Boeing 737-MAX

Total Page:16

File Type:pdf, Size:1020Kb

Boeing 737-MAX BOEING 737 MAX Patrick KY Executive Director EP TRAN Committee Meeting 29 October 2020 Your safety is our mission. EASA PROPRIETARY – Do not disclose without EASA consent An Agency of the European Union Agenda 01 EASA conditions for Return to Service 02 EASA activities 03 Outcomes 04 Next Steps EASA PROPRIETARY – Do not disclose without EASA consent 2 Return to Service - EASA conditions As set from the very first days after the grounding: Accidents of JT610 and ET302 are deemed sufficiently understood Design changes proposed by Boeing to address the issues highlighted by the accidents are EASA approved and their embodiment is mandated Additional independent design review has been completed by EASA BOEING 737 MAX flight crews have been adequately trained EASA PROPRIETARY – Do not disclose without EASA consent 3 Return to Service - EASA design review Objective To ensure that no similar weaknesses in the design are present in the other (safety critical) areas of the BOEING 737 MAX design Scope Flight Control System and all associated functions/systems including (but not limited to): the displays, the crew alerting system, the sensors and the autopilot. Targeted assessment of the aircraft Critical review of credit taken for crew Comprehensive re-analysis of the handling qualities: stability, recognition of, and reaction to, failures multiple effects of sensor failures maneuverability, stall identification. (including Human Factor assessment) EASA PROPRIETARY – Do not disclose without EASA consent 4 EASA activities - Overview Effort Reviews Flight Control Team Computer Safety Analysis > 15.000 working hours System audits at Boeing 20 multi-disciplinary Simulator data x4 over 19 months experts, including test Flight test data x4 Software audits at Collins pilots and engineers Crew procedures Training requirements Simulator sessions Human Factor EASA Flight tests Joint Operational Evaluation Participation to x2 Engineering Sim Line crew evaluation with 4 different airline flight crews x2 EU airline captains x2 Full flight Sim x2 EASA observers EASA PROPRIETARY – Do not disclose without EASA consent 5 EASA activities – Flight tests Simulator Aircraft Used to evaluate many failures, Used to check aircraft behaviour including combinations of failures, with MCAS on & off (simulator not in a controlled environment. accurate at high angle of attack) Well-suited to pilot behaviour Perfectly representative for observation (human factors) stability & control Adequately-representative for [Also enabled to check simulator most cases representativeness] EASA PROPRIETARY – Do not disclose without EASA consent 6 Additional activities Review of the Safety Recommendations made available through the accident reports, the Joint Authorities Technical Review (JATR) report, the US Department of Transport (DoT) Special Committee report Review of whistleblower reports and similar reports, received directly by the Agency or indirectly (e.g. hearings performed by the US congress) Classification into two categories: → Inclusion in the scope of the additional independent design review if relevant to the BOEING 737 MAX safety → Inclusion in the wider scope of Lessons Learned project EASA PROPRIETARY – Do not disclose without EASA consent 7 Outcome – comparison before/after BEFORE Upon failure of one single Angle-of-Attack (AoA) sensor: The MCAS activates: repeated nose down orders The stick shaker activates on the pilot control columns Multiple alerts are simultaneously displayed in the cockpit However - there is no alert that highlights the AoA failure, which is the root cause The crew procedures are not well adapted to this scenario The pilots do not know about the MCAS, there is no training addressing this problem If the crew does not react appropriately, forces needed to recover manually may be too high EASA PROPRIETARY – Do not disclose without EASA consent 8 Outcome – comparison before/after AFTER Upon failure of one single Angle-of-Attack (AoA) sensor: The MCAS does not activate The stick shaker activates on the pilot control columns, but it can be inhibited by the crew The alert pointing to the AoA failure is displayed, the crew procedure covers this scenario This scenario, and others involving the MCAS, are trained at the simulator The system and its wiring are modified to prevent further erroneous nose down orders The system will automatically stop any rapid nose down