(Panthera Leo Ssp.) Reveals Three Distinct Taxa and a Late Pleistocene Reduction in Genetic Diversity

Total Page:16

File Type:pdf, Size:1020Kb

(Panthera Leo Ssp.) Reveals Three Distinct Taxa and a Late Pleistocene Reduction in Genetic Diversity Molecular Ecology (2009) 18, 1668–1677 doi: 10.1111/j.1365-294X.2009.04134.x PhylogeographyBlackwell Publishing Ltd of lions (Panthera leo ssp.) reveals three distinct taxa and a late Pleistocene reduction in genetic diversity ROSS BARNETT,* BETH SHAPIRO,† IAN BARNES,‡ SIMON Y. W. HO,§ JOACHIM BURGER,¶ NOBUYUKI YAMAGUCHI,** THOMAS F. G. HIGHAM,†† H. TODD WHEELER,‡‡ WILFRIED ROSENDAHL,§§ ANDREI V. SHER,¶¶,‡‡‡‡ MARINA SOTNIKOVA,*** TATIANA KUZNETSOVA,††† GENNADY F. BARYSHNIKOV,‡‡‡ LARRY D. MARTI N,§§§ C. RI CHARD HARI NGTON,¶¶¶ JAMES A. BURNS**** and ALAN COOPER†††† *Department of Zoology, University of Oxford, Oxford OX1 3PS, UK, †Department of Biology, Pennsylvania State University, University Park, PA 16801, USA, ‡Department of Biology, University College London, London WC1E 6BT, UK, §Centre for Macroevolution and Macroecology, School of Botany and Zoology, Australian National University, Canberra, ACT 0200, Australia, ¶Institute of Anthropology, Mainz University, 55099 Mainz, Germany, **Department of Biological and Environmental Sciences, University of Qatar, PO Box 2713, Doha, Qatar, ††Research Laboratory for Archaeology, University of Oxford, Oxford OX1 3QJ, UK, ‡‡George C. Page Museum of La Brea Discoveries, Los Angeles, CA 90036, USA, §§Reiss-Engelhorn-Museen, D-68159 Mannheim, Germany, ¶¶Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia, ***Geological Institute, Russian Academy of Sciences, 119017 Moscow, Russia, †††Palaeontological Department, Geological Faculty, Moscow State University, 119899 Moscow, Russia, ‡‡‡Zoological Institute, Russian Academy of Sciences, 199034 St Petersburg, Russia, §§§Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA, ¶¶¶Canadian Museum of Nature (Palaeobiology), Ottawa, ON, Canada K1P 6P4, ****Quaternary Palaeontology, Royal Alberta Museum, Edmonton, AB, Canada T5N 0M6, ††††School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia Abstract Lions were the most widespread carnivores in the late Pleistocene, ranging from southern Africa to the southern USA, but little is known about the evolutionary relationships among these Pleistocene populations or the dynamics that led to their extinction. Using ancient DNA techniques, we obtained mitochondrial sequences from 52 individuals sampled across the present and former range of lions. Phylogenetic analysis revealed three distinct clusters: (i) modern lions, Panthera leo; (ii) extinct Pleistocene cave lions, which formed a homogeneous population extending from Europe across Beringia (Siberia, Alaska and western Canada); and (iii) extinct American lions, which formed a separate population south of the Pleistocene ice sheets. The American lion appears to have become genetically isolated around 340 000 years ago, despite the apparent lack of significant barriers to gene flow with Beringian populations through much of the late Pleistocene. We found potential evidence of a severe population bottleneck in the cave lion during the previous interstadial, sometime after 48 000 years, adding to evidence from bison, mammoths, horses and brown bears that megafaunal popu- lations underwent major genetic alterations throughout the last interstadial, potentially presaging the processes involved in the subsequent end-Pleistocene mass extinctions. Keywords: American lion, ancient DNA, Beringia, cave lion, extinction, megafauna Received 3 October 2008; revision received 6 January 2009; accepted 15 January 2009 Introduction Correspondence: Ross Barnett, E-mail: [email protected]; Lions currently survive only in parts of Africa and India, Alan Cooper, Australian Centre for Ancient DNA, School of Earth yet as recently as the late Pleistocene (LP), large and and Environmental