(SYNJ2) (NM 003898) Human Recombinant Protein Product Data

Total Page:16

File Type:pdf, Size:1020Kb

(SYNJ2) (NM 003898) Human Recombinant Protein Product Data OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TP315160 Synaptojanin 2 (SYNJ2) (NM_003898) Human Recombinant Protein Product data: Product Type: Recombinant Proteins Description: Recombinant protein of human synaptojanin 2 (SYNJ2) Species: Human Expression Host: HEK293T Tag: C-Myc/DDK Predicted MW: 165.4 kDa Concentration: >50 ug/mL as determined by microplate BCA method Purity: > 80% as determined by SDS-PAGE and Coomassie blue staining Buffer: 25 mM Tris.HCl, pH 7.3, 100 mM glycine, 10% glycerol Preparation: Recombinant protein was captured through anti-DDK affinity column followed by conventional chromatography steps. Storage: Store at -80°C. Stability: Stable for 12 months from the date of receipt of the product under proper storage and handling conditions. Avoid repeated freeze-thaw cycles. RefSeq: NP_003889 Locus ID: 8871 UniProt ID: O15056, B4DG94 RefSeq Size: 6738 Cytogenetics: 6q25.3 RefSeq ORF: 4488 Synonyms: INPP5H Summary: The gene is a member of the inositol-polyphosphate 5-phosphatase family. The encoded protein interacts with the ras-related C3 botulinum toxin substrate 1, which causes translocation of the encoded protein to the plasma membrane where it inhibits clathrin- mediated endocytosis. Alternative splicing results in multiple transcript variants. [provided by RefSeq, May 2010] Protein Families: Druggable Genome, Phosphatase This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 Synaptojanin 2 (SYNJ2) (NM_003898) Human Recombinant Protein – TP315160 Protein Pathways: Inositol phosphate metabolism, Metabolic pathways, Phosphatidylinositol signaling system Product images: Coomassie blue staining of purified SYNJ2 protein (Cat# TP315160). The protein was produced from HEK293T cells transfected with SYNJ2 cDNA clone (Cat# [RC215160]) using MegaTran 2.0 (Cat# [TT210002]). This product is to be used for laboratory only. Not for diagnostic or therapeutic use. ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 2 / 2.
Recommended publications
  • Phosphorylation of Synaptojanin Differentially Regulates Endocytosis of Functionally Distinct Synaptic Vesicle Pools
    8882 • The Journal of Neuroscience, August 24, 2016 • 36(34):8882–8894 Cellular/Molecular Phosphorylation of Synaptojanin Differentially Regulates Endocytosis of Functionally Distinct Synaptic Vesicle Pools X Junhua Geng,1* Liping Wang,1,2* Joo Yeun Lee,1,4 XChun-Kan Chen,1 and Karen T. Chang1,3,4 1Zilkha Neurogenetic Institute, 2Department of Biochemistry and Molecular Biology, and 3Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, and 4Neuroscience Graduate Program, University of Southern California, Los Angeles, California 90089 The rapid replenishment of synaptic vesicles through endocytosis is crucial for sustaining synaptic transmission during intense neuronal activity. Synaptojanin (Synj), a phosphoinositide phosphatase, is known to play an important role in vesicle recycling by promoting the uncoating of clathrin following synaptic vesicle uptake. Synj has been shown to be a substrate of the minibrain (Mnb) kinase, a fly homolog of the dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A); however, the functional impacts of Synj phosphorylation by Mnb are not well understood. Here we identify that Mnb phosphorylates Synj at S1029 in Drosophila. We find that phosphorylation of Synj at S1029 enhances Synj phosphatase activity, alters interaction between Synj and endophilin, and promotes efficient endocytosis of the active cycling vesicle pool (also referred to as exo-endo cycling pool) at the expense of reserve pool vesicle endocytosis. Dephosphorylated Synj, on the other hand, is deficient in the endocytosis of the active recycling pool vesicles but maintains reserve pool vesicle endocytosis to restore total vesicle pool size and sustain synaptic transmission. Together, our findings reveal a novel role for Synj in modulating reserve pool vesicle endocytosis and further indicate that dynamic phosphorylation and dephosphorylation of Synj differentially maintain endocytosis of distinct functional synaptic vesicle pools.