order before the forces needed to recover manually are too high EASA PROPRIETARY – Do not disclose without EASA consent 9 Outcome - Summary Design safety Human Factor Design deficiencies have been fixed Crew procedures improved. Design review beyond MCAS led to additional Crew training program revised and design improvements complemented with Full Flight Simulator. Aircraft is stable even without MCAS. One-off return to service training on top of initial/recurrent training. EASA confidence Follow-up EASA confident that the corrections in the design, Further safety improvements (“3rd synthetic AoA) the improvement of the crew procedures and the planned to be developed within the next 2 years, extension of the crew training program will ensure and retrofitted on in service airplanes. a safe return to service of the aircraft. Enhanced continued operational safety monitoring. EASA PROPRIETARY – Do not disclose without EASA consent 10 International cooperation EASA design review was independent but coordinated with the US, Canada and Brazil. Good level of cooperation and support (e.g. organisation of the EASA flight tests in Vancouver) Information sharing and mutual respect Willingness to reach common conditions for return to service as far as possible Conditions for return to service: Design change: identical for all 4 authorities Crew procedures: EASA and Transport Canada allow the crew to inhibit an erroneous stick shaker. EASA impose additional (temporary) operational limitations due to lack of AoA integrity Crew training: identical for all 4 authorities EASA PROPRIETARY – Do not disclose without EASA consent 11 Next steps Operations may resume worldwide end of this year / beginning of next year, also depending on the COVID context Airworthiness & Safety Directives to be released for pubic consultation Coordination with EASA MS Joint Operational Evaluation for lift of airspace restrictions & for crew training assessment Webinar with National Authorities on crew training implementation Final review of Boeing justifications Flight tests on a BOEING 737 MAX in Vancouver EASA PROPRIETARY – Do not disclose without EASA consent 12 … and after Return to Service ALL NEW AIRCRAFT NEXT BOEING MODELS BOEING 737 MAX Cooperation Enhanced with FAA monitoring of “3rd synthetic AoA” operations design enhancement Increased scrutiny & training on critical areas (Flight controls, Certification Crew Alerting System) Regulation, Procedures & Working methods EASA PROPRIETARY – Do not disclose without EASA consent 13 Thank you for your attention easa.europa.eu/connect Your safety is our mission. An Agency of the European Union.
Recommended publications
  • Initial Piloted Simulation Study of Geared Flap R Tilt-Wing V/STOL
    R NASA Technical Memorandum 103872 Initial Piloted Simulation Study of Geared Flap Control r Tilt-Wing V/STOL Aircraft Lourdes M. Guerrero and Lloyd Da Corliss [NASA-TM-103872) INITIAL PILOTED N93-10741 ~~~U~A~~~NSTUDY QF GEARft) FLAP ~Q~~~~~ fOR TILT-WING V/STOL AIRCRAFT (NASA) 39 p Wncfas 63/08 01180?6 October 1991 National Aeronautics and Space Administration NASA Technical Memorandum 103872 Initial Piloted Simulation Study of Geared Flap Control For Tilt-Wing V/STOL Aircraft Lourdes M. Guerrero and Lloyd D Corliss, Ames Research Center, Moffett Field, California October 1991 National Aeronautics and Space Administration Ames Research Center Moffett Field, Califorrlia94035 -1000 SUMMARY A simulation model was developed for piloted evaluations of a representative tilt-wing V/STOL (Vertical/Short Takeoff and Landing) aircraft. Using this model an initial tilt-wing simulation study was conducted in 1990 on the Ames Vertical Motion Simulator In the past, all tilt-wing aircraft have required a horizontal tail rotor or reaction jets to provide pitch control in hover and low speeds. To alleviate this need, devices such as monocyclic propellers and a geared flap have been proposed for providing control at low speed. The geared flap is the sub- ject of this study and it is compared to the conventional flap used in previous tilt-wing aircraft. Objectives of the study were to simulate a tilt-wing V/STOL aircraft, to evaluate and compare the control effectiveness and handling qualities of both a conventional (programmed flap) and the geared flap control configurations, and to determine the feasibility of eliminating the horizontal tail rotor or reaction jets of prior designs through the use of the geared flap control configuration.