Sciences, University of Adelaide, Adelaide, morphologically diverse forms of lion were distributed SA 5005, Australia. E-mail: [email protected] ‡‡‡‡Deceased. across the Northern Hemisphere. Lions survived in Europe, © 2009 Blackwell Publishing Ltd PHYLOGEOGRAPHY OF PLEISTOCENE LIONS 1669 Fig. 1 Pleistocene lion distribution and sample origin. Colours correspond to commonly cited population subdivisions (e.g. Baryshnikov & Boeskorov 2001). Numbers refer to particular samples used in this analysis (Table 1). northern Asia, and North America until around 11 000 bp number of distinct species or the extent of overlap of their (Fig. 1), when they disappeared as part of the end-Pleistocene distributions (for a comprehensive overview of the taxonomy megafaunal mass extinctions (Martin & Steadman 1999). of pantherine cats, please refer to Burger et al. 2004). Human hunting and/or environmental alteration, and Morphological identification is complicated by the climate changes associated with the last glacial maximum presence of shared primitive features (e.g. Sotnikova & (LGM; 22 000–18 000 bp) and the end of the Pleistocene have Nikolskiy 2006), although characteristics such as body size variously been implicated (Barnosky et al. 2004). or the presence/absence of a mane in males have been used In eastern Beringia, a Pleistocene landmass consisting of to suggest taxonomic distinctiveness between geographical present-day Alaska and Canada’s Yukon Territory, genetic regions (e.g. Kurtén 1968; Yamaguchi et al. 2004; Sotnikova, and palaeontological data from large mammal populations Nikolskiy 2006). Pleistocene lions in Europe are usually suggest that a key period of change occurred around referred to as spelaea, while North American lions are given 40 000–21 000 bp, in the period before the LGM (Barnes the designation atrox. However, the status of these groups et al. 2002; Guthrie 2003; Shapiro et al. 2004). Due to their as species or subspecies, and their relationships to each worldwide distribution, genetic analyses of Pleistocene other and to extant Panthera remains unclear (e.g. Simpson lions potentially hold key insights into how megafaunal 1941; Kurtén 1985; Harington 1971; Vereshchagin 1971; carnivore populations responded to environmental changes Kurtén & Anderson 1980; Herrington 1986; Groiss 1996; in different regions. Additionally, a better understanding Turner & Antón 1997; Baryshnikov & Boeskorov 2001; Burger of how and when lion populations went extinct is vital for et al. 2004; Sotnikova, Nikolskiy 2006). reconstructing community-level dynamics during the LP, In this study, the first to examine intraspecific diversity which in turn is fundamental for testing hypotheses about in an extinct Pleistocene felid, we investigate the rela- the cause of the end-Pleistocene extinctions. tionships among the putative lion subspecies. This was All Pleistocene and modern lion specimens are assigned carried out by obtaining mitochondrial DNA sequences to the genus Panthera, but there is little consensus as to the from modern and ancient lions. The evolutionary and © 2009 Blackwell Publishing Ltd 1670 R. BARNETT ET AL. demographic history of the sequences is inferred using Bayesian Markov chain Monte Carlo (MCMC) analyses phylogenetic analysis, and the results are interpreted were then performed using beast (Drummond & Rambaut in the context of environmental changes in the late 2007), first for HVR1 and ATP8 data sets separately, and Pleistocene. then for a smaller, combined analysis consisting of only those samples from which both sequence fragments could be amplified and which were associated with finite radio- Materials and methods carbon dates. For all three data sets, comparison of Akaike More than 200 cortical bone samples were obtained from information criterion scores suggested the HKY85 model museum specimens of modern, Pleistocene, and American of nucleotide substitution. Each beast