Small Mammal Faunal Stasis in Natural Trap Cave (Pleistocene– Holocene), Bighorn Mountains, Wyoming

Total Page:16

File Type:pdf, Size:1020Kb

Small Mammal Faunal Stasis in Natural Trap Cave (Pleistocene– Holocene), Bighorn Mountains, Wyoming SMALL MAMMAL FAUNAL STASIS IN NATURAL TRAP CAVE (PLEISTOCENE– HOLOCENE), BIGHORN MOUNTAINS, WYOMING BY C2009 Daniel R. Williams Submitted to the graduate degree program in Ecology and Evolutionary Biology and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. ______________________ Larry D. Martin/Chairperson Committee members* _____________________* Bruce S. Lieberman _____________________* Robert M. Timm _____________________* Bryan L. Foster _____________________* William C. Johnson Date defended: April 21, 2009 ii The Dissertation Committee for Daniel Williams certifies that this is the approved version of the following dissertation: SMALL MAMMAL FAUNAL STASIS IN NATURAL TRAP CAVE (PLEISTOCENE– HOLOCENE), BIGHORN MOUNTAINS, WYOMING Commmittee: ____________________________________ Larry D. Martin/Chairperson* ____________________________________ Bruce S. Lieberman ____________________________________ Robert M. Timm ____________________________________ Bryan L. Foster ____________________________________ William C. Johnson Date approved: April, 29, 2009 iii ABSTRACT Paleocommunity behavior through time is a topic of fierce debate in paleoecology, one with ramifications for the general study of macroevolution. The predominant viewpoint is that communities are ephemeral objects during the Quaternary that easily fall apart, but evidence exists that suggests geography and spatial scale plays a role. Natural Trap Cave is a prime testing ground for observing how paleocommunities react to large-scale climate change. Natural Trap Cave has a continuous faunal record (100 ka–recent) that spans the last glacial cycle, large portions of which are replicated in local rockshelters, which is used here to test for local causes of stasis. The Quaternary fauna of North America is relatively well sampled and dated, so the influence of spatial scale and biogeography on local community change can also be tested for. Here I use the herbivorous and omnivorous small mammal fauna (<5 kg) of Natural Trap Cave, which are more likely to be members of a local paleocommunity than more mobile large mammals and carnivores. A significant proportion of the fauna is present throughout the record and these are primarily arid and open-habitat adapted, or generalist, taxa that are predicted to find the full-glacial environment of northern Wyoming suitable in any case. An invasion of arctic and alpine tundra taxa occurred during the Last Glacial Maximum, but these were extirpated locally following the deglaciation. The regional ecosystem surrounding Natural Trap Cave also had significant faunal carryover (>50%). The likely cause for the local stasis in Natural Trap Cave is distance from the modern northern and southern edges of the member taxa distributions, a reflection of their broad range of adaptation. North–south oriented mountain barriers preserve the integrity of the regional fauna by allowing habitat-tracking down-elevation. These mountain barriers also limit east–west dispersal from neighboring faunal provinces. iv Acknowledgments I wish to thank L. D. Martin for making the Natural Trap Cave collection available for study, critical input, and manuscript review. S. A. Chomko, B. M. Gilbert, and J. Chorn for answering questions regarding excavation of Natural Trap Cave and the rockshelters, R. M. Timm for KUM collections use and manuscript review, J. Bradley and J. Kenagy of UWBM for specimen loans; B. Lieberman, B. Foster, and