Ranella Olearium (Linnaeus, 1758)

Total Page:16

File Type:pdf, Size:1020Kb

Ranella Olearium (Linnaeus, 1758) Ranella olearium (Linnaeus, 1758) AphiaID: 141115 LITTLE FROG TRITON Animalia (Reino) > Mollusca (Filo) > Gastropoda (Classe) > Caenogastropoda (Subclasse) > Littorinimorpha (Ordem) > Tonnoidea (Superfamilia) > Ranellidae (Familia) © Vasco Ferreira Serge Gofas Natural History Museum Rotterdam Sinónimos Argobuccinum (Ranella) giganteum (Lamarck, 1816) Argobuccinum (Ranella) giganteum var. duplonodosum Settepassi, 1970 Argobuccinum (Ranella) giganteum var. nodosum Settepassi, 1970 Argobuccinum (Ranella) giganteum var. rarituberculata Settepassi, 1970 Argobuccinum giganteum (Lamarck, 1816) 1 Argobuccinum giganteum duplonodosum Settepassi, 1970 Argobuccinum giganteum exile Settepassi, 1970 Argobuccinum giganteum inflatum Settepassi, 1970 Argobuccinum giganteum nodosum Settepassi, 1970 Argobuccinum giganteum rarituberculatum Settepassi, 1970 Argobuccinum giganteum var. curvicauda Coen, 1941 Argobuccinum giganteum var. dilatata Coen, 1941 Argobuccinum giganteum var. intusdentata Coen, 1941 Argobuccinum giganteum var. magnifica Coen, 1941 Argobuccinum giganteum var. nodosecarinata Coen, 1941 Argobuccinum giganteum var. oceanica Coen, 1941 Argobuccinum giganteum var. tenuis Coen, 1941 Argobuccinum pertuberculiferum Bellardi in Sacco, 1872 Bursa barcellosi Matthews, Rios & Coelho, 1973 Cymatium olearium (Linnaeus, 1758) Gyrina maculata Schumacher, 1817 Mayena multinodosa Bucknill, 1927 Murex boveus Risso, 1826 Murex olearium Linnaeus, 1758 Murex reticularis Born, 1780 Ranella (Apollon) gigantea Lamarck, 1816 Ranella (Apollon) gigantea var. budensis Noszky, 1940 Ranella (Apollon) gigantea var. rarinodosa Noszky, 1940 Ranella barcellosi Matthews, Rios & Coelho, 1973 Ranella bronni Michelotti, 1847 Ranella gigantea Lamarck, 1816 Ranella gigantea var. atlantica Monterosato, 1890 Ranella gigantea var. pertuberculifera Sacco, 1904 Ranella gigantea var. turritoreticularis Mylius, 1891 Ranella incerta Michelotti, 1847 Ranella miocenica Michelotti, 1847 Ranella olearia (Linnaeus, 1758) Ranella ostenfeldi Iredale, 1937 Ranella reticularis Born, 1780 Ranella reticularis var. altavillensis de Gregorio, 1884 Ranella reticularis var. bicanalata Gregorio, 1884 Ranella reticularis var. borniana Gregorio, 1884 Ranella reticularis var. frigida Gregorio, 1884 Ranella reticularis var. isba de Gregorio, 1885 Ranella reticularis var. mediterranea de Gregorio, 1884 Ranella reticularis var. meneghinii de Gregorio, 1884 Ranella reticularis var. parvivaricata Gregorio, 1884 Triton eogassinense Sacco, 1904 Triton olearium (Linnaeus, 1758) Triton parmense Sismonda, 1842 Triton parmense Sismonda, 1842 2 Referências basis of record Gofas, S.; Le Renard, J.; Bouchet, P. (2001). Mollusca. in: Costello, M.J. et al. (eds), European Register of Marine Species: a check-list of the marine species in Europe and a bibliography of guides to their identification. Patrimoines Naturels. 50: 180-213. [details] additional source Spencer, H.G., Marshall, B.A. & Willan, R.C. (2009). Checklist of New Zealand living Mollusca. Pp 196-219. in: Gordon, D.P. (ed.) New Zealand inventory of biodiversity. Volume one. Kingdom Animalia: Radiata, Lophotrochozoa, Deuterostomia. Canterbury University Press, Christchurch. [details] context source (Deepsea) Intergovernmental Oceanographic Commission (IOC) of UNESCO. The Ocean Biogeographic Information System (OBIS), available online at http://www.iobis.org/ [details] additional source Spencer, H.G., Marshall, B.A. & Willan, R.C. (2009). Checklist of New Zealand living Mollusca. Pp 196-219. in: Gordon, D.P. (ed.) New Zealand inventory of biodiversity. Volume one. Kingdom Animalia: Radiata, Lophotrochozoa, Deuterostomia. Canterbury University Press, Christchurch. [details] additional source Kilburn, R.N. & Rippey, E. (1982) Sea Shells of Southern Africa. Macmillan South Africa, Johannesburg, xi + 249 pp. [details] additional source Steyn, D.G & Lussi, M. (2005). Offshore Shells of Southern Africa: A pictorial guide to more than 750 Gastropods. Published by the authors. Pp. i–vi, 1–289. [details] additional source Landau, B., Harzhauser, M., Beu, A.G. 2009. A Revision of the Tonnoidea (Caenogastropoda, Gastropoda) from the Miocene Paratethys and their Palaeobiogeographic Implications. Jahrbuch der Geologischen Bundesanstalt, 149 (1), 61-109., available online at http://opac.geologie.ac.at/wwwopacx/wwwopac.ashx?command=getcontent&server=images&value=J B1491_061_A.pdf [details] Última atualização: 29 Out. 2018 3.