    [Show full text]
  • SYNJ2 Antibody (Monoclonal) (M02) Mouse Monoclonal Antibody Raised Against a Partial Recombinant SYNJ2
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 SYNJ2 Antibody (monoclonal) (M02) Mouse monoclonal antibody raised against a partial recombinant SYNJ2. Catalog # AT4124a Specification SYNJ2 Antibody (monoclonal) (M02) - Product Information Application WB Primary Accession O15056 Other Accession NM_003898 Reactivity Human Host mouse Clonality Monoclonal Isotype IgG2a Kappa Calculated MW 165538 SYNJ2 Antibody (monoclonal) (M02) - Additional Information Antibody Reactive Against Recombinant Protein.Western Blot detection against Gene ID 8871 Immunogen (36.74 KDa) . Other Names Synaptojanin-2, Synaptic inositol 1, 5-trisphosphate 5-phosphatase 2, SYNJ2, KIAA0348 Target/Specificity SYNJ2 (NP_003889, 1396 a.a. ~ 1495 a.a) partial recombinant protein with GST tag. MW of the GST tag alone is 26 KDa. Dilution WB~~1:500~1000 Format Clear, colorless solution in phosphate buffered saline, pH 7.2 . Western Blot analysis of SYNJ2 expression in transfected 293T cell line by SYNJ2 Storage monoclonal antibody (M02), clone 2H8. Store at -20°C or lower. Aliquot to avoid repeated freezing and thawing. Lane 1: SYNJ2 transfected lysate(92.2 KDa). Lane 2: Non-transfected lysate. Precautions SYNJ2 Antibody (monoclonal) (M02) is for research use only and not for use in diagnostic or therapeutic procedures. SYNJ2 Antibody (monoclonal) (M02) - Protocols Page 1/3 10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 Provided below are standard protocols that you may find useful for product applications. • Western Blot • Blocking Peptides • Dot Blot • Immunohistochemistry • Immunofluorescence • Immunoprecipitation • Flow Cytomety • Cell Culture Western blot analysis of SYNJ2 over-expressed 293 cell line, cotransfected with SYNJ2 Validated Chimera RNAi ( (Cat # AT4124a ) SYNJ2 Antibody (monoclonal) (M02) - Background The gene is a member of the inositol-polyphosphate 5-phosphatase family.
    [Show full text]
  • Conserved and Novel Properties of Clathrin-Mediated Endocytosis in Dictyostelium Discoideum" (2012)
    Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2012 Conserved and Novel Properties of Clathrin- Mediated Endocytosis in Dictyostelium Discoideum Laura Macro Follow this and additional works at: http://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons Recommended Citation Macro, Laura, "Conserved and Novel Properties of Clathrin-Mediated Endocytosis in Dictyostelium Discoideum" (2012). Student Theses and Dissertations. Paper 163. This Thesis is brought to you for free and open access by Digital Commons @ RU. It has been accepted for inclusion in Student Theses and Dissertations by an authorized administrator of Digital Commons @ RU. For more information, please contact [email protected]. CONSERVED AND NOVEL PROPERTIES OF CLATHRIN- MEDIATED ENDOCYTOSIS IN DICTYOSTELIUM DISCOIDEUM A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Laura Macro June 2012 © Copyright by Laura Macro 2012 CONSERVED AND NOVEL PROPERTIES OF CLATHRIN- MEDIATED ENDOCYTOSIS IN DICTYOSTELIUM DISCOIDEUM Laura Macro, Ph.D. The Rockefeller University 2012 The protein clathrin mediates one of the major pathways of endocytosis from the extracellular milieu and plasma membrane. Clathrin functions with a network of interacting accessory proteins, one of which is the adaptor complex AP-2, to co-ordinate vesicle formation. Disruption of genes involved in clathrin-mediated endocytosis causes embryonic lethality in multicellular animals suggesting that clathrin-mediated endocytosis is a fundamental cellular process. However, loss of clathrin-mediated endocytosis genes in single cell eukaryotes, such as S.cerevisiae (yeast), does not cause lethality, suggesting that clathrin may convey specific advantages for multicellularity.