    [Show full text]
  • American Eagle Flight 3008 ALPA Submission
    SUBMISSION OF THE AIR LINE PILOTS ASSOCIATION TO THE NATIONAL TRANSPORTATION SAFETY BOARD REGARDING AN INCIDENT INVOLVING AMERICAN EAGLE AIRLINES FLIGHT 3008 Santa Maria, CA January 2, 2006 1 SUMMARY..........................................................................................................................................3 2 HISTORY OF FLIGHT......................................................................................................................3 3 WEATHER ..........................................................................................................................................5 3.1 WEATHER RADAR ........................................................................................................................ 5 3.2 AIRMETS ................................................................................................................................... 5 3.3 CONCLUSION................................................................................................................................5 4 OPERATIONS.....................................................................................................................................5 4.1 DEFERRED DE-ICE TIMER CONTROL SYSTEM .............................................................................. 5 4.2 STALL WARNING SYSTEM............................................................................................................ 6 4.3 STALL RECOVERY TRAINING ......................................................................................................
    [Show full text]
  • Vertical Motion Simulator Experiment on Stall Recovery Guidance
    NASA/TP{2017{219733 Vertical Motion Simulator Experiment on Stall Recovery Guidance Stefan Schuet National Aeronautics and Space Administration Thomas Lombaerts Stinger Ghaffarian Technologies, Inc. Vahram Stepanyan Universities Space Research Association John Kaneshige, Kimberlee Shish, Peter Robinson National Aeronautics and Space Administration Gordon Hardy Retired Research Test Pilot Science Applications International Corporation October 2017 NASA STI Program. in Profile Since its founding, NASA has been dedicated • CONFERENCE PUBLICATION. to the advancement of aeronautics and space Collected papers from scientific and science. The NASA scientific and technical technical conferences, symposia, seminars, information (STI) program plays a key part or other meetings sponsored or in helping NASA maintain this important co-sponsored by NASA. role. • SPECIAL PUBLICATION. Scientific, The NASA STI Program operates under the technical, or historical information from auspices of the Agency Chief Information NASA programs, projects, and missions, Officer. It collects, organizes, provides for often concerned with subjects having archiving, and disseminates NASA's STI. substantial public interest. The NASA STI Program provides access to the NASA Aeronautics and Space Database • TECHNICAL TRANSLATION. English- and its public interface, the NASA Technical language translations of foreign scientific Report Server, thus providing one of the and technical material pertinent to largest collection of aeronautical and space NASA's mission. science STI in the world. Results are Specialized services also include organizing published in both non-NASA channels and and publishing research results, distributing by NASA in the NASA STI Report Series, specialized research announcements and which includes the following report types: feeds, providing information desk and • TECHNICAL PUBLICATION. Reports of personal search support, and enabling data completed research or a major significant exchange services.