analysis assumed lions (Table S1, Supporting information). Specimens ranged this substitution model as well as a constant population in age from modern to > 62 000 years. To prevent duplicate size and a strict molecular clock calibrated using the age sampling within a site, either the same skeletal element or of the split between the spelaea and leo groups (with a nor- samples associated with widely separated radiocarbon mal prior mean of 550 000 years, standard deviation 25 000 dates were chosen. DNA extraction was performed as years), based on the first appearance of Panthera leo fossilis described in Barnett et al. (2006) in dedicated ancient DNA (Garcia Garcia 2001; Burger et al. 2004). Demographic and (aDNA) facilities at the University of Oxford. Four evolutionary model parameters were then estimated simul- European lions were also extracted and amplified at Mainz taneously along with the phylogeny, with samples drawn University under similarly stringent conditions (Burger from the posterior every 5000 MCMC steps over a total of et al. 2004). One of the cave lions from Mainz (sample 8 in 5 000 000 steps. The first 500 000 steps were discarded as Table 1) was previously analysed for cytochrome b in an burn-in. Acceptable mixing and convergence to stationar- earlier study showing the phylogenetic position of the cave ity were checked using the program Tracer version 1.4 lion among the Panthera cats (Burger et al. 2004). (Rambaut & Drummond 2007). A ~215-bp fragment of the mitochondrial hypervariable region 1 (HVR1) and a 143-bp fragment of ATP8 were Results polymerase chain reaction (PCR) amplified, and cloned, purified, and sequenced following Barnett et al. (2006). DNA was successfully amplified from 38 LP and 14 Strict aDNA protocols were followed, including the use
Recommended publications
  • Horseshoe-Based Bayesian Nonparametric Estimation of Effective Population Size Trajectories
    Received: 13 August 2018 Accepted: 9 July 2019 DOI: 10.1111/biom.13276 BIOMETRIC METHODOLOGY Horseshoe-based Bayesian nonparametric estimation of effective population size trajectories James R. Faulkner1,2 Andrew F. Magee3 Beth Shapiro4,5 Vladimir N. Minin6 1Quantitative Ecology and Resource Abstract Management, University of Washington, Seattle, Washington Phylodynamics is an area of population genetics that uses genetic sequence data to 2Fish Ecology Division, Northwest Fisheries estimate past population dynamics. Modern state-of-the-art Bayesian nonparamet- Science Center, National Marine Fisheries ric methods for recovering population size trajectories of unknown form use either Service, NOAA, Seattle, Washington change-point models or Gaussian process priors. Change-point models suffer from 3Department of Biology, University of Washington, Seattle, Washington computational issues when the number of change-points is unknown and needs to 4Ecology and Evolutionary Biology be estimated. Gaussian process-based methods lack local adaptivity and cannot accu- Department and Genomics Institute, rately recover trajectories that exhibit features such as abrupt changes in trend or vary- University of California Santa Cruz, Santa Cruz, California ing levels of smoothness. We propose a novel, locally adaptive approach to Bayesian 5Howard Hughes Medical Institute, nonparametric phylodynamic inference that has the flexibility to accommodate a University of California Santa Cruz, large class of functional behaviors. Local adaptivity results from modeling the log- Santa Cruz, California transformed effective population size a priori as a horseshoe Markov random field, 6Department of Statistics, University of arecentlyproposedstatisticalmodelthatblendstogetherthebestpropertiesofthe California Irvine, Irvine, California change-point and Gaussian process modeling paradigms. We use simulated data to Correspondence assess model performance, and find that our proposed method results in reduced bias Vladimir N.