W. Johnson for manuscript review, S. Klopfenstein and S. Maher for GIS help, N. Slade for discussions on nonparametric statistics, financial support from the KUNHM/BRC Panorama Grant program, C. Baxter for comments on leporid identification, S. Hasiotis for IchnoBioGeoScience Lab equipment use, and Liz for life support. v TABLE OF CONTENTS ABSTRACT iii ACKNOWLEDGMENTS iv TABLE OF CONTENTS v FIGURES AND TABLES vi CHAPTER 1: INTRODUCTION 1 CHAPTER 2: SYSTEMATIC DESCRIPTION AND ADDITIONS TO THE 19 NATURAL TRAP CAVE SMALL MAMMAL FAUNA CHAPTER 3: SMALL MAMMAL TAPHONOMY OF NATURAL TRAP 61 CAVE CHAPTER 4: TESTING FOR PALEOCOMMUNITY STASIS IN 106 NATURAL TRAP CAVE CHAPTER 5: THE GEOGRAPHIC SCALE OF FAUNAL CHANGE 141 DURINGTHE LAST GLACIAL CYCLE IN THE CENTRAL ROCKY MOUNTAINS SUMMARY OF CONCLUSIONS 161 REFERENCES 163 APPENDICES APPENDIX 1.1. HETEROMYIDAE AND CRICETIDAE 192 APPENDIX 1.2. GEOMYIDAE 218 APPENDIX 1.3. LEPORIDAE 222 APPENDIX 1.4. SCIURIDAE 233 vi FIGURES AND TABLES Figures Figure 1. Topography of the area surrounding Natural Trap Cave (NTC). 8 Figure 2. Plan view of the main floor of Natural Trap Cave and stratigraphic 11 column. Figure 3. Plan view of the main floor of Natural Trap Cave. 13 Figure 4. Occlusal view of p3's referred to Lepus californicus. 30 Figure 5. Histogram of dentary and maxilla occlusal length measurements 32 from Natural Trap Cave Tamias and from three modern Tamias species from NW Wyoming. Figure 6. p4 analysis of Natural Trap Cave Urocitellus. 36 Figure 7. Arvicoline right m1s from Natural Trap Cave. 44 Figure 8. Natural Trap Cave faunal list showing the stratigraphic distribution of 49 small mammals. Figure 9. Relationship of Natural Trap Cave to Bighorn Mountain glaciers of 56 Pinedale age. Figure 10. Mandible fragmentation classification. 69 Figure 11. Regression of log taxon abundance on log median weight 71 for each stratigraphic unit. Figure 12. Rodent, lagomorph, and soricid bone wear and Rodent mandible 73 fragmentation. Figure 13. Proportion per taxon without ascending ramus, Proportion without 75 incisors. Figure 14. Lagomorpha %NISP of select cranial and postcranial elements. 76 Figure 15. Bone distribution within example quadrat, NISP/quadrat within Unit 1. 82 Figure 16. NISP/weight histograms for Natural Trap Cave stratigraphic units. 86 Figure 17. Rarefaction curve for pooled NTC data. 114 vii Figure 18. Taxonomic diversity/sample size comparisons for major taxonomic 115 groups. Figure 19. UPGMA clustering for taxa and localities. 118 Figure 20. GNMDS scaling of Little Mountain samples in three dimensions. 119 Figure 21. Combined Q and R mode clustering for the Little Mountain samples. 120 Figure 22. Modern Little Mountain taxa distributions. 131 Figure 23. Modern mammal provinces for central western North America. 145 Figure 24. Number of samples (X-axis) and taxonomic occurrences (Y-axis) 147 for each time bin. Figure 25. Geographic extent of 35% similar clustered faunas for each time 149 interval. Tables Table 1. Radiocarbon dating chronology for Natural Trap Cave and Hole-in-the-Wall 14 Shelter. Table 2. Comparison of KUVP 123030 with Cynomys leucurus and Cynomys 38 niobrarius. Table 3. Comparison of Natural Trap Cave Perognathus sp. to modern 40 Perognathus fasciatus. Table 4. Comparison of NTC small cricetid with Peromyscus and 41 Reithrodontomys. Table 5. Comparison of the Natural Trap Cave IEG fauna with 51 the closest IEG faunas. Table 6. Leporid prey remains collected from modern coyote scat and a 64 Golden Eagle nest. Table 7. Late Pleistocene–Holocene Natural Trap Cave mammal assemblage. 68 Table 8. Lagomorph fragmentation patterns in the pelvis and selected long bones 76 by stratigraphic unit. Table 9. Common modern predators of NTC rodents and lagomorphs. 