    [Show full text]
  • For Improved Airplane Performance
    BLENDED WINGLETS FORFOR IMPROVEDIMPROVED AIRPLANEAIRPLANE PERFORMANCEPERFORMANCE New blended winglets on the Boeing Business Jet and the 737-800 commercial airplane offer operational benefits to customers. Besides giving the airplanes a distinctive appear- ance, the winglets create more efficient flight characteristics in cruise and during takeoff and climbout, which translate into additional range with the same fuel and payload. ROBERT FAYE ROBERT LAPRETE MICHAEL WINTER TECHNICAL DIRECTOR ASSOCIATE TECHNICAL FELLOW PRINCIPAL ENGINEER BOEING BUSINESS JETS AERODYNAMICS TECHNOLOGY STATIC AEROELASTIC LOADS BOEING COMMERCIAL AIRPLANES BOEING COMMERCIAL AIRPLANES BOEING COMMERCIAL AIRPLANES TECHNOLOGY/PRODUCT DEVELOPMENT AERO 16 vertical height of the lifting system (i.e., increasing the length of the TE that sheds the vortices). The winglets increase the spread of the vortices along the TE, creating more lift at the wingtips (figs. 2 and 3). The result is a reduction in induced drag (fig. 4). The maximum benefit of the induced drag reduction depends on the spanwise lift distribution on the wing. Theoretically, for a planar wing, induced drag is opti- mized with an elliptical lift distribution that minimizes the change in vorticity along the span. For the same amount of structural material, nonplanar wingtip 737-800 TECHNICAL CHARACTERISTICS devices can achieve a similar induced drag benefit as a planar span increase; however, new Boeing airplane designs Passengers focus on minimizing induced drag with 3-class configuration Not applicable The 737-800 commercial airplane wingspan influenced by additional 2-class configuration 162 is one of four 737s introduced BBJ TECHNICAL CHARACTERISTICS The Boeing Business Jet design benefits. 1-class configuration 189 in the late 1990s for short- to (BBJ) was launched in 1996 On derivative airplanes, performance Cargo 1,555 ft3 (44 m3) medium-range commercial air- Passengers Not applicable as a joint venture between can be improved by using wingtip Boeing and General Electric.
    [Show full text]
  • [4910-13-P] DEPARTMENT of TRANSPORTATION Federal
    This document is scheduled to be published in the Federal Register on 05/13/2021 and available online at federalregister.gov/d/2021-10015, and on govinfo.gov [4910-13-P] DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 39 [Docket No. FAA-2021-0366; Project Identifier MCAI-2021-00080-T] RIN 2120-AA64 Airworthiness Directives; ATR – GIE Avions de Transport Régional Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: The FAA proposes to supersede Airworthiness Directive (AD) 2020-23-13, which applies to all ATR – GIE Avions de Transport Régional Model ATR42-200, -300, and -320 airplanes. AD 2020-23-13 requires a one-time inspection for discrepancies of the wire bundles between the left- and right-hand angle of attack (AOA) probes and the crew alerting computer, and, depending on findings, applicable corrective actions. Since the FAA issued AD 2020-23-13, a wiring modification for the captain stick shaker has been developed, along with an update to the aircraft flight manual (AFM). This proposed AD would continue to require the actions in AD 2020-23-13. This proposed AD would also require, for certain airplanes, modifying the captain stick shaker wiring, and for all airplanes, revising the existing AFM and applicable corresponding operational procedures to incorporate procedures for the stick pusher/shaker, as specified in a European Union Aviation Safety Agency (EASA), which is proposed for incorporation by reference. The FAA is proposing this AD to address the unsafe condition on these products. DATES: The FAA must receive comments on this proposed AD by [INSERT DATE 45 DAYS AFTER DATE OF PUBLICATION IN THE FEDERAL REGISTER].
