Butterflies and Moths up Close!

Total Page:16

File Type:pdf, Size:1020Kb

Butterflies and Moths up Close! Butterflies and Moths Up Close! Butterflies and moths comprise a group of insects named Lepidoptera. Lepido- means scaly and -ptera wing, so they are literally named the scaly winged insects. If you were to draw a family tree of every scaly winged insect in the world one branch on the tree would include all of the butterflies, with everything else being a moth. monarch butterfly (Danaus plexippus) luna moth (Actias luna) Here we have two specimens, a monarch butterfly on the left and a luna moth on the right. We’re going to take a closer look at their wings, heads, and antennae to explore their similarities and differences, but first let’s observe each as a whole. What do you notice about them? Write or draw your observations below. Monarch Luna Moth ©2021 Chicago Academy of Sciences / Peggy Notebaert Nature Museum 1 Let's create our own wing pattern! Color or shade in lack of scales there. the to due wing each on window (clear) transparent small a have moths These moths. silk royal the Saturniidae, You may noticea small area of the luna notice on each wing? Could you see every color before lookingat these wings up close? scales these of arrangement The moths got their name Lepidoptera. Thewings of moths both and butterflies are covered with colorful tiny scales. Here we have aclose have we monarch butterfly ( - up image of the forewings of each specimen. Now you can clearly see how butterflies and ©202 Danaus plexippus Danaus is 1 Chicago Academy of Sciences / Peggy Notebaert Nature Museum Nature Notebaert Peggy / Sciences of Academy Chicago what give butterflies and moths their elaborate patterns. What colors do you you do colors What patterns. elaborate their moths and butterflies give moth wing where scales are missing. Luna moths belong to the family ) wing the scales below to make your own unique creation. below scales uniquetomakeown the your luna moth ( moth luna Actias luna ) wing ) 2 monarch butterfly (Danaus plexippus) head luna moth (Actias luna) head Here we can see the heads of both our specimens. The head is where you can find an insect's eyes, antennae, and mouth. We will take a closer look at the antennae, for now focus on the eyes and the mouth. Both of these specimens have two large compound eyes, and most butterflies and moths have long straw-like mouthparts called a proboscis. The monarch butterfly has its proboscis curled up and tucked away. Can you find any mouth parts on the moth? If you can’t, do not fret because it doesn’t have one! While most moths do have a proboscis, those of the royal silk moth family do not. They have to do all of their eating as a caterpillar because after that, they’re done eating for the rest of their lives. What do you think a butterfly eats? Remember butterflies drink through a straw-like mouth part, called a proboscis. Think of three sweet things that a butterfly might drink with their proboscis and write them below. Hint: Butterflies often visit flowers, what sweet treat may they provide? ● ● ● Were you able to figure out what a butterfly eats? Scan the code for the answer! ©2021 Chicago Academy of Sciences / Peggy Notebaert Nature Museum 3 monarch butterfly (Danaus plexippus) antenna luna moth (Actias luna) antenna All insects have a pair of antennae attached to their heads. They come in all shapes and sizes depending on the kind of insect. Antennae are the best way to tell butterflies and moths apart. Almost all butterflies have what are called clubbed antennae. You can see the monarch butterfly antenna on the left is long and thin until it thickens into a club shape towards the end. Moths, on the other hand, have many different kinds of antennae. They can be thick, thin, or even feathery like the luna moth pictured on the right, but they are never clubbed. Now that we’ve explored what antennae look like, are you wondering what they do? They are sensory organs that help insects observe their surroundings. Insects can use their antennae to smell, taste, touch, and sense vibrations. Butterflies are also able to taste using their feet! How does this compare to how you sense the world around them? Compare yourself to the butterfly below! Fill in the chart to compare the human and butterflies body parts associated with each sense. Sense Butterfly Body Part used... Human Body Part used... Smell Antennae Taste Antennae, proboscis, feet Sight Compound eyes Touch Antennae, legs ©2021 Chicago Academy of Sciences / Peggy Notebaert Nature Museum 4 .