89 viii Table 10. Taxonomic list for all Little Mountain Samples. 113 Table 11. Results of repeated Kruskal–Wallis nonparametric tests for spatial 121 and temporal differences among temporally grouped Little Mountain samples. Table 12. Comparison of expected modern taxa and Little Mountain Holocene 127 taxa. Table 13. Number and type of biomes inhabited by Natural Trap Cave taxa. 133 Table 14. Taxa from the first province used in this study organized into 149 age bins. 1 CHAPTER 1 Introduction The nature of communities in neoecology is a long running debate that can be traced to the works of Elton and Gleason (Gleason, 1926; Elton, 1966), which were diametrically opposed on this level: Elton (1966) argued that communities were stable super-organisms held together by interactions between species, whereas Gleason (1926) thought that communities were loose agglomerations of species occupying a single space at any given time. Both models have consequences for paleocommunities, also known as biofacies, in geological time. Communities that perform under the model of Elton (1966) would result in biofacies that are stable in membership through time until being overwhelmed by environmental change. Conversely, biofacies that operates under Gleason’s (1926) model would be expected to change rapidly as species constantly invaded and abandoned a community. The property of community stability has import for the study of evolution in the fossil record as well. Observed cases of paleocommunity stasis correlate with periods of limited speciation and extinction, so stasis may be an explanation for observed cases of punctuated equilibria in many taxa (Lieberman and Dudgeon, 1996). The data used by paleoecologists is often different from the data of neoecology, but has the valuable attribute of long temporal spans. Ecologists can sample organisms from an environment and document interactions among avatars (local economic populations of a taxon) that are members of a community, but only over the course of decades at most. Paleoecologists can only infer interactions between avatars through spatial proximity of remains in a single outcrop, but they can trace change over time scales of millions of years. Paleoecological data has obvious limitation pertinent to
Recommended publications
  • Ecological Distribution of Sagebrush Voles, Lagurus Curtatus, in South-Central Washington Author(S): Thomas P
    American Society of Mammalogists Ecological Distribution of Sagebrush Voles, Lagurus curtatus, in South-Central Washington Author(s): Thomas P. O'Farrell Source: Journal of Mammalogy, Vol. 53, No. 3 (Aug., 1972), pp. 632-636 Published by: American Society of Mammalogists Stable URL: http://www.jstor.org/stable/1379063 . Accessed: 28/08/2013 16:58 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. American Society of Mammalogists is collaborating with JSTOR to digitize, preserve and extend access to Journal of Mammalogy. http://www.jstor.org This content downloaded from 128.193.8.24 on Wed, 28 Aug 2013 16:58:33 PM All use subject to JSTOR Terms and Conditions 632 JOURNAL OF MAMMALOGY Vol. 53, No. 3 curved needle. After perfusion with penicillin G, the second incision was closed. The base of the plug was slipped into the first incision and sutured to the lumbodorsal fascia with 5-0 Mersilene (Ethicon). After perfusion around the plug with penicillin G, the skin was sutured around the narrow neck of the plug and the incision was dusted with antibiotic powder. The bat could be lifted by the plug with no apparent discomfort and no distortion of the skin or damage to the electrodes.