    [Show full text]
  • Mizzoualumnus1975novp16-19.Pdf (3.318Mb)
    THE GAUE THAT TRAPPED HISTORY Natural Trap Cave has been collecting bones of unwary animals for at least 13,000 years. Expeditions led by a Mizzou anthropologist are digging up those bones and clues about the cycles of climatic change. Text and Photos by Dave Holman IIi / m ISSOllRI ilLUrnrus The only entrenee to Natural Trap Ceve la the hole In the roof. Any enlmal that might have survived the fallatlll became a victim. Workera at theahe, below, ehherrappellnto theeave or descend theacafloldlng. A herd of small horses stampeded through the tall grass across a plateau near the edge of a canyon, pur­ sued by a large, long-legged cat. The cat closed on the slowest horse, forcing her along the canyon edge onto a peninsula of limestone. The cat sprang, fas­ tened its claws and teeth in the horse's neck, and suddenly, horse and cat disappeared from the face of the earth. Twelve thousand years later, a green panel truck and a dusty jeep bounced along a dirt road over the same plateau, now covered with sage and prickly pear. On the limestone peninsula where the horse and cat disappeared, the vehicles stopped by a 15- foot-wide hole in the rock. Eighty feet below is the floor of Natural Trap Cave. The cave floor is covered with the accumulated dust of centuries, clearly stratified and containing thou­ sands of bones of animals that failed to see the hole. This summer was the second consecutive year that Bob Gilbert, research associate in Mizzou's an­ thropology department had led an organized ex­ pedition to the trap.
    [Show full text]
  • Division Or Research Center Department Faculty Description
    Division or Research Center Include in 2019 Department Faculty Description Sust. Research Reason for excluding (Y/N/M) Anderson's current research incorporates computer technologies to engage questions Y about land use and social interventions into the environment. His recent work, Silicon Monuments - in collaboration with the Silicon Valley Toxics Coalition - uses augmented reality software on hand-held devices to create a site-specific, multimedia documentary about toxic Superfund sites in Silicon Valley. Viewers can explore the sites and interact with the documentary, which reveals hidden environmental damage and its health and social costs. Website link: http://arts.ucsc.edu/faculty/eanderson/ Arts Art Elliott W. Anderson A. Laurie Palmer’s work is concerned with material explorations of matter’s active Y nature as it asserts itself on different scales and in different speeds, and with collaborating on strategic actions in the contexts of social and environmental justice. These two directions sometimes run parallel and sometimes converge, taking form as sculpture, installation, writing, and public projects. Collaboration, with other humans and with non-humans, is a central ethic in her practice. Website link: http: //alauriepalmer.net/ Arts Art Laurie Palmer Contemporary art and visual culture, investigating in particular the diverse ways that Y artists and activists have negotiated crises associated with globalization, including the emerging conjunction of post-9/11 political sovereignty and statelessness, the hauntings of the colonial past, and the growing biopolitical conflicts around ecology and climate change. Most recently Demos is the author of Decolonizing Nature: Contemporary Art and the Politics of Ecology (Sternberg Press, 2016), which investigates how concern for ecological crisis has entered the field of contemporary art and visual culture in recent years, and considers art and visual cultural practices globally.
    [Show full text]
  • A Middle Holocene Steppe Bison and Paleoenvironments from the Versleuce Meadows, Whitehorse, Yukon, Canada Grant D
    1138 ARTICLE A middle Holocene steppe bison and paleoenvironments from the Versleuce Meadows, Whitehorse, Yukon, Canada Grant D. Zazula, Elizabeth Hall, P. Gregory Hare, Christian Thomas, Rolf Mathewes, Catherine La Farge, André L. Martel, Peter D. Heintzman, and Beth Shapiro Abstract: A partial skeleton of a bison was recovered during residential house construction in Whitehorse, Yukon, Canada. The specimen represents a young (estimated 6 year old) bison individual that died, was partially scavenged by carnivores, and subsequently buried by calcareous silt sediment in a pond or small lake during the middle Holocene, ϳ5400 years ago. Palaeoenvironmental data, including molluscs, pollen, vascular plant, and bryophyte macrofossils demonstrate that the small waterbody was surrounded by white spruce dominated boreal forest. Morphometric analysis of the skeleton reveals that its taxonomic affinity is ambiguous, likely owing to it representing an ontogenetically young individual, though it does share some cranial and horn core characteristics of named species such as Bison occidentalis or Bison priscus. Mitochondrial genomic data confirm that this bison belongs to Clade 2A (northern clade), which represents Pleistocene steppe bison (B. cf. priscus) in Beringia through the Holocene and is not represented in living bison species. These data further demonstrate that northern steppe bison population survived the late Pleistocene extinction event, persisted locally in southern Yukon into the Holocene, and are best characterized as a species with a high degree of morphological variability and ecological flexibility. Résumé : Le squelette partiel d’un bison a été récupéré durant la construction d’immeubles résidentiels a` Whitehorse (Yukon, Canada). Le spécimen représente un unique jeune bison (d’âge estimé a` 6 ans) qui est mort, a été partiellement dévoré par des carnivores pour ensuite être enseveli sous du silt calcareux dans un étang ou un petit lac durant l’Holocène moyen, il y a ϳ5400 ans.