Recommended publications
  • Butterflies and Moths of Brevard County, Florida, United States
    Heliothis ononis Flax Bollworm Moth Coptotriche aenea Blackberry Leafminer Argyresthia canadensis Apyrrothrix araxes Dull Firetip Phocides pigmalion Mangrove Skipper Phocides belus Belus Skipper Phocides palemon Guava Skipper Phocides urania Urania skipper Proteides mercurius Mercurial Skipper Epargyreus zestos Zestos Skipper Epargyreus clarus Silver-spotted Skipper Epargyreus spanna Hispaniolan Silverdrop Epargyreus exadeus Broken Silverdrop Polygonus leo Hammock Skipper Polygonus savigny Manuel's Skipper Chioides albofasciatus White-striped Longtail Chioides zilpa Zilpa Longtail Chioides ixion Hispaniolan Longtail Aguna asander Gold-spotted Aguna Aguna claxon Emerald Aguna Aguna metophis Tailed Aguna Typhedanus undulatus Mottled Longtail Typhedanus ampyx Gold-tufted Skipper Polythrix octomaculata Eight-spotted Longtail Polythrix mexicanus Mexican Longtail Polythrix asine Asine Longtail Polythrix caunus (Herrich-Schäffer, 1869) Zestusa dorus Short-tailed Skipper Codatractus carlos Carlos' Mottled-Skipper Codatractus alcaeus White-crescent Longtail Codatractus yucatanus Yucatan Mottled-Skipper Codatractus arizonensis Arizona Skipper Codatractus valeriana Valeriana Skipper Urbanus proteus Long-tailed Skipper Urbanus viterboana Bluish Longtail Urbanus belli Double-striped Longtail Urbanus pronus Pronus Longtail Urbanus esmeraldus Esmeralda Longtail Urbanus evona Turquoise Longtail Urbanus dorantes Dorantes Longtail Urbanus teleus Teleus Longtail Urbanus tanna Tanna Longtail Urbanus simplicius Plain Longtail Urbanus procne Brown Longtail
    [Show full text]
  • Notes on Actias Dubernardi (Oberthür, 1897), with Description of the Early Instars (Lepidoptera: Saturniidae)
    Nachr. entomol. Ver. Apollo, N. F. 27 (/2): 9–6 (2006) 9 Notes on Actias dubernardi (Oberthür, 1897), with description of the early instars (Lepidoptera: Saturniidae) Stefan Naumann Dr. Stefan Naumann, Hochkirchstrasse 7, D-0829 Berlin, Germany; [email protected]. Abstract: An overview of the knowledge on A. duberna­rdi was cited in the same genus at full species rank). Packard (Oberthür, 897) is given. The early instars are described (94: 80) mentioned Eua­ndrea­ alrady at subgeneric and notes on behaviour and foodplants are mentioned; the status, Bouvier (936: 253) and Testout (94: 52) in larvae have silver spots and a thoracic warning pattern. All preimaginal instars, living moths and male genitalia struc- the genus Argema­ Wallengren, 858, and in more recent tures are figured in colour. First records of the species from literature (e.g. Mell 950, Zhu & Wang 983, 993, 996, Myanmar are mentioned. The results of some recent phylo- Nässig 99, 994, D’Abrera 998, Morishita & Kishida genetic studies concerning the arrangement of the genera 2000, Ylla et al. 2005) it was listed as junior subjective Actia­s Leach in Leach & Nodder, 85, Argema­ Wallengren, synonym of Actia­s Leach in Leach & Nodder, 85. 858 and Gra­ellsia­ Grote, 896 are briefly discussed. Until about 0 years ago, the species was very rare in Anmerkungen zu Actias dubernardi (Oberthür, 1897) western collections, but with further economic opening mit Beschreibung der Präimaginalstadien (Lepidoptera: of PR China more and more material from this country Saturniidae) could be obtained, and eventually also some ova were Zusammenfassung: Es wird eine Übersicht über die bishe- received directly from China.