Recommended publications
  • Diversity of Malacofauna from the Paleru and Moosy Backwaters Of
    Journal of Entomology and Zoology Studies 2017; 5(4): 881-887 E-ISSN: 2320-7078 P-ISSN: 2349-6800 JEZS 2017; 5(4): 881-887 Diversity of Malacofauna from the Paleru and © 2017 JEZS Moosy backwaters of Prakasam district, Received: 22-05-2017 Accepted: 23-06-2017 Andhra Pradesh, India Darwin Ch. Department of Zoology and Aquaculture, Acharya Darwin Ch. and P Padmavathi Nagarjuna University Nagarjuna Nagar, Abstract Andhra Pradesh, India Among the various groups represented in the macrobenthic fauna of the Bay of Bengal at Prakasam P Padmavathi district, Andhra Pradesh, India, molluscs were the dominant group. Molluscs were exploited for Department of Zoology and industrial, edible and ornamental purposes and their extensive use has been reported way back from time Aquaculture, Acharya immemorial. Hence the present study was focused to investigate the diversity of Molluscan fauna along Nagarjuna University the Paleru and Moosy backwaters of Prakasam district during 2016-17 as these backwaters are not so far Nagarjuna Nagar, explored for malacofauna. A total of 23 species of molluscs (16 species of gastropods belonging to 12 Andhra Pradesh, India families and 7 species of bivalves representing 5 families) have been reported in the present study. Among these, gastropods such as Umbonium vestiarium, Telescopium telescopium and Pirenella cingulata, and bivalves like Crassostrea madrasensis and Meretrix meretrix are found to be the most dominant species in these backwaters. Keywords: Malacofauna, diversity, gastropods, bivalves, backwaters 1. Introduction Molluscans are the second largest phylum next to Arthropoda with estimates of 80,000- 100,000 described species [1]. These animals are soft bodied and are extremely diversified in shape and colour.
    [Show full text]
  • Biodiversity of the Kermadec Islands and Offshore Waters of the Kermadec Ridge: Report of a Coastal, Marine Mammal and Deep-Sea Survey (TAN1612)
    Biodiversity of the Kermadec Islands and offshore waters of the Kermadec Ridge: report of a coastal, marine mammal and deep-sea survey (TAN1612) New Zealand Aquatic Environment and Biodiversity Report No. 179 Clark, M.R.; Trnski, T.; Constantine, R.; Aguirre, J.D.; Barker, J.; Betty, E.; Bowden, D.A.; Connell, A.; Duffy, C.; George, S.; Hannam, S.; Liggins, L..; Middleton, C.; Mills, S.; Pallentin, A.; Riekkola, L.; Sampey, A.; Sewell, M.; Spong, K.; Stewart, A.; Stewart, R.; Struthers, C.; van Oosterom, L. ISSN 1179-6480 (online) ISSN 1176-9440 (print) ISBN 978-1-77665-481-9 (online) ISBN 978-1-77665-482-6 (print) January 2017 Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries websites at: http://www.mpi.govt.nz/news-resources/publications.aspx http://fs.fish.govt.nz go to Document library/Research reports © Crown Copyright - Ministry for Primary Industries TABLE OF CONTENTS EXECUTIVE SUMMARY 1 1. INTRODUCTION 3 1.1 Objectives: 3 1.2 Objective 1: Benthic offshore biodiversity 3 1.3 Objective 2: Marine mammal research 4 1.4 Objective 3: Coastal biodiversity and connectivity 5 2. METHODS 5 2.1 Survey area 5 2.2 Survey design 6 Offshore Biodiversity 6 Marine mammal sampling 8 Coastal survey 8 Station recording 8 2.3 Sampling operations 8 Multibeam mapping 8 Photographic transect survey 9 Fish and Invertebrate sampling 9 Plankton sampling 11 Catch processing 11 Environmental sampling 12 Marine mammal sampling 12 Dive sampling operations 12 Outreach 13 3.