    [Show full text]
  • Quaternary Records of the Dire Wolf, Canis Dirus, in North and South America
    Quaternary records of the dire wolf, Canis dirus, in North and South America ROBERT G. DUNDAS Dundas, R. G. 1999 (September): Quaternary records of the dire wolf, Canis dirus, in North and South Ameri- ca. Boreas, Vol. 28, pp. 375–385. Oslo. ISSN 0300-9483. The dire wolf was an important large, late Pleistocene predator in North and South America, well adapted to preying on megaherbivores. Geographically widespread, Canis dirus is reported from 136 localities in North America from Alberta, Canada, southward and from three localities in South America (Muaco, Venezuela; Ta- lara, Peru; and Tarija, Bolivia). The species lived in a variety of environments, from forested mountains to open grasslands and plains ranging in elevation from sea level to 2255 m (7400 feet). Canis dirus is assigned to the Rancholabrean land mammal age of North America and the Lujanian land mammal age of South Amer- ica and was among the many large carnivores and megaherbivores that became extinct in North and South America near the end of the Pleistocene Epoch. Robert G. Dundas, Department of Geology, California State University, Fresno, California 93740-8031, USA. E-mail: [email protected]; received 20th May 1998, accepted 23rd March 1999 Because of the large number of Canis dirus localities Rancho La Brea, comparing them with Canis lupus and and individuals recovered from the fossil record, the dire wolf specimens from other localities. Although dire wolf is the most commonly occurring large knowledge of the animal’s biology had greatly predator in the Pleistocene of North America. By increased by 1912, little was known about its strati- contrast, the species is rare in South America.
    [Show full text]
  • Frequency of Pathology in a Large Natural Sample from Natural Trap
    Reumatismo, 2003; 55(1):58-65 RUBRICA DALLA RICERCA ALLA PRATICA Frequency of pathology in a large natural sample from Natural Trap Cave with special remarks on erosive disease in the Pleistocene La patologia osteoarticolare, con particolare riguardo a quella di tipo erosivo, nel Pleistocene: studio di un campione di reperti paleopatologici provenienti dalla Natural Trap Cave (Wyoming, USA) B.M. Rothschild1, L.D. Martin2 1The Arthritis Center of Northeast Ohio, University of Kansas Museum of Natural History, Carnegie Museum of Natural History, Northeastern Ohio Universities College of Medicine and University of Akron; 2Museum of Natural History and Department of Systematics and Ecology, University of Kansas, Lawrence, Kansas 66045 RIASSUNTO Nel presente studio vengono riportati i rilievi paleopatologici, con particolare riguardo alla presenza di artrite ero- siva, di osteoartrosi, di DISH , nonché ai segni di danno della dentizione, relativi ad un’ampia popolazione di mam- miferi, i cui resti (più di 30.000 ossa di 24 specie diverse) sono stati ritrovati nella Natural Trap Cave, Wyoming, USA. L’evidenza di artrite erosiva è confinata ai bovidi, Bison, Ovis e Bootherium, fatto osservabile anche in bisonti del tardo Pleistocene ritrovati nel Kansas (Twelve Mile Creek) e in un’altra località del Wisconsin, riferibile cronologi- camente al primo Olocene. Questi dati, ovvero la restrizione di tali segni di patologia articolare ad un singolo gene- re animale (Bovidi) e ad un determinato periodo storico, rende plausibile l’ipotesi che un agente patogeno, identifi- cabile col Mycobacterium tubercolosis, possa essere stato implicato nella genesi dell’artrite erosiva. Osteoartrosi e DISH sono risultate poco rappresentate nella popolazione animale della Natural Trap Cave, anche se il genere Bi- son ha dimostrato una discreta prevalenza di segni di osteoartrosi.