    [Show full text]
  • Moth Tails Divert Bat Attack: Evolution of Acoustic Deflection
    Moth tails divert bat attack: Evolution of acoustic deflection Jesse R. Barbera,1, Brian C. Leavella, Adam L. Keenera, Jesse W. Breinholtb, Brad A. Chadwellc, Christopher J. W. McClurea,d, Geena M. Hillb, and Akito Y. Kawaharab,1 aDepartment of Biological Sciences, Boise State University, Boise, ID 83725; bFlorida Museum of Natural History, McGuire Center for Lepidoptera and Biodiversity, University of Florida, Gainesville, FL 32611; cDepartment of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272; and dPeregrine Fund, Boise, ID 83709 Edited by May R. Berenbaum, University of Illinois at Urbana-Champaign, Urbana, IL, and approved January 28, 2015 (received for review November 15, 2014) Adaptations to divert the attacks of visually guided predators the individuals that were tested. Interactions took place under have evolved repeatedly in animals. Using high-speed infrared darkness in a sound-attenuated flight room. We recorded each videography, we show that luna moths (Actias luna) generate an engagement with infrared-sensitive high-speed cameras and ul- acoustic diversion with spinning hindwing tails to deflect echolo- trasonic microphones. To constrain the moths’ flight to a ∼1m2 cating bat attacks away from their body and toward these non- area surveyed by the high-speed cameras, we tethered luna moths essential appendages. We pit luna moths against big brown bats from the ceiling with a monofilament line. (Eptesicus fuscus) and demonstrate a survival advantage of ∼47% for moths with tails versus those that had their tails removed. The Results and Discussion benefit of hindwing tails is equivalent to the advantage conferred Bats captured 34.5% (number of moths presented; n = 87) of to moths by bat-detecting ears.
    [Show full text]
  • Wildlife in Your Young Forest.Pdf
    WILDLIFE IN YOUR Young Forest 1 More Wildlife in Your Woods CREATE YOUNG FOREST AND ENJOY THE WILDLIFE IT ATTRACTS WHEN TO EXPECT DIFFERENT ANIMALS his guide presents some of the wildlife you may used to describe this dense, food-rich habitat are thickets, T see using your young forest as it grows following a shrublands, and early successional habitat. timber harvest or other management practice. As development has covered many acres, and as young The following lists focus on areas inhabited by the woodlands have matured to become older forest, the New England cottontail (Sylvilagus transitionalis), a rare amount of young forest available to wildlife has dwindled. native rabbit that lives in parts of New York east of the Having diverse wildlife requires having diverse habitats on Hudson River, and in parts of Connecticut, Rhode Island, the land, including some young forest. Massachusetts, southern New Hampshire, and southern Maine. In this region, conservationists and landowners In nature, young forest is created by floods, wildfires, storms, are carrying out projects to create the young forest and and beavers’ dam-building and feeding. To protect lives and shrubland that New England cottontails need to survive. property, we suppress floods, fires, and beaver activities. Such projects also help many other kinds of wildlife that Fortunately, we can use habitat management practices, use the same habitat. such as timber harvests, to mimic natural disturbance events and grow young forest in places where it will do the most Young forest provides abundant food and cover for insects, good. These habitat projects boost the amount of food reptiles, amphibians, birds, and mammals.
    [Show full text]
  • The Life-History of Actias Maenas Diana Maassen In
    The Life-History©Kreis Nürnberger Entomologen; ofActias download maenas unter www.biologiezentrum.at diana Maassen in Maassen [& Weymer], 1872 from the Island of Bali, Indonesia (Lepidoptera: Saturniidae) U l r i c h P a u k s t a d t & L a e l a H a y a t i P a u k s t a d t Die Präimaginalstadien vonActias maenas diana Maassen in Maassen [& Weymer], 1872 von Bali, Indonesien (Lepidoptera: Saturniidae) Zusammenfassung: Die Präimaginalstadien vonActias maenas diana Maassen in Maassen [& Weymer], 1872 (Lepidoptera: Saturniidae) aus balinesischen Populationen (Indonesien) werden beschrieben und mit denen anderer verwandter Arten aus der maenas-Gruppe (sensuN ä s s ig 1994) verglichen. Insbesondere werden in diesem ergänzenden Beitrag, erster Beitrag zur Kenntnis der Präimaginalstadien von A. maenas diana in der Entomologische Zeitschrift (Stuttgart) im Druck, Angaben zur primären Behaarung gemacht. Die Taxa der maenas-Gruppe (sensu N ä s s ig 1994) werden aufgelistet und taxonomische Anmerkungen zu ihrem augenblicklichen Status gemacht. Taxonomische Änderungen werden nicht vorgenommen. Summary: In the following contribution to knowledge of the Southeast Asian wild silkmoth (Lepidoptera: Saturniidae) the preimaginal instars ofActias maenas diana Maassen in Maassen [& Weymer], 1872 from the island of Bali, Indonesia, are described and compared to those of related taxa of the maenas-group (sensu N ä s s ig 1994). This second supplementary contribution on the preimaginal instars ofA. maenas diana, first contribution in Entomologische Zeitschrift (Stuttgart) in press, deals with the chaetotaxy of the larvae. Presently recognized taxa in the maenas- group (sensuN ä s s ig 1994) are listed and remarks on its taxonomic status are given.
