strongest form of this relation is found in the frequent statement that `structure determines function'. One could easily list several hundreds of references containing such phrases. However, in order not to blow up the references section, I will refrain from doing so. Suffice it to say that biologists make highly prominent use of these concepts in describing their research|molecular biologists, in particular. In this paper, I attempt to clarify these concepts, address their relation, and discuss the role they play in molecular biology's explanatory practice.
    [Show full text]