    [Show full text]
  • The Holocene
    The Holocene http://hol.sagepub.com The Holocene history of bighorn sheep (Ovis canadensis) in eastern Washington state, northwestern USA R. Lee Lyman The Holocene 2009; 19; 143 DOI: 10.1177/0959683608098958 The online version of this article can be found at: http://hol.sagepub.com/cgi/content/abstract/19/1/143 Published by: http://www.sagepublications.com Additional services and information for The Holocene can be found at: Email Alerts: http://hol.sagepub.com/cgi/alerts Subscriptions: http://hol.sagepub.com/subscriptions Reprints: http://www.sagepub.com/journalsReprints.nav Permissions: http://www.sagepub.co.uk/journalsPermissions.nav Citations http://hol.sagepub.com/cgi/content/refs/19/1/143 Downloaded from http://hol.sagepub.com at University of Missouri-Columbia on January 13, 2009 The Holocene 19,1 (2009) pp. 143–150 The Holocene history of bighorn sheep (Ovis canadensis) in eastern Washington state, northwestern USA R. Lee Lyman* (Department of Anthropology, 107 Swallow Hall, University of Missouri-Columbia, Columbia MO 65211, USA) Received 9 May 2008; revised manuscript accepted 30 June 2008 Abstract: Historical data are incomplete regarding the presence/absence and distribution of bighorn sheep (Ovis canadensis) in eastern Washington State. Palaeozoological (archaeological and palaeontological) data indicate bighorn were present in many areas there during most of the last 10 000 years. Bighorn occupied the xeric shrub-steppe habitats of the Channeled Scablands, likely because the Scablands provided the steep escape terrain bighorn prefer. The relative abundance of bighorn is greatest during climatically dry intervals and low during a moist period. Bighorn remains tend to increase in relative abundance over the last 6000 years.
    [Show full text]
  • SFU Thesis Template Files
    Reconstructing Northern Fur Seal Population Diversity through Ancient and Modern DNA Data by Cara Leanne Halseth B.Sc., University of Northern British Columbia, 2011 Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Arts in the Department of Archaeology Faculty of Environment © Cara Leanne Halseth 2015 SIMON FRASER UNIVERSITY Summer 2015 Approval Name: Cara Leanne Halseth Degree: Master of Arts Title: Reconstructing Northern Fur Seal Population Diversity through Ancient and Modern DNA Data Examining Committee: Chair: Catherine D‟Andrea Professor Dongya Yang Senior Supervisor Professor Deborah C. Merrett Supervisor Adjunct Professor Iain McKechnie External Examiner SSHRC Postdoctoral Fellowship Dept of Anthropology University of Oregon Date Defended/Approved: July 2, 2015 ii Abstract Archaeological and historic evidence suggests that northern fur seal (Callorhinus ursinus) has undergone several population and distribution changes (including commercial sealing) potentially resulting in a loss of genetic diversity and population structure. This study analyzes 36 unpublished mtDNA sequences from archaeological sites 1900-150 BP along the Pacific Northwest Coast from Moss et al. (2006) as well as published data (primarily Pinsky et al. [2010]) to investigate this species‟ genetic diversity and population genetics in the past. The D-loop data shows high nucleotide and haplotype diversity, with continuity of two separate subdivisions (haplogroups) through time. Nucleotide mismatch analysis suggests population expansion in both ancient and modern data. AMOVA analysis (FST and ΦST) reveals some „structure‟ detectable between several archaeological sites. While the data reviewed here did not reveal dramatic patterning, the AMOVA analysis does identify several significant FST values, indicating some level of ancient population „structure‟, which deserves future study.