    [Show full text]
  • Prof. Henry Ramos Matthews” of the Instituto De Ciências Do Mar, Universidade Federal Do Ceará
    MOLLUCAN TYPES IN THE MALACOLOGICAL COLLECTION “PROF. HENRY RAMOS MATTHEWS” OF THE INSTITUTO DE CIÊNCIAS DO MAR, UNIVERSIDADE FEDERAL DO CEARÁ Arquivos de Ciências do Mar Espécimes-tipos de moluscos da Coleção Malacologica professor “Henry Ramos Matthews” do Instituto de Ciências do Mar, Universidade Federal do Ceará Cristina de Almeida Rocha-Barreira1, Helena Matthews-Cascon2, Luzymeire da Silva Souza1 ABSTRACT The molluscan types incorporated during the last 50 years in the Malacological Collection “Prof. Henry Ramos Matthews” were inventoried and the original descriptions of each species presented. This Collection presents 18 types, representing 11 gastropods species and one scaphopod species: Metula anfractura Matthews & Rios, 1968; Mitra saldanha Matthews & Rios, 1970; Mitra lopesi Matthews & Coelho, 1969; Ancilla faustoi Matthews et al., 1977; Caducifer atlanticus Coelho et al., 1970; Bursa barcellosi Matthews et al., 1973; Bursa pacamoni Matthews & Coelho,1971; Bursa natalensis Coelho & Matthews,1970; Malea noronhensis Kempf & Matthews, 1969; Marginella cloveri Matthews & Rios, 1972; Latirus lacteum Matthews-Cascon et al, 1991; and Dentalium elegantulum Penna- Neme, 1974. Most of the molluscan taxa are from the North and Northeast of Brazil and were described by Dr. Henry Ramos Matthews and his colleagues. Key words: Malacological Collection “Prof. Henry Ramos Matthews’’, name-bearing types, Brazil. RESUMO Os espécimes-tipo de moluscos incorporados ao longo dos últimos 50 anos na Coleção Malacológica “Prof. Henry Ramos Matthews”
    [Show full text]
  • The Marine Fauna of New Zealand: the Molluscan Genera Cymatona and Fusitriton (Gastropoda, Family Cymatiidae)
    ISSN 0083-7903, 65 (Print) ISSN 2538-1016; 65 (Online) The Marine Fauna of New Zealand: The Molluscan Genera Cymatona and Fusitriton (Gastropoda, Family Cymatiidae) by A. G. BEU New Zealand Oceanographic Institute Memoir 65 1978 NEW ZEALAND DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH The Marine Fauna of New Zealand: The Molluscan Genera Cymatona and Fusitriton (Gastropoda, Family Cymatiidae) by A. G. BEU New Zealand Geological Survey, DSIR, Lower Hutt New Zealand Oceanographic Institute Memoir 65 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Citation according to ''World List of Scientific Periodicals" (4th edn.): Mem. N.Z. oceanogr. Inst. 65 Received for publication September 1973 © Crown Copyright 1978 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ CONTENTS Page Abstract . � 5 INTRODUCTION 5 4AXONOMY 10 Family CYMATIIDAE 10 Genus Cymatona 10 Cymatona kampyla 10 Cymatona kampyla kampyla 12 Cymatona kampyla tomlini . 18 Cymatona kampyla jobbernsi 18 Genus Fusitriton 18 Fusitriton cancellatus 22 Fusitriton cancellatus retiolus 22 Fusitriton cance/latus laudandus 23 ECOLOGY . 25 Benthic sampling programme of N.Z. Oceanographic Institute 25 Sampling methods 25 Distribution anomalies 25 Distribution 26 Distribution with depth 26 Distribution with latitude 27 Distribution with sediment type 27 Ecological conclusions 33 Dispersal times and routes of Fusitriton, and their effect on Cymatona 34 Dispersal and distribution 34 Ecological displacement of Cymatona kampyla kampyla 35 ACKNOWLEDGMENTS 36 REFERENCES 36 APPENDIX 1: Station List 38 APPENDIX 2: Dimensions of Cymatona 41 APPENDIX 3: Dimensions of Fusitriton 42 INDEX 44 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.