    [Show full text]
  • A Locus for Sacral/Anorectal Malformations Maps to 6Q25.3 in a 0.3 Mb Interval Region
    European Journal of Human Genetics (2006) 14, 971–974 & 2006 Nature Publishing Group All rights reserved 1018-4813/06 $30.00 www.nature.com/ejhg SHORT REPORT A locus for sacral/anorectal malformations maps to 6q25.3 in a 0.3 Mb interval region Luigi Titomanlio1,2, Irina Giurgea3, Clarisse Baumann2, Monique Elmaleh4, Philippe Sachs1, Franc¸ois Chalard4, Azzedine Aboura5 and Alain Verloes*,2,6 1Department of Child Neurology, AP-HP Robert Debre´ Hospital, Paris, France; 2Clinical Genetics Unit, AP-HP Robert Debre´ Hospital, Paris, France; 3Department of Genetics and Biochemistry, INSERM U654, AP-HP Henri Mondor Hospital, Cre´teil, France; 4Medical Imaging Department, AP-HP Robert Debre´ Hospital, Paris, France; 5Cytogenetics Unit, AP-HP Robert Debre´ Hospital, Paris, France; 6INSERM U676, AP-HP Robert Debre´ Hospital, Paris, France Partial absence of the sacrum is a rare congenital defect that also occurs as an autosomal-dominant trait, whereas imperforate/ectopic anus is a relatively common malformation, usually observed in multiple congenital anomalies syndromes. We report on a girl born to healthy consanguineous parents (first cousins once removed) with anal imperforation and associated rectovaginal fistula and partial sacral agenesis. Facial dysmorphism included a high forehead, epicanthic folds, downslanting palpebral fissures, hypertelorism and a depressed nasal root. Brain MRI showed a bilateral opercular dysplasia with a unilateral (right) pachygyria; MRI and X-ray imaging of the spine disclosed a tethered cord associated with partial sacral agenesis. She showed a moderate developmental delay. Ophthalmologic examination evidenced bilateral microphthalmos and relative microcornea. Cytogenetic studies in our patient disclosed a pure de novo 6q25.3-qter deletion.
    [Show full text]
  • Identification of Differentially Expressed Genes Between Primary Lung Cancer and Lymph Node Metastasis Via Bioinformatic Analysis
    3754 ONCOLOGY LETTERS 18: 3754-3768, 2019 Identification of differentially expressed genes between primary lung cancer and lymph node metastasis via bioinformatic analysis NAN ZHANG and SHAO-WEI ZHANG Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China Received January 10, 2019; Accepted July 12, 2019 DOI: 10.3892/ol.2019.10723 Abstract. Lung cancer (LC), with its high morbidity and cBioPortal. A total of 308 DEGs were identified in the two mortality rates, is one of the most widespread and malignant microarray datasets, which were mainly enriched during neoplasms. Mediastinal lymph node metastasis (MLNM) cellular processes, including the Gene Ontology terms ‘cell’, severely affects postoperative survival of patients with LC. ‘catalytic activity’, ‘molecular function regulator’, ‘signal trans- Additionally, the molecular mechanisms of LC with MLNM ducer activity’ and ‘binding’. The PPI network was composed (MM LC) remain not well understood. To identify the key of 315 edges and 167 nodes. Its significant module had 11 hub biomarkers in its carcinogenesis and development, the data- genes, and high expression of actin β, MYC, arginine vaso- sets GSE23822 and GSE13213 were obtained from the Gene pressin, vesicle associated membrane protein 2 and integrin Expression Omnibus database. The differentially expressed subunit β1, and low expression of NOTCH1, synaptojanin 2 genes (DEGs) were identified, and the Database for Annotation, and intersectin 2 were significantly associated with poor OS. Visualization and Integrated Discovery was used to perform In summary, hub genes and DEGs presented in the present functional annotations of DEGs. Search Tool for the Retrieval study may help identify underlying targets for diagnostic and of Interacting Genes and Cytoscape were utilized to obtain the therapeutic methods for MM LC.