    [Show full text]
  • Airplane Icing
    Federal Aviation Administration Airplane Icing Accidents That Shaped Our Safety Regulations Presented to: AE598 UW Aerospace Engineering Colloquium By: Don Stimson, Federal Aviation Administration Topics Icing Basics Certification Requirements Ice Protection Systems Some Icing Generalizations Notable Accidents/Resulting Safety Actions Readings – For More Information AE598 UW Aerospace Engineering Colloquium Federal Aviation 2 March 10, 2014 Administration Icing Basics How does icing occur? Cold object (airplane surface) Supercooled water drops Water drops in a liquid state below the freezing point Most often in stratiform and cumuliform clouds The airplane surface provides a place for the supercooled water drops to crystalize and form ice AE598 UW Aerospace Engineering Colloquium Federal Aviation 3 March 10, 2014 Administration Icing Basics Important Parameters Atmosphere Liquid Water Content and Size of Cloud Drop Size and Distribution Temperature Airplane Collection Efficiency Speed/Configuration/Temperature AE598 UW Aerospace Engineering Colloquium Federal Aviation 4 March 10, 2014 Administration Icing Basics Cloud Characteristics Liquid water content is generally a function of temperature and drop size The colder the cloud, the more ice crystals predominate rather than supercooled water Highest water content near 0º C; below -40º C there is negligible water content Larger drops tend to precipitate out, so liquid water content tends to be greater at smaller drop sizes The average liquid water content decreases with horizontal
    [Show full text]
  • Stall Warnings in High Capacity Aircraft: the Australian Context 2008 to 2012
    Stall warnings in high capacityInsert document aircraft: title The Australian context Location2008 to 2012 | Date ATSB Transport Safety Report InvestigationResearch [InsertAviation Mode] Research Occurrence Report Investigation XX-YYYY-####AR-2012-172 Final – 1 November 2013 Publishing information Published by: Australian Transport Safety Bureau Postal address: PO Box 967, Civic Square ACT 2608 Office: 62 Northbourne Avenue Canberra, Australian Capital Territory 2601 Telephone: 1800 020 616, from overseas +61 2 6257 4150 (24 hours) Accident and incident notification: 1800 011 034 (24 hours) Facsimile: 02 6247 3117, from overseas +61 2 6247 3117 Email: [email protected] Internet: www.atsb.gov.au © Commonwealth of Australia 2013 Ownership of intellectual property rights in this publication Unless otherwise noted, copyright (and any other intellectual property rights, if any) in this publication is owned by the Commonwealth of Australia. Creative Commons licence With the exception of the Coat of Arms, ATSB logo, and photos and graphics in which a third party holds copyright, this publication is licensed under a Creative Commons Attribution 3.0 Australia licence. Creative Commons Attribution 3.0 Australia Licence is a standard form license agreement that allows you to copy, distribute, transmit and adapt this publication provided that you attribute the work. The ATSB’s preference is that you attribute this publication (and any material sourced from it) using the following wording: Source: Australian Transport Safety Bureau Copyright in material obtained from other agencies, private individuals or organisations, belongs to those agencies, individuals or organisations. Where you want to use their material you will need to contact them directly.
    [Show full text]
  • Systems Study for an Integrated Digital/Electric Aircraft (IDEA)
    NASA-CR-3840 19850007405 NASA Contractor Report 3840 t i Systems Study for an Integrated Digital/Electric Aircraft (IDEA) G. E. Tagge, L. A. Irish, and A. R.Bailey CONTRACT NAS1-17528 JANUARY 1985 R [_.._ _ _ _'l _ €__!7 . ','7:2! ' ;: ;; 11) LANGLEY RESEJtRCHCEI",I_ER LIBRARY, NASA H;_4MPTO_JVIRG_N!A, NASA Contractor Report 3840 Systems Study for an Integrated Digital/Electric Aircraft (IDEA) G. E. Tagge, L. A. Irish, and A. R. Bailey Boeing Commercial Airplane Company Seattle, Washington Prepared for Langley Research Center under Contract NAS1-17528 N/ A NationalAeronautics and SpaceAdministration Scientific and Technical IntormatlonBranch 1985 FOREWORD This document constitutes the final report of the Integrated Digital/Electric Aircraft (IDEA)Program,ContractNASI-17528. The major studyobjectiveweres to definethe configurationof an IDEA aircraftd,efine technicalrisksassociatedwith the IDEA systemsconcepts,and identifytheresearchand developmentrequiredto reducetheserisksforpotentialapplicationto transporatircraft intheearly1990s. The NASA TechnicalRepresentativeforthistaskwas Cary R. SF1tzer;the Contracting Officerwas James Y. Taylor,of theLangleyResearchCenter. The work was accompUshed withinthe PreUmlnaryDesign Department of the Boeing Commercial AirplaneCompany. Key personnelwho contrlbutewdere: G. E.Tagge ProgramManager L.A. Irish StudyManager J.D.Vachal AerodynamicsTechnology L.A. Ostrom AerodynamicsTechnology R. H. Johnson PropulslonTeclmology G. G. Redfield PropulsionTechnology A. R. Bailey WeightsTechnology K. E. Siedentopf We_,_htsTechnology D. L.Grande StructuresTechnology C. B. Crumb Electronic FlightControlDesign F.Byford Mechanical FlightControlDesign W. F. Shivttz Flight Systems Technology C. W. Lee Flight Systems Technology P.J.Campbell FUght Systems Technology J. W. Harper Airframe Systems Technology-Electrlcal K. T. Tanemura AirframeSystemsTechnology-ECS E. C. Lim AirframeSystemsTechnology-ECS R. A. Johnson AirframeSystemsTechnology-ECS D. E. Cozby AirframeSystemsTechnology-lcing J.R.