    [Show full text]
  • Mediterranean Triton Charonia Lampas Lampas (Gastropoda: Caenogastropoda): Report on Captive Breeding
    ISSN: 0001-5113 ACTA ADRIAT., ORIGINAL SCIENTIFIC PAPER AADRAY 57(2): 263 - 272, 2016 Mediterranean triton Charonia lampas lampas (Gastropoda: Caenogastropoda): report on captive breeding Mauro CAVALLARO*1, Enrico NAVARRA2, Annalisa DANZÉ2, Giuseppa DANZÈ2, Daniele MUSCOLINO1 and Filippo GIARRATANA1 1Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy 2Associazione KURMA, via Andria 8, c/o Acquario Comunale di Messina-CESPOM, 98123 Messina, Italy *Corresponding author: [email protected] Two females and a male triton of Charonia lampas lampas (Linnaeus, 1758) were collected from March 2010 to September 2012 in S. Raineri peninsula in Messina, (Sicily, Italy). They were reared in a tank at the Aquarium of Messina. Mussels, starfish, and holothurians were provided as feed for the tritons. Spawning occurred in November 2012, lasted for 15 days, yielding a total number of 500 egg capsules, with approximately 2.0-3.0 x 103 eggs/capsule. The snail did not eat during the month, in which spawned. Spawning behaviour and larval development of the triton was described. Key words: Charonia lampas lampas, Gastropod, triton, veliger, reproduction INTRODUCTION in the Western in the Eastern Mediterranean with probable co-occurrence in Malta (BEU, 1985, The triton Charonia seguenzae (ARADAS & 1987, 2010). BENOIT, 1870), in the past reported as Charonia The Gastropod Charonia lampas lampas variegata (CLENCH AND TURNER, 1957) or Cha- (Linnaeus, 1758) is a large Mediterranean Sea ronia tritonis variegata (BEU, 1970), was recently and Eastern Atlantic carnivorous mollusk from classified as a separate species present only in the Ranellidae family, Tonnoidea superfamily, the Eastern Mediterranean Sea (BEU, 2010).
    [Show full text]
  • Gastropods Diversity in Thondaimanaru Lagoon (Class: Gastropoda), Northern Province, Sri Lanka
    Journal of Geoscience and Environment Protection, 2021, 9, 21-30 https://www.scirp.org/journal/gep ISSN Online: 2327-4344 ISSN Print: 2327-4336 Gastropods Diversity in Thondaimanaru Lagoon (Class: Gastropoda), Northern Province, Sri Lanka Amarasinghe Arachchige Tiruni Nilundika Amarasinghe, Thampoe Eswaramohan, Raji Gnaneswaran Department of Zoology, Faculty of Science, University of Jaffna, Jaffna, Sri Lanka How to cite this paper: Amarasinghe, A. Abstract A. T. N., Eswaramohan, T., & Gnaneswa- ran, R. (2021). Gastropods Diversity in Thondaimanaru lagoon (TL) is one of the three lagoons in the Jaffna Penin- Thondaimanaru Lagoon (Class: Gastropo- sula, Sri Lanka. TL (N-9.819584, E-80.134086), which is 74.5 Km2. Fringing da), Northern Province, Sri Lanka. Journal these lagoons are mangroves, large tidal flats and salt marshes. The present of Geoscience and Environment Protection, 9, 21-30. study is carried out to assess the diversity of gastropods in the northern part https://doi.org/10.4236/gep.2021.93002 of the TL. The sampling of gastropods was performed by using quadrat me- thod from July 2015 to June 2016. Different sites were selected and rainfall Received: January 25, 2020 data, water temperature, salinity of the water and GPS values were collected. Accepted: March 9, 2021 Published: March 12, 2021 Collected gastropod shells were classified using standard taxonomic keys and their morphological as well as morphometrical characteristics were analyzed. Copyright © 2021 by author(s) and A total of 23 individual gastropods were identified from the lagoon which Scientific Research Publishing Inc. belongs to 21 genera of 15 families among them 11 gastropods were identified This work is licensed under the Creative Commons Attribution International up to species level.