    [Show full text]
  • Mizzoualumnus1975novp16-19.Pdf (3.318Mb)
    THE GAUE THAT TRAPPED HISTORY Natural Trap Cave has been collecting bones of unwary animals for at least 13,000 years. Expeditions led by a Mizzou anthropologist are digging up those bones and clues about the cycles of climatic change. Text and Photos by Dave Holman IIi / m ISSOllRI ilLUrnrus The only entrenee to Natural Trap Ceve la the hole In the roof. Any enlmal that might have survived the fallatlll became a victim. Workera at theahe, below, ehherrappellnto theeave or descend theacafloldlng. A herd of small horses stampeded through the tall grass across a plateau near the edge of a canyon, pur­ sued by a large, long-legged cat. The cat closed on the slowest horse, forcing her along the canyon edge onto a peninsula of limestone. The cat sprang, fas­ tened its claws and teeth in the horse's neck, and suddenly, horse and cat disappeared from the face of the earth. Twelve thousand years later, a green panel truck and a dusty jeep bounced along a dirt road over the same plateau, now covered with sage and prickly pear. On the limestone peninsula where the horse and cat disappeared, the vehicles stopped by a 15- foot-wide hole in the rock. Eighty feet below is the floor of Natural Trap Cave. The cave floor is covered with the accumulated dust of centuries, clearly stratified and containing thou­ sands of bones of animals that failed to see the hole. This summer was the second consecutive year that Bob Gilbert, research associate in Mizzou's an­ thropology department had led an organized ex­ pedition to the trap.
    [Show full text]
  • Lagurus Curtatus
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Mammalogy Papers: University of Nebraska State Museum Museum, University of Nebraska State April 1980 Lagurus curtatus Lynn E. Carroll CARNEGIE MUSEUM OF NATURAL HISTORY, PITTSBURGH, PENNSYLVANIA Hugh H. Genoways University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/museummammalogy Part of the Zoology Commons Carroll, Lynn E. and Genoways, Hugh H., "Lagurus curtatus" (1980). Mammalogy Papers: University of Nebraska State Museum. 90. https://digitalcommons.unl.edu/museummammalogy/90 This Article is brought to you for free and open access by the Museum, University of Nebraska State at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Mammalogy Papers: University of Nebraska State Museum by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. MAMMALIANSPECIES No. 124, pp. 14,sfigs. Lag~lrU~~~I'tatus. By Lynn E. Carroll and Hugh H. Genorays Published 15 April 1980 by The American Society of Mammalogists Lagurus Gloger, 184 1 dian triangks (Fig. 1); cement present in the reentrant angles of molars; antitragus present; ears over one-half the length of the Laguru Gloger, 1841:97. Type species Lagurus migratorius Glo- hind foot; conspicuous dorsal stripe absent. Its pale coloration, ger (=Mu lagurus Pallas). short tail (about the same length as the hind foot), large bullae, Eremiomys Poliakoff, 1881:34. Type species Mu laguru Pallas. and the structure of the m3 distinguish it from other North Amer- Lemmiscus- Thomas, 1912:401.
    [Show full text]
  • Status of Birds of Oak Creek Wildlife Area
    Status of Birds of Oak Creek Wildlife Area Abundance Seasonal Occurance *Species range included in C = Common r= Resident Oak Creek WLA but no U = Uncommon s = Summer Visitor documentation of species R = Rare w= Winter Visitor m=Migrant Common Name Genus Species Status Common Loon* Gavia immer Rw Pied-billed Grebe Podilymbus podiceps Cr Horned Grebe Podiceps auritus Um Eared Grebe Podiceps nigricollis Us Western Grebe Aechmorphorus occidentalis Us Clark's Grebe* Aechmorphorus clarkii Rm Double-crested Cormorant Phalocrorax auritus Um American Bittern* Botaurus lentiginosus Us Great Blue Heron Arden herodias Cr Black-crowned Night-Heron Nycticorax nycticorax Cr Tundra Swan Cygnus columbiaus Rw Trumpeter Swan Cygnus buccinator Am Greater White-fronted Anser albifrons Rm Goose* Snow Goose Chen caerulescens Rw Canada Goose Branta canadensis Cr Green-winged Teal Anas crecca Ur Mallard Anas Platyrynchos Cr Northen Pintail Anas acuta Us Blue-winged Teal Anas discors Rm Cinnamon Teal Anas cyanoptera Us Northern Shoveler Anas clypeata Cr Gadwall* Anas strepere Us Eurasian Wigeon* Anas Penelope Rw American Wigeon Anas Americana Cr Wood Duck Aix sponsa Ur Redhead Aythya americana Uw Canvasback Aythya valisineria Uw Ring-necked Duck Aythya collaris Uw Greater Scaup* Aythya marila Rw Leser Scaup Aythya affinis Uw Common Goldeneye Bucephala clangula Uw Barrow's Goldeneye Bucephala islandica Rw Bufflehead Bucephala albeola Cw Harlequin Duck Histrionicus histrionicus Rs White-winged Scoter Melanitta fusca Rm Hooded Merganser Lophodytes Cucullatus Rw