    [Show full text]
  • Integrating Protein Copy Numbers with Interaction Networks to Quantify Stoichiometry in Mammalian Endocytosis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.29.361196; this version posted October 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Integrating protein copy numbers with interaction networks to quantify stoichiometry in mammalian endocytosis Daisy Duan1, Meretta Hanson1, David O. Holland2, Margaret E Johnson1* 1TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218. 2NIH, Bethesda, MD, 20892. *Corresponding Author: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.10.29.361196; this version posted October 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Abstract Proteins that drive processes like clathrin-mediated endocytosis (CME) are expressed at various copy numbers within a cell, from hundreds (e.g. auxilin) to millions (e.g. clathrin). Between cell types with identical genomes, copy numbers further vary significantly both in absolute and relative abundance. These variations contain essential information about each protein’s function, but how significant are these variations and how can they be quantified to infer useful functional behavior? Here, we address this by quantifying the stoichiometry of proteins involved in the CME network. We find robust trends across three cell types in proteins that are sub- vs super-stoichiometric in terms of protein function, network topology (e.g.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • HHS Public Access Author Manuscript
    HHS Public Access Author manuscript Author Manuscript Author ManuscriptBreast Cancer Author Manuscript Res Treat Author Manuscript . Author manuscript; available in PMC 2016 June 01. Published in final edited form as: Breast Cancer Res Treat. 2015 June ; 151(2): 453–463. doi:10.1007/s10549-015-3401-8. Body mass index associated with genome-wide methylation in breast tissue Brionna Y. Hair1, Zongli Xu2, Erin L. Kirk1, Sophia Harlid2, Rupninder Sandhu3, Whitney R. Robinson1,3, Michael C. Wu4, Andrew F. Olshan1, Kathleen Conway1,3, Jack A. Taylor2, and Melissa A. Troester1 1 Department of Epidemiology, University of North Carolina at Chapel Hill, CB #7435, 2101 McGavran-Greenberg Hall, Chapel Hill, NC 27599-7435, USA 2 Epidemiology Branch, and Epigenomics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences (NIH), Research Triangle Park, NC, USA 3 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 4 Fred Hutchinson Cancer Research Center, Seattle, WA, USA Abstract Gene expression studies indicate that body mass index (BMI) is associated with molecular pathways involved in inflammation, insulin-like growth factor activation, and other carcinogenic processes in breast tissue. The goal of this study was to determine whether BMI is associated with gene methylation in breast tissue and to identify pathways that are commonly methylated in association with high BMI. Epigenome-wide methylation profiles were determined using the Illumina HumanMethylation450 BeadChip array in the non-diseased breast tissue of 81 women undergoing breast surgery between 2009 and 2013 at the University of North Carolina Hospitals. Multivariable, robust linear regression was performed to identify methylation sites associated with BMI at a false discovery rate q value <0.05.
    [Show full text]
  • Nº Ref Uniprot Proteína Péptidos Identificados Por MS/MS 1 P01024
    Document downloaded from http://www.elsevier.es, day 26/09/2021. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. Nº Ref Uniprot Proteína Péptidos identificados 1 P01024 CO3_HUMAN Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 por 162MS/MS 2 P02751 FINC_HUMAN Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=4 131 3 P01023 A2MG_HUMAN Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=3 128 4 P0C0L4 CO4A_HUMAN Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV=1 95 5 P04275 VWF_HUMAN von Willebrand factor OS=Homo sapiens GN=VWF PE=1 SV=4 81 6 P02675 FIBB_HUMAN Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 78 7 P01031 CO5_HUMAN Complement C5 OS=Homo sapiens GN=C5 PE=1 SV=4 66 8 P02768 ALBU_HUMAN Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 66 9 P00450 CERU_HUMAN Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1 64 10 P02671 FIBA_HUMAN Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 58 11 P08603 CFAH_HUMAN Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4 56 12 P02787 TRFE_HUMAN Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3 54 13 P00747 PLMN_HUMAN Plasminogen OS=Homo sapiens GN=PLG PE=1 SV=2 48 14 P02679 FIBG_HUMAN Fibrinogen gamma chain OS=Homo sapiens GN=FGG PE=1 SV=3 47 15 P01871 IGHM_HUMAN Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3 41 16 P04003 C4BPA_HUMAN C4b-binding protein alpha chain OS=Homo sapiens GN=C4BPA PE=1 SV=2 37 17 Q9Y6R7 FCGBP_HUMAN IgGFc-binding protein OS=Homo sapiens GN=FCGBP PE=1 SV=3 30 18 O43866 CD5L_HUMAN CD5 antigen-like OS=Homo
    [Show full text]
  • Biological Pathways, Candidate Genes, and Molecular Markers Associated with Quality-Of-Life Domains: an Update
    Qual Life Res (2014) 23:1997–2013 DOI 10.1007/s11136-014-0656-1 REVIEW Biological pathways, candidate genes, and molecular markers associated with quality-of-life domains: an update Mirjam A. G. Sprangers • Melissa S. Y. Thong • Meike Bartels • Andrea Barsevick • Juan Ordon˜ana • Qiuling Shi • Xin Shelley Wang • Pa˚l Klepstad • Eddy A. Wierenga • Jasvinder A. Singh • Jeff A. Sloan Accepted: 19 February 2014 / Published online: 7 March 2014 Ó Springer International Publishing Switzerland 2014 Abstract (depressed mood) and positive (well-being/happiness) Background There is compelling evidence of a genetic emotional functioning, social functioning, and overall foundation of patient-reported quality of life (QOL). Given QOL. the rapid development of substantial scientific advances in Methods We followed a purposeful search algorithm of this area of research, the current paper updates and extends existing literature to capture empirical papers investigating reviews published in 2010. the relationship between biological pathways and molecu- Objectives The objective was to provide an updated lar markers and the identified QOL domains. overview of the biological pathways, candidate genes, and Results Multiple major pathways are involved in each molecular markers involved in fatigue, pain, negative QOL domain. The inflammatory pathway has the strongest evidence as a controlling mechanism underlying fatigue. Inflammation and neurotransmission are key processes On behalf of the GeneQol Consortium. involved in pain perception, and the catechol-O-methyl- transferase (COMT) gene is associated with multiple sorts Electronic supplementary material The online version of this article (doi:10.1007/s11136-014-0656-1) contains supplementary of pain. The neurotransmitter and neuroplasticity theories material, which is available to authorized users.