    [Show full text]
  • Marine Mollusca of Isotope Stages of the Last 2 Million Years in New Zealand
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/232863216 Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia) Article in Journal- Royal Society of New Zealand · March 2011 DOI: 10.1080/03036758.2011.548763 CITATIONS READS 19 690 1 author: Alan Beu GNS Science 167 PUBLICATIONS 3,645 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Integrating fossils and genetics of living molluscs View project Barnacle Limestones of the Southern Hemisphere View project All content following this page was uploaded by Alan Beu on 18 December 2015. The user has requested enhancement of the downloaded file. This article was downloaded by: [Beu, A. G.] On: 16 March 2011 Access details: Access Details: [subscription number 935027131] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Journal of the Royal Society of New Zealand Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t918982755 Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia) AG Beua a GNS Science, Lower Hutt, New Zealand Online publication date: 16 March 2011 To cite this Article Beu, AG(2011) 'Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia)', Journal of the Royal Society of New Zealand, 41: 1, 1 — 153 To link to this Article: DOI: 10.1080/03036758.2011.548763 URL: http://dx.doi.org/10.1080/03036758.2011.548763 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes.
    [Show full text]
  • Auckland Shell Club Auction Lot List - 24 October 2015 Albany Hall
    Auckland Shell Club Auction Lot List - 24 October 2015 Albany Hall. Setup from 9am. Viewing from 10am. Auction starts at noon. Lot Type Reserve 1 WW Many SMALL CYPRAEIDAE including the rare Rosaria caputdraconis from Easter Is. Mauritian scurra from Somalia, Cypraea eburnea white from from, New Caledonia, Cypraea chinensis from Solomon Is Lyncina sulcidentata from Hawaii and heaps more. 2 WW Many CONIDAE including rare Conus queenslandis (not perfect!) Conus teramachii, beautiful Conus trigonis, Conus ammiralis, all from Australia, Conus aulicus, Conus circumcisus, Conus gubernator, Conus generalis, Conus bullatus, Conus distans, and many more. 3 WW BIVALVES: Many specials including Large Pearl Oyster Pinctada margaritifera, Chlamys sowerbyi, Glycymeris gigantea, Macrocallista nimbosa, Pecten glaber, Amusiium pleuronectes, Pecten pullium, Zygochlamys delicatula, and heaps more. 4 WW VOLUTIDAE: Rare Teramachia johnsoni, Rare Cymbiolacca thatcheri, Livonia roadnightae, Zidona dufresnei, Lyria kurodai, Cymbiola rutila, Cymbium olia, Pulchra woolacottae, Cymbiola pulchra peristicta, Athleta studeri, Amoria undulata, Cymbiola nivosa. 5 WW MIXTURE Rare Campanile symbolium, Livonia roadnightae, Chlamys australis, Distorsio anus, Bulluta bullata, Penion maximus, Matra incompta, Conus imperialis, Ancilla glabrata, Strombus aurisdianae, Fusinus brasiliensis, Columbarium harrisae, Mauritia mauritana, and heaps and heaps more! 6 WW CYPRAEIDAE: 12 stunning shells including Trona stercoraria, Cypraea cervus, Makuritia eglantrine f. grisouridens, Cypraea
    [Show full text]
  • Comparative Analysis of Chromosome Counts Infers Three Paleopolyploidies in the Mollusca
    GBE Comparative Analysis of Chromosome Counts Infers Three Paleopolyploidies in the Mollusca Nathaniel M. Hallinan* and David R. Lindberg Department of Integrative Biology, University of California Berkeley *Corresponding author: E-mail: [email protected]. Accepted: 8 August 2011 Abstract The study of paleopolyploidies requires the comparison of multiple whole genome sequences. If the branches of a phylogeny on which a whole-genome duplication (WGD) occurred could be identified before genome sequencing, taxa could be selected that provided a better assessment of that genome duplication. Here, we describe a likelihood model in which the number of chromosomes in a genome evolves according to a Markov process with one rate of chromosome duplication and loss that is proportional to the number of chromosomes in the genome and another stochastic rate at which every chromosome in the genome could duplicate in a single event. We compare the maximum likelihoods of a model in which the genome duplication rate varies to one in which it is fixed at zero using the Akaike information criterion, to determine if a model with WGDs is a good fit for the data. Once it has been determined that the data does fit the WGD model, we infer the phylogenetic position of paleopolyploidies by calculating the posterior probability that a WGD occurred on each branch of the taxon tree. Here, we apply this model to a molluscan tree represented by 124 taxa and infer three putative WGD events. In the Gastropoda, we identify a single branch within the Hypsogastropoda and one of two branches at the base of the Stylommatophora.