    [Show full text]
  • Polyphemus Moth Antheraea Polyphemus (Cramer) (Insecta: Lepidoptera: Saturniidae: Saturniinae)1 Donald W
    EENY-531 Polyphemus Moth Antheraea polyphemus (Cramer) (Insecta: Lepidoptera: Saturniidae: Saturniinae)1 Donald W. Hall2 Introduction Distribution The polyphemus moth, Antheraea polyphemus (Cramer), Polyphemus moths are our most widely distributed large is one of our largest and most beautiful silk moths. It is silk moths. They are found from southern Canada down named after Polyphemus, the giant cyclops from Greek into Mexico and in all of the lower 48 states, except for mythology who had a single large, round eye in the middle Arizona and Nevada (Tuskes et al. 1996). of his forehead (Himmelman 2002). The name is because of the large eyespots in the middle of the moth is hind wings. Description The polyphemus moth also has been known by the genus name Telea, but it and the Old World species in the genus Adults Antheraea are not considered to be sufficiently different to The adult wingspan is 10 to 15 cm (approximately 4 to warrant different generic names. Because the name Anther- 6 inches) (Covell 2005). The upper surface of the wings aea has been used more often in the literature, Ferguson is various shades of reddish brown, gray, light brown, or (1972) recommended using that name rather than Telea yellow-brown with transparent eyespots. There is consider- to avoid confusion. Both genus names were published in able variation in color of the wings even in specimens from the same year. For a historical account of the polyphemus the same locality (Holland 1968). The large hind wing moth’s taxonomy see Ferguson (1972) or Tuskes et al. eyespots are ringed with prominent yellow, white (partial), (1996).
    [Show full text]
  • Impacts and Options for Biodiversity-Oriented Land Managers
    GYPSY MOTH (LYMANTRIA DISPAR): IMPACTS AND OPTIONS FOR BIODIVERSITY-ORIENTED LAND MANAGERS May 2004 NatureServe is a non-profit organization providing the scientific knowledge that forms the basis for effective conservation action. A NatureServe Technical Report Citation: Schweitzer, Dale F. 2004. Gypsy Moth (Lymantria dispar): Impacts and Options for Biodiversity- Oriented Land Managers. 59 pages. NatureServe: Arlington, Virginia. © 2004 NatureServe NatureServe 1101 Wilson Blvd., 15th Floor Arlington, VA 22209 www.natureserve.org Author’s Contact Information: Dr. Dale Schweitzer Terrestrial Invertebrate Zoologist NatureServe 1761 Main Street Port Norris, NJ 08349 856-785-2470 Email: [email protected] NatureServe Gypsy Moth: Impacts and Options for Biodiversity-Oriented Land Managers 2 Acknowledgments Richard Reardon (United States Department of Agriculture Forest Service Forest Health Technology Enterprise Team, Morgantown, WV), Kevin Thorpe (Agricultural Research Service, Insect Chemical Ecology Laboratory, Beltsville, MD) and William Carothers (Forest Service Forest Protection, Asheville, NC) for technical review. Sandra Fosbroke (Forest Service Information Management Group, Morgantown, WV) provided many helpful editorial comments. The author also wishes to commend the Forest Service for funding so much important research and technology development into the impacts of gypsy moth and its control on non-target organisms and for encouraging development of more benign control technologies like Gypchek. Many, but by no means all, Forest Service-funded studies are cited in this document, including Peacock et al. (1998), Wagner et al. (1996), and many of the studies cited from Linda Butler and Ann Hajek. Many other studies in the late 1980s and 1990s had USDA Forest Service funding from the Appalachian Gypsy Moth Integrated Pest Management Project (AIPM).