    [Show full text]
  • Summary of the FAA's Review of the Boeing 737
    Summary of the FAA’s Review of the Boeing 737 MAX Summary of the FAA’s Review of the Boeing 737 MAX Return to Service of the Boeing 737 MAX Aircraft Date: November 18, 2020 Summary of the FAA’s Review of the Boeing 737 MAX This page intentionally left blank. 1 Summary of the FAA’s Review of the Boeing 737 MAX Table of Contents Executive Summary ............................................................................................ 5 Introduction .................................................................................................... 5 Post-Accident Actions ....................................................................................... 6 Summary of Changes to Aircraft Design and Operation ........................................ 9 Additional Changes Related to the Flight Control Software Update. ...................... 10 Training Enhancements .................................................................................. 11 Compliance Activity ....................................................................................... 12 System Safety Analysis .................................................................................. 13 Return to Service .......................................................................................... 13 Conclusion .................................................................................................... 14 1. Purpose of Final Summary ........................................................................... 15 2. Introduction ..............................................................................................
    [Show full text]
  • SPECIAL BULLETINS COMMERCIAL AIR TRANSPORT SPORT AVIATION / BALLOONS GENERAL AVIATION CONTENTS ADDENDA and CORRECTIONS
    AAIB Bulletin: 6/2010 CONTENTS SPECIAL BULLETINS None COMMERCIAL AIR TRANSPORT FIXED WING Boeing 747-436 G-CIVB 11-Jul-09 1 Cessna 401 VQ-TLG 24-Jul-09 6 Cessna 421 Golden Eagle N1FY 25-Jan-10 7 DHC-8-402 Dash 8 Q400 G-JEDM 03-Mar-09 10 Embraer ERJ 190-200 LR (Embraer 195) G-FBEH 01-Aug-08 20 SAAB-Scania SF340A G-GNTF 08-Oct-09 33 ROTORCRAFT None GENERAL AVIATION FIXED WING Aviat A-1B Husky G-HSKI 03-Jan-10 34 Avid Flyer C G-IMPY 01-Mar-10 35 Europa XS G-BYFG 29-May-09 36 Falco F8L G-REEC 09-Aug-09 43 Morane Saulnier MS.894A Rallye Minerva G-BKBF 13-Mar-10 44 Siai Marchetti F260C N61FD 21-Mar-10 45 Taylor Monoplane G-BLDB 25-Mar-10 46 ROTORCRAFT None SPORT AVIATION / BALLOONS Flight Design CTSW G-CERA 30-Jun-09 47 Jabiru UL-450 G-BYYT 13-Jun-09 49 Pegasus Quik G-TCNY 11-Apr-10 50 Skyranger Swift 912S(1) G-CEZE 01-Mar-10 51 ADDENDA and CORRECTIONS Airbus A320-231 G-MEDA 31-Mar-03 52 © Crown copyright 2010 i AAIB Bulletin: 6/2010 CONTENTS (Continued) Summary of: Air Accident Report No: 2/2010 54 Report on the accident to Beech 200C Super King Air, VQ-TIU at 1 nm south-east of North Caicos Airport Turks and Caicos Islands, British West Indies on 6 February 2007 Summary of: Air Accident Report No: 3/2010 59 Cessna Citation 500, VP-BGE 2 nm NNE of Biggin Hill Airport on 30 March 2008 List of recent aircraft accident reports issued by the AAIB 62 (ALL TIMES IN THIS BULLETIN ARE UTC) © Crown copyright 2010 ii AAIB Bulletin: 6/2010 G-CIVB EW/C2009/07/09 SERIOUS INCIDENT Aircraft Type and Registration: Boeing 747-436, G-CIVB No & Type of Engines:
    [Show full text]