    [Show full text]
  • Reunion and Symposium the Past, Present, and Future of Ecology at Uga
    SCHEDULE AT A GLANCE Jan. 12-14, 2018 REUNION AND SYMPOSIUM THE PAST, PRESENT, AND FUTURE OF ECOLOGY AT UGA FRIDAY, JAN. 12, 2018 4:00 – 7:00 p.m. “First” Friday Welcoming Reception (Ecology Building/Ecology Tent) The reunion symposium officially begins with a welcome reception featuring food, beverages, music and the opportunity to catch up with friends and classmates. (OK, technically it’s second Friday.) Registration and packet pick-up will be available in the Ecology lobby. Odum School Art Exhibit (Ecology Seminar Room) 5:30 – 6:00 p.m. Ecotones “UGA's ecologically-minded co-ed a cappella group” (Ecology Auditorium) 6:00 p.m. Slideshow of alumni and current & past faculty (Ecology Auditorium) SATURDAY, JAN. 13, 2018 7:30 – 8:30 a.m. Breakfast & Registration (Forestry Auditorium) Coffee and pastries available 8:30 – 10:00 a.m. Session I: Opening Plenary Session (Forestry Auditorium) • Welcome from DEAN JOHN GITTLEMAN • PAMELA WHITTEN | Senior Vice President for Academic Affairs and Provost • PETER RAVEN | President Emeritus of the Missouri Botanical Garden and former Home Secretary of the National Academy of Sciences Ecosystems and the Ecology of Change Plenary Address by Monica Turner, PhD ‘85 MONICA TURNER, a member of the National Academy of Sciences since 2004 and Past President of the Ecological Society of America, is a landscape ecologist who studies the ecosystem effects of fire and other disturbances and the ecological effects of climate and land use change. 10:00 – 10:15 a.m. Coffee Break (Ecology Tent) 10:15 – 11:30 a.m. Session II: Foundational Research and Current Connections: Alumni Perspectives (Forestry) • CHRISTOPHER D’ELIA, PhD ‘74 • WEIXIN CHENG, PhD ‘89 • EVELYN GAISER, PhD ‘97 • CHRISTINA FAUST, B.S./M.S., ‘09 11:30 – 12:00 Ecology and the University of Georgia Jere Morehead, President, University of Georgia p.m.
    [Show full text]
  • A Behemoth Revived
    COMMENT BOOKS & ARTS (Jonathan Cape, 2012) goes for close day-to-day observation, in poems “written at the hive wearing a veil and gloves” that express a wonderfully detailed and subtle appreciation of RIA NOVOSTI/SPL honeybee life: How bees touch and re-align their touch. Light migration; noise of a body in continual repair This is one vital function of art in our lives: it restores our sense of wonder, and so increases our respect for other life forms. Yet writers and artists can also actively contribute new knowledge. One example of this is the work of visual artist Amy Shelton, whose engagement with bees and beekeeping over a number of years led her to set up the Honeyscribe project in 2011. In ancient Egypt, ‘honeyscribes’ recorded the productivity of the hives. Shelton goes further, charting in multi­ media artworks threats to honeybee The 40,000-year-old ‘Lyuba’ is one of the best-preserved woolly mammoths ever found. health and reflections on the species’ behaviour. Her project, she writes, DE-EXTINCTION “emphasizes communication, diver­ sity and collaboration” in our shared environment.­ “The beehive reflects the flora, the temperature and the pes­ A behemoth revived ticides present in the environment within which it is situated, amalgamat­ Henry Nicholls examines a clear appraisal of what it ing these things into one vastly com­ would really take to resurrect extinct species. plicated self-regulating organism” (see www.amyshelton.co.uk/art_works). I was fortunate to collaborate with hazard of studying an extinct has a place in our Shelton on the artist’s book Melis- charismatic species such as the scientific future, but sographia, which sets a series of poems woolly mammoth is that you spend not as an antidote to drawing on Maeterlinck’s study along­ Aa lot of time answering the same question: extinctions that have side embossed, hand-painted pollen “Is it possible to clone it?” For evolutionary already occurred,” maps.