    [Show full text]
  • Checklist of Rodents and Insectivores of the Mordovia, Russia
    ZooKeys 1004: 129–139 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.1004.57359 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research Checklist of rodents and insectivores of the Mordovia, Russia Alexey V. Andreychev1, Vyacheslav A. Kuznetsov1 1 Department of Zoology, National Research Mordovia State University, Bolshevistskaya Street, 68. 430005, Saransk, Russia Corresponding author: Alexey V. Andreychev ([email protected]) Academic editor: R. López-Antoñanzas | Received 7 August 2020 | Accepted 18 November 2020 | Published 16 December 2020 http://zoobank.org/C127F895-B27D-482E-AD2E-D8E4BDB9F332 Citation: Andreychev AV, Kuznetsov VA (2020) Checklist of rodents and insectivores of the Mordovia, Russia. ZooKeys 1004: 129–139. https://doi.org/10.3897/zookeys.1004.57359 Abstract A list of 40 species is presented of the rodents and insectivores collected during a 15-year period from the Republic of Mordovia. The dataset contains more than 24,000 records of rodent and insectivore species from 23 districts, including Saransk. A major part of the data set was obtained during expedition research and at the biological station. The work is based on the materials of our surveys of rodents and insectivo- rous mammals conducted in Mordovia using both trap lines and pitfall arrays using traditional methods. Keywords Insectivores, Mordovia, rodents, spatial distribution Introduction There is a need to review the species composition of rodents and insectivores in all regions of Russia, and the work by Tovpinets et al. (2020) on the Crimean Peninsula serves as an example of such research. Studies of rodent and insectivore diversity and distribution have a long history, but there are no lists for many regions of Russia of Copyright A.V.
    [Show full text]
  • Quaternary Records of the Dire Wolf, Canis Dirus, in North and South America
    Quaternary records of the dire wolf, Canis dirus, in North and South America ROBERT G. DUNDAS Dundas, R. G. 1999 (September): Quaternary records of the dire wolf, Canis dirus, in North and South Ameri- ca. Boreas, Vol. 28, pp. 375–385. Oslo. ISSN 0300-9483. The dire wolf was an important large, late Pleistocene predator in North and South America, well adapted to preying on megaherbivores. Geographically widespread, Canis dirus is reported from 136 localities in North America from Alberta, Canada, southward and from three localities in South America (Muaco, Venezuela; Ta- lara, Peru; and Tarija, Bolivia). The species lived in a variety of environments, from forested mountains to open grasslands and plains ranging in elevation from sea level to 2255 m (7400 feet). Canis dirus is assigned to the Rancholabrean land mammal age of North America and the Lujanian land mammal age of South Amer- ica and was among the many large carnivores and megaherbivores that became extinct in North and South America near the end of the Pleistocene Epoch. Robert G. Dundas, Department of Geology, California State University, Fresno, California 93740-8031, USA. E-mail: [email protected]; received 20th May 1998, accepted 23rd March 1999 Because of the large number of Canis dirus localities Rancho La Brea, comparing them with Canis lupus and and individuals recovered from the fossil record, the dire wolf specimens from other localities. Although dire wolf is the most commonly occurring large knowledge of the animal’s biology had greatly predator in the Pleistocene of North America. By increased by 1912, little was known about its strati- contrast, the species is rare in South America.