    [Show full text]
  • The Human Gene Connectome As a Map of Short Cuts for Morbid Allele Discovery
    The human gene connectome as a map of short cuts for morbid allele discovery Yuval Itana,1, Shen-Ying Zhanga,b, Guillaume Vogta,b, Avinash Abhyankara, Melina Hermana, Patrick Nitschkec, Dror Friedd, Lluis Quintana-Murcie, Laurent Abela,b, and Jean-Laurent Casanovaa,b,f aSt. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065; bLaboratory of Human Genetics of Infectious Diseases, Necker Branch, Paris Descartes University, Institut National de la Santé et de la Recherche Médicale U980, Necker Medical School, 75015 Paris, France; cPlateforme Bioinformatique, Université Paris Descartes, 75116 Paris, France; dDepartment of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; eUnit of Human Evolutionary Genetics, Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Institut Pasteur, F-75015 Paris, France; and fPediatric Immunology-Hematology Unit, Necker Hospital for Sick Children, 75015 Paris, France Edited* by Bruce Beutler, University of Texas Southwestern Medical Center, Dallas, TX, and approved February 15, 2013 (received for review October 19, 2012) High-throughput genomic data reveal thousands of gene variants to detect a single mutated gene, with the other polymorphic genes per patient, and it is often difficult to determine which of these being of less interest. This goes some way to explaining why, variants underlies disease in a given individual. However, at the despite the abundance of NGS data, the discovery of disease- population level, there may be some degree of phenotypic homo- causing alleles from such data remains somewhat limited. geneity, with alterations of specific physiological pathways under- We developed the human gene connectome (HGC) to over- come this problem.
    [Show full text]
  • Colorectal Cancer Risk Genes Are Functionally Enriched in Regulatory
    www.nature.com/scientificreports OPEN Colorectal cancer risk genes are functionally enriched in regulatory pathways Received: 07 January 2016 Xi Lu1,*, Mingming Cao2,*, Su Han3, Youlin Yang1 & Jin Zhou4 Accepted: 12 April 2016 Colorectal cancer (CRC) is a common complex disease caused by the combination of genetic variants Published: 05 May 2016 and environmental factors. Genome-wide association studies (GWAS) have been performed and reported some novel CRC susceptibility variants. However, the potential genetic mechanisms for newly identified CRC susceptibility variants are still unclear. Here, we selected 85 CRC susceptibility variants with suggestive association P < 1.00E-05 from the National Human Genome Research Institute GWAS catalog. To investigate the underlying genetic pathways where these newly identified CRC susceptibility genes are significantly enriched, we conducted a functional annotation. Using two kinds of SNP to gene mapping methods including the nearest upstream and downstream gene method and the ProxyGeneLD, we got 128 unique CRC susceptibility genes. We then conducted a pathway analysis in GO database using the corresponding 128 genes. We identified 44 GO categories, 17 of which are regulatory pathways. We believe that our results may provide further insight into the underlying genetic mechanisms for these newly identified CRC susceptibility variants. Colorectal cancer (CRC) is the third most common form of cancer and the second leading cause of cancer-related death in the western world and1,2. CRC is a leading cause of cancer-related deaths in the United States, and its lifetime risk in the United States is about 7%1,3. CRC is a common complex disease caused by the combination of genetic variants and environmental factors1.
    [Show full text]