    [Show full text]
  • Moth Fun Facts
    MOTH FUN FACTS NC has 174 species of butterflies, and 2,000-2,500 moths! That’s 11 to 14 times as many moth spe- cies as there are butterflies. There is moth caterpillar that is carnivorous, the Ashen Pinion, Lithophane antennata which is a well-known predator of winter moths. Some tiger moths in the family Arctiidae are known to "jam" bat echolocation by producing sounds. The North Carolina Heritage Program lists 99 state concern moths mostly from the mountains, sandhills and coast. Many females of the Tussock family of moths don't have wings. The Hawk moth (Sphinx) is the worlds fastest flying insect attaining speed of over 50 kph Moth antennae are either feather like or a hair like filament. The Cecropia moth is North America's largest insect with a six inch wingspan. Moths have hairy bodies to help retain internal body temperature necessary for flight. Quite a few moths fly during the day, such as the Hummingbird Clearwing, Virginia Ctenucha and the Spear-Marked Black. In colder climates some moths can have a two year life cycle. Some moth caterpillars, such as the "Io" are covered with stinging hairs. Moths make up 80 percent of the order lepidoptera. A small group of moths are called "Bird Dropping" moths because -you guessed it- that's what they resemble when they are at rest. Moths navigate by two methods. They use the moon and stars when available and geomagnetic clues when light sources are obscured. Cloth Moths eat such things as wool, fur and other animal products.
    [Show full text]
  • Good Water Ripples Volume 8 Number 5
    GoodGood WaterWater RipplesRipples Vol. 8 • No. 5 | Oct/Nov 2019 For information contact: http://txmn.org/goodwater or goodwatermn2@gmailcom Lori Franz, Editor • Holly Zeiner, Layout/Design In Search of Swamp Rabbit and other Species of Greatest Conservation Need By Mike Farley Sylvilagus aquaticus was observed in more efficient lookout during a vulnera- Armadillo, and Virginia Opossum was Williamson County early this year and ble moment. observed. We began using scents for throughout the year before at Berry attracting mammals to an ideal location Springs Park and Preserve, as well as In those six weeks there have been within camera view. We experimented North San Gabriel River - captured or seven observations of Bobcat all over the with food, vegetables and seeds, but observed by trail 35-acre south plot quickly abandoned this since it always camera and digital where we began drew numerous raccoons and fighting. camera. The county our search. Anoth- The scents now used are pure vanilla is on the westernmost er recent observa- extract, imitation vanilla, and apple cider edge of its range, tion was the Gray spray. with swamp rabbits Fox on the North being more common San Gabriel with Favorable camera locations include in east Texas and a rabbit clutched grasses, such as Inland Sea Oats, Vir- southeastern U.S. in its mouth and ginia Wild Rye, greenbriers, and dew- making its way berry. Dense thicket near water is the Swamp Rabbit is a back to a nearby rabbit’s preferred cover habitat, with a real animal and not den. All of this fast zig-zagging escape from predators.
    [Show full text]
  • Impacts of Native and Non-Native Plants on Urban Insect Communities: Are Native Plants Better Than Non-Natives?