    [Show full text]
  • Frequency of Pathology in a Large Natural Sample from Natural Trap
    Reumatismo, 2003; 55(1):58-65 RUBRICA DALLA RICERCA ALLA PRATICA Frequency of pathology in a large natural sample from Natural Trap Cave with special remarks on erosive disease in the Pleistocene La patologia osteoarticolare, con particolare riguardo a quella di tipo erosivo, nel Pleistocene: studio di un campione di reperti paleopatologici provenienti dalla Natural Trap Cave (Wyoming, USA) B.M. Rothschild1, L.D. Martin2 1The Arthritis Center of Northeast Ohio, University of Kansas Museum of Natural History, Carnegie Museum of Natural History, Northeastern Ohio Universities College of Medicine and University of Akron; 2Museum of Natural History and Department of Systematics and Ecology, University of Kansas, Lawrence, Kansas 66045 RIASSUNTO Nel presente studio vengono riportati i rilievi paleopatologici, con particolare riguardo alla presenza di artrite ero- siva, di osteoartrosi, di DISH , nonché ai segni di danno della dentizione, relativi ad un’ampia popolazione di mam- miferi, i cui resti (più di 30.000 ossa di 24 specie diverse) sono stati ritrovati nella Natural Trap Cave, Wyoming, USA. L’evidenza di artrite erosiva è confinata ai bovidi, Bison, Ovis e Bootherium, fatto osservabile anche in bisonti del tardo Pleistocene ritrovati nel Kansas (Twelve Mile Creek) e in un’altra località del Wisconsin, riferibile cronologi- camente al primo Olocene. Questi dati, ovvero la restrizione di tali segni di patologia articolare ad un singolo gene- re animale (Bovidi) e ad un determinato periodo storico, rende plausibile l’ipotesi che un agente patogeno, identifi- cabile col Mycobacterium tubercolosis, possa essere stato implicato nella genesi dell’artrite erosiva. Osteoartrosi e DISH sono risultate poco rappresentate nella popolazione animale della Natural Trap Cave, anche se il genere Bi- son ha dimostrato una discreta prevalenza di segni di osteoartrosi.
    [Show full text]
  • The Holocene
    The Holocene http://hol.sagepub.com The Holocene history of bighorn sheep (Ovis canadensis) in eastern Washington state, northwestern USA R. Lee Lyman The Holocene 2009; 19; 143 DOI: 10.1177/0959683608098958 The online version of this article can be found at: http://hol.sagepub.com/cgi/content/abstract/19/1/143 Published by: http://www.sagepublications.com Additional services and information for The Holocene can be found at: Email Alerts: http://hol.sagepub.com/cgi/alerts Subscriptions: http://hol.sagepub.com/subscriptions Reprints: http://www.sagepub.com/journalsReprints.nav Permissions: http://www.sagepub.co.uk/journalsPermissions.nav Citations http://hol.sagepub.com/cgi/content/refs/19/1/143 Downloaded from http://hol.sagepub.com at University of Missouri-Columbia on January 13, 2009 The Holocene 19,1 (2009) pp. 143–150 The Holocene history of bighorn sheep (Ovis canadensis) in eastern Washington state, northwestern USA R. Lee Lyman* (Department of Anthropology, 107 Swallow Hall, University of Missouri-Columbia, Columbia MO 65211, USA) Received 9 May 2008; revised manuscript accepted 30 June 2008 Abstract: Historical data are incomplete regarding the presence/absence and distribution of bighorn sheep (Ovis canadensis) in eastern Washington State. Palaeozoological (archaeological and palaeontological) data indicate bighorn were present in many areas there during most of the last 10 000 years. Bighorn occupied the xeric shrub-steppe habitats of the Channeled Scablands, likely because the Scablands provided the steep escape terrain bighorn prefer. The relative abundance of bighorn is greatest during climatically dry intervals and low during a moist period. Bighorn remains tend to increase in relative abundance over the last 6000 years.
