Some Basic Concepts of Chemistry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Circle Reverse Osmosis System
CIRCLE REVERSE OSMOSIS SYSTEM KEY FEATURES Water Saving Technology – Patented technology eliminates backpressure The RC100 conforms to common in conventional RO systems making the Circle up to 10 times more NSF/ANSI 42, 53 and efficient than existing products. 58 for the reduction of Saves You Money – Conventional RO systems waste up to 24 gallons of Aesthetic Chlorine, Taste water per every 1 gallon of filtered water produced. The Circle only wastes