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • General Fisheries Commission for the Mediterranean Commission Générale Des Pêches Pour La Méditerranée
    GFCM:SAC13/2011/Inf.5 December 2010 GENERAL FISHERIES COMMISSION FOR THE MEDITERRANEAN COMMISSION GÉNÉRALE DES PÊCHES POUR LA MÉDITERRANÉE GENERAL FISHERIES COMMISSION FOR THE MEDITERRANEAN SCIENTIFIC ADVISORY COMMITTEE (SAC) Thirteenth Session Marseille, France, 7-11 February 2011 DRAFT REPORT OF THE 11 th SESSION OF THE SUB-COMMITTEE ON MARINE ENVIRONMENT AND ECOSYSTEMS (SCMEE) Saint George’s Bay Malta, 29 November-2 December 2010 (Draft) * Available only in English OPENING, ARRANGEMENT OF THE SUB-COMMITTEE MEETINGS 1. The Sub-Committee meetings of the Scientific Advisory Committee (SAC/GFCM), including the Transversal Session, were held at the San George’s Hotel, St George´s Bay, Malta from 29th November to 2nd December 2010. 2. During the general opening, Dr Anthony Gruppeta, Director General of the Maltese Agriculture and Fisheries Regulations Department of the Ministry for Resources and Rural Affairs, welcomed the participants and thanked them for attending this series of meetings. He highlighted Malta’s commitment and contribution to the functioning of the General Fisheries Commission for the Mediterranean (GFCM) which has clearly been demonstrated throughout the years, not only through the hosting of various meetings, but also through its active participation in activities of its subsidiary bodies. He added that Malta is following closely the developments in fisheries management in the Mediterranean through the GFCM and referred to important Recommendations related to management measures ( e.g. trawl minimum mesh size, closed seasons, Fisheries Restricted Areas, reduction in fishing effort), Monitoring Control Surveillance (MCS) (e.g. Vessel Monitoring System (VMS), Authorised Vessels List, logbook, Port State Measures) and data collection schemes ( e.g.
    [Show full text]
  • Gastropoda) Living in Deep-Water Coral Habitats in the North-Eastern Atlantic
    Zootaxa 4613 (1): 093–110 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2019 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4613.1.4 http://zoobank.org/urn:lsid:zoobank.org:pub:6F2B312F-9D78-4877-9365-0D2DB60262F8 Last snails standing since the Early Pleistocene, a tale of Calliostomatidae (Gastropoda) living in deep-water coral habitats in the north-eastern Atlantic LEON HOFFMAN1,4, LYDIA BEUCK1, BART VAN HEUGTEN1, MARC LAVALEYE2 & ANDRÉ FREIWALD1,3 1Marine Research Department, Senckenberg am Meer, Südstrand 40, Wilhelmshaven, Germany 2NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, Texel, Netherlands 3MARUM, Bremen University, Leobener Strasse 8, Bremen, Germany 4Corresponding author. E-mail: [email protected] Abstract Three species in the gastropod genus Calliostoma are confirmed as living in Deep-Water Coral (DWC) habitats in the NE Atlantic Ocean: Calliostoma bullatum (Philippi, 1844), C. maurolici (Seguenza, 1876) and C. leptophyma Dautzenberg & Fischer, 1896. Up to now, C. bullatum was only known as fossil from Early to Mid-Pleistocene outcrops in DWC-related habitats in southern Italy; our study confirmed its living presence in DWC off Mauritania. A discussion is provided on the distribution of DWC-related calliostomatids in the NE Atlantic and the Mediterranean Sea from the Pleistocene to the present. Key words: Mollusca, Calliostoma, deep-water coral associations, NE Atlantic Ocean, Mediterranean Sea, systematics Introduction The Senckenberg Institute and the Royal Netherlands Institute for Sea Research (NIOZ) investigate the geophysi- cal, geological and biological characteristics of scleractinian-dominated Deep-Water Coral (DWC) habitats in the world.
    [Show full text]