    [Show full text]
  • Quaternary Cave Faunas of Canada: a Review of the Vertebrate Remains
    C.R. Harington – Quaternary cave faunas of Canada: a review of the vertebrate remains. Journal of Cave and Karst Studies, v. 73, no. 3, p. 162–180. DOI: 10.4311/jcks2009pa128 QUATERNARY CAVE FAUNAS OF CANADA: A REVIEW OF THE VERTEBRATE REMAINS C.R. HARINGTON Canadian Museum of Nature (Paleobiology), Ottawa K1P 6P4 Canada, [email protected] Abstract: Highlights of ice-age vertebrate faunas from Canadian caves are presented in geographic order (east to west). They include four each from Quebec and Ontario; three from Alberta; one from Yukon; and ten from British Columbia. Localities, vertebrate species represented, radiocarbon ages, and paleoenvironmental evidence are mentioned where available, as well as pertinent references. Of these caves, perhaps Bluefish Caves, Yukon, are most significant, because they contain evidence for the earliest people in North America. Tables provide lists of species and radiocarbon ages from each site. INTRODUCTION Gatineau, have yielded fascinating glimpses of Que´bec’s Quaternary faunas (for summaries see Beaupre´ and Caron, Although some cave faunas from the United States and 1986; and Harington, 2003a; Fig. 1a). Mexico are dealt with in the book Ice Age Cave Faunas of Saint-Elze´ar Cave (48u149200N, 65u219300W), situated North America (Schubert et al., 2003), no Canadian cave on a plateau north of Baie des Chaleurs, has produced faunas are mentioned. To help broaden that perspective, remains of three species of amphibians, one species of highlights of twenty-two Quaternary vertebrate faunas from reptile, four species of birds, and thirty-four species of Canadian caves (Fig. 1) are summarized here, progressing mammals.
    [Show full text]
  • Notes on the Life History of the Sage-Brush Meadow Mouse (Lagurus)
    HALL-LIFE HISTORY OF SAGE~BRUSH MEADOW MOUSE 201 NOTES ON THE LIFE HISTORY OF THE SAGE-BRUSH MEADOW MOUSE (LAGURUS) By E. RAYMOND HALL Downloaded from https://academic.oup.com/jmammal/article/9/3/201/1063848 by guest on 01 October 2021 About sixty years ago Coues (Proc. Acad. Nat. Sci. Philadelphia, 1868, p. 2) and Cooper (Amer. Nat., vol. 2, 1868, p. 535) described, under the generic name Arvicola, two species of voles, curtaius and pauperrimus, respectively. These apparently were the first references in literature to American specimens of Lagurus. Subsequently, three other forms were described: pallidus by Merriam (Amer. Nat., vol. 22, 1888, p. 704), intermedius by Taylor (Univ. California Publ. Zool., vol. 7, 1911, p. 253), and artemisiae by Anthony (Bull. Amer. Mus. Nat. Hist., vol. 32, 1913, p. 14). Although diligently sought after by collectors, relatively few of these mice have been obtained. Also, but little has been recorded concerning their habits. It was, therefore, a matter of more than ordinary interest when numerous colonies of these mice were discovered, in May, 1927, by Miss Annie M. Alexander and Miss Louise Kellogg on the eastern slope of the White Mountains along the California-Nevada boundary. ,At that place, around 8200 feet altitude on Chiatovich Creel{, Esmer­ alda County, Nevada, forty-seven specimens were taken. In the next canyon south, at 9100 feet on Indian Creek, in Mono County, Cali­ fornia, Miss Alexander and Miss Kellogg found additional colonies that had been occupied during the previous winter. The notes of these collectors, those of Mr. Jean Linsdale and the present writer made at the same time and place, and those contained in the field notebooks on file in the California Museum of Vertebrate Zoology relating to a few previous findings of Laqurus, permit of placing on record here the following facts about the habits of these mice and concerning their summer and winter homes.