    [Show full text]
  • Small Mammal Faunal Stasis in Natural Trap Cave (Pleistocene– Holocene), Bighorn Mountains, Wyoming
    SMALL MAMMAL FAUNAL STASIS IN NATURAL TRAP CAVE (PLEISTOCENE– HOLOCENE), BIGHORN MOUNTAINS, WYOMING BY C2009 Daniel R. Williams Submitted to the graduate degree program in Ecology and Evolutionary Biology and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. ______________________ Larry D. Martin/Chairperson Committee members* _____________________* Bruce S. Lieberman _____________________* Robert M. Timm _____________________* Bryan L. Foster _____________________* William C. Johnson Date defended: April 21, 2009 ii The Dissertation Committee for Daniel Williams certifies that this is the approved version of the following dissertation: SMALL MAMMAL FAUNAL STASIS IN NATURAL TRAP CAVE (PLEISTOCENE– HOLOCENE), BIGHORN MOUNTAINS, WYOMING Commmittee: ____________________________________ Larry D. Martin/Chairperson* ____________________________________ Bruce S. Lieberman ____________________________________ Robert M. Timm ____________________________________ Bryan L. Foster ____________________________________ William C. Johnson Date approved: April, 29, 2009 iii ABSTRACT Paleocommunity behavior through time is a topic of fierce debate in paleoecology, one with ramifications for the general study of macroevolution. The predominant viewpoint is that communities are ephemeral objects during the Quaternary that easily fall apart, but evidence exists that suggests geography and spatial scale plays a role. Natural Trap Cave is a prime testing ground for observing how paleocommunities react to large-scale climate change. Natural Trap Cave has a continuous faunal record (100 ka–recent) that spans the last glacial cycle, large portions of which are replicated in local rockshelters, which is used here to test for local causes of stasis. The Quaternary fauna of North America is relatively well sampled and dated, so the influence of spatial scale and biogeography on local community change can also be tested for.
    [Show full text]
  • A Middle Holocene Steppe Bison and Paleoenvironments from the Versleuce Meadows, Whitehorse, Yukon, Canada Grant D
    1138 ARTICLE A middle Holocene steppe bison and paleoenvironments from the Versleuce Meadows, Whitehorse, Yukon, Canada Grant D. Zazula, Elizabeth Hall, P. Gregory Hare, Christian Thomas, Rolf Mathewes, Catherine La Farge, André L. Martel, Peter D. Heintzman, and Beth Shapiro Abstract: A partial skeleton of a bison was recovered during residential house construction in Whitehorse, Yukon, Canada. The specimen represents a young (estimated 6 year old) bison individual that died, was partially scavenged by carnivores, and subsequently buried by calcareous silt sediment in a pond or small lake during the middle Holocene, ϳ5400 years ago. Palaeoenvironmental data, including molluscs, pollen, vascular plant, and bryophyte macrofossils demonstrate that the small waterbody was surrounded by white spruce dominated boreal forest. Morphometric analysis of the skeleton reveals that its taxonomic affinity is ambiguous, likely owing to it representing an ontogenetically young individual, though it does share some cranial and horn core characteristics of named species such as Bison occidentalis or Bison priscus. Mitochondrial genomic data confirm that this bison belongs to Clade 2A (northern clade), which represents Pleistocene steppe bison (B. cf. priscus) in Beringia through the Holocene and is not represented in living bison species. These data further demonstrate that northern steppe bison population survived the late Pleistocene extinction event, persisted locally in southern Yukon into the Holocene, and are best characterized as a species with a high degree of morphological variability and ecological flexibility. Résumé : Le squelette partiel d’un bison a été récupéré durant la construction d’immeubles résidentiels a` Whitehorse (Yukon, Canada). Le spécimen représente un unique jeune bison (d’âge estimé a` 6 ans) qui est mort, a été partiellement dévoré par des carnivores pour ensuite être enseveli sous du silt calcareux dans un étang ou un petit lac durant l’Holocène moyen, il y a ϳ5400 ans.
    [Show full text]