    Impacts of Native and Non-native plants on Urban Insect Communities: Are Native Plants Better than Non-natives? by Carl Scott Clem A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science Auburn, Alabama December 12, 2015 Key Words: native plants, non-native plants, caterpillars, natural enemies, associational interactions, congeneric plants Copyright 2015 by Carl Scott Clem Approved by David Held, Chair, Associate Professor: Department of Entomology and Plant Pathology Charles Ray, Research Fellow: Department of Entomology and Plant Pathology Debbie Folkerts, Assistant Professor: Department of Biological Sciences Robert Boyd, Professor: Department of Biological Sciences Abstract With continued suburban expansion in the southeastern United States, it is increasingly important to understand urbanization and its impacts on sustainability and natural ecosystems. Expansion of suburbia is often coupled with replacement of native plants by alien ornamental plants such as crepe myrtle, Bradford pear, and Japanese maple. Two projects were conducted for this thesis. The purpose of the first project (Chapter 2) was to conduct an analysis of existing larval Lepidoptera and Symphyta hostplant records in the southeastern United States, comparing their species richness on common native and alien woody plants. We found that, in most cases, native plants support more species of eruciform larvae compared to aliens. Alien congener plant species (those in the same genus as native species) supported more species of larvae than alien, non-congeners. Most of the larvae that feed on alien plants are generalist species. However, most of the specialist species feeding on alien plants use congeners of native plants, providing evidence of a spillover, or false spillover, effect.
    [Show full text]
  • Special Edition: Moths Interview with Bart Coppens, Guest Speaker at ICBES 2017
    INTERNATIONAL ASSOCI ATION OF BUTTERFLY EXHIBITORS AND SUPPL IERS Volume 16 Number 3 MAI– JUNE 2017 Visit us on the web at www.iabes.org Special edition: moths Interview with Bart Coppens, guest speaker at ICBES 2017 Who are you? I’m Bart Coppens (24) from the Netherlands – a fervent breeder of moths and aspiring entomologist. In my home I breed over 50 species of moths (mainly Saturniidae) on yearly basis. My goal is to expand what started out as a hobby into something more scientific. It turns out the life cycle and biology of many Saturni- idae is poorly known or even unrecorded. By importing eggs and cocoons of rare and obscure species and breeding them in cap- tivity I am able to record undescribed larvae, host plants and the life history of several moth species – information that I publish on a scientific level. My ambition is also to gradually get into more difficult subjects such as the taxonomy, morphology and evolution and perhaps even the organic chemistry (in terms of defensive chemicals) of Saturniidae – but for now these subjects are still beyond my le- Bart with Graellsia isabella vel of comprehension, as relatively young person that has not yet completed a formal education. I’d also like to say I have a general passion for all kinds of Lepidoptera, from butterflies to the tiniest species of moths, I truly like all of them. The reason I mention Saturniidae so much is because I have invested most of my time and expertise into this particular family of Lepidoptera, simply because this order of insects is too big to study on a general scale, so I decided to specialise myself a little in the kinds of moths I find the most impressi- ve and fascinating myself – and was already the most familiar with due to my breeding hobby.
    [Show full text]
  • Like a Moth to a Flower
    Like a Moth to a Flower Moths After dark, moths, as well as bats, take over the pollinating night shift. Nocturnal bloomers, with pale or white flowers heavy with fragrance and copious nectar, attract these pollinators. Some moths are also active by day. Moths and Butterflies Butterflies, possibly the best loved of all insects, are appreciated as benign creatures that add color, beauty, and grace to our gardens. Moths, on the other hand, aren’t nearly as appreciated for their pollinating contributions. Butterflies and moths belong to the same insect order, Lepidoptera. Can you tell the difference between a moth and a butterfly? In general, butterflies are brightly colored, and fly by day, and moths are more likely to be grey or brown, and fly at night. But there are numerous exceptions: such as bee-mimicking hawkmoths, colorful luna moths, and colorful, day-flying scape moths. At rest, butterflies tend to hold their wings either partially open or closed vertically over their bodies (like the sails of tiny sail boats). Most moths, however, hold their wings flat. Moths tend to be fatter and hairier than butterflies. And moths’ antennae are often broad, complex and feathery, while butterflies generally have simple antennae with clubbed tips. Metamorphosis Like a butterfly, a moth begins life as an egg laid on or near its host plant. The egg hatches into a tiny caterpillar, eating and growing until it transforms into a chrysalis. They go through complete metamorphosis into sexually active, winged adults. Some moths spin a cocoon from their silk glands, creating an additional layer of protection.
    [Show full text]