    [Show full text]
  • Rancholabrean Vertebrates from the Las Vegas Formation, Nevada
    Quaternary International xxx (2017) 1e17 Contents lists available at ScienceDirect Quaternary International journal homepage: www.elsevier.com/locate/quaint The Tule Springs local fauna: Rancholabrean vertebrates from the Las Vegas Formation, Nevada * Eric Scott a, , Kathleen B. Springer b, James C. Sagebiel c a Dr. John D. Cooper Archaeological and Paleontological Center, California State University, Fullerton, CA 92834, USA b U.S. Geological Survey, Denver Federal Center, Box 25046, MS-980, Denver CO 80225, USA c Vertebrate Paleontology Laboratory, University of Texas at Austin R7600, 10100 Burnet Road, Building 6, Austin, TX 78758, USA article info abstract Article history: A middle to late Pleistocene sedimentary sequence in the upper Las Vegas Wash, north of Las Vegas, Received 8 March 2017 Nevada, has yielded the largest open-site Rancholabrean vertebrate fossil assemblage in the southern Received in revised form Great Basin and Mojave Deserts. Recent paleontologic field studies have led to the discovery of hundreds 19 May 2017 of fossil localities and specimens, greatly extending the geographic and temporal footprint of original Accepted 2 June 2017 investigations in the early 1960s. The significance of the deposits and their entombed fossils led to the Available online xxx preservation of 22,650 acres of the upper Las Vegas Wash as Tule Springs Fossil Beds National Monu- ment. These discoveries also warrant designation of the assemblage as a local fauna, named for the site of the original paleontologic studies at Tule Springs. The large mammal component of the Tule Springs local fauna is dominated by remains of Mammuthus columbi as well as Camelops hesternus, along with less common remains of Equus (including E.
    [Show full text]
  • ABSTRACT Comparing the Genetic Diversity of Late Pleistocene Bison
    ABSTRACT Comparing the Genetic Diversity of Late Pleistocene Bison with Modern Bison bison Using Ancient DNA Techniques and the Mitochondrial DNA Control Region Kory C. Douglas Mentors: Robert P. Adams, Ph.D., and Lori E. Baker, Ph.D. The transition between the Pleistocene and Holocene Epochs brought about a mass extinction of many large mammals. The genetic consequences of such widespread extinctions have not been well studied. Using ancient DNA and phylogenetic techniques, the genetic diversity and phylogenetic relatedness of extinct Pleistocene Bison ranging from Siberia to mid-latitude North America (10,000 ybp to 50,000 ybp) were compared to extant Bison bison. The mitochondrial DNA control region was sequenced from 10 Bison priscus skulls obtained from the Kolyma Region of Siberia, Russia. Control region sequences from other Pleistocene Bison species and Bison bison were obtained from Genbank. There is a measurable loss of genetic diversity in Bison bison compared to Pleistocene Bison. Furthermore, the Pleistocene Bison population was strongest in North America from a time period of 30,000 ybp to 10,000 ybp, and the genetic diversity present in this population is not represented in the Bison bison population. Copyright © 2006 Kory C. Douglas All rights reserved TABLE OF CONTENTS List of Figures iv List of Tables v Acknowledgments vi Chapter One: Introduction 1 Ancient DNA 2 Mitochondrial DNA 3 Pleistocene Epoch 5 Mass Extinctions 8 Bison 10 Phylogenetics 11 Research Hypotheses 14 Chapter Two: Materials and Methods 16 Sampling 16
    [Show full text]