  • Crash During Experimental Test Flight, Gulfstream Aerospace Corporation GVI (G650), N652GD, Roswell, New Mexico, April 2, 2011
    Crash During Experimental Test Flight Gulfstream Aerospace Corporation GVI (G650), N652GD Roswell, New Mexico April 2, 2011 Accident Report NTSB/AAR-12/02 National PB2012-910402 Transportation Safety Board NTSB/AAR-12/02 PB2012-910402 Notation 8439 Adopted October 10, 2012 Aircraft Accident Report Crash During Experimental Test Flight Gulfstream Aerospace Corporation GVI (G650), N652GD Roswell, New Mexico April 2, 2011 National Transportation Safety Board 490 L’Enfant Plaza, S.W. Washington, DC 20594 National Transportation Safety Board. 2012. Crash During Experimental Test Flight, Gulfstream Aerospace Corporation GVI (G650), N652GD, Roswell, New Mexico, April 2, 2011. Aircraft Accident Report NTSB/AAR-12/02. Washington, DC. Abstract: This report discusses the April 2, 2011, accident involving an experimental Gulfstream Aerospace Corporation GVI (G650), N652GD, which crashed during takeoff from runway 21 at Roswell International Air Center, Roswell, New Mexico. The two pilots and the two flight test engineers were fatally injured, and the airplane was substantially damaged by impact forces and a postcrash fire. Safety issues discussed in this report are the maximum lift coefficient for airplanes in ground effect; flight test standard operating policies and procedures; flight test-specific safety management system guidance; and coordination of high-risk test flights among flight test operators, airport operations, and aircraft rescue and firefighting personnel. Safety recommendations concerning these issues are addressed to the Federal
    [Show full text]
  • Rejected Landing)
    Transportation Safety Board Bureau de la sécurité des transports of Canada du Canada AVIATION OCCURRENCE REPORT A97H0011 LOSS OF CONTROL ON GO-AROUND (REJECTED LANDING) AIR CANADA CANADAIR CL-600-2B19 C-FSKI FREDERICTON AIRPORT, NEW BRUNSWICK 16 DECEMBER 1997 The Transportation Safety Board of Canada (TSB) investigated this occurrence for the purpose of advancing transportation safety. It is not the function of the Board to assign fault or determine civil or criminal liability. Aviation Occurrence Report Loss of Control on Go-around (Rejected Landing) Air Canada Canadair CL-600-2B19 C-FSKI Fredericton Airport, New Brunswick 16 December 1997 Report Number A97H0011 Synopsis Air Canada Flight 646, C-FSKI, departed Toronto-Lester B. Pearson International Airport, Ontario, at 2124 eastern standard time on a scheduled flight to Fredericton, New Brunswick. On arrival, the reported ceiling was 100 feet obscured, the visibility one-eighth of a mile in fog, and the runway visual range 1200 feet. The crew conducted a Category I instrument landing system approach to runway 15 and elected to land. On reaching about 35 feet, the captain assessed that the aircraft was not in a position to land safely and ordered the first officer, who was flying the aircraft, to go around. As the aircraft reached its go-around pitch attitude of about 10 degrees, the aircraft stalled aerodynamically, struck the runway, veered to the right and then travelled—at full power and uncontrolled—about 2100 feet from the first impact point, struck a large tree and came to rest. An evacuation was conducted; however, seven passengers were trapped in the aircraft until rescued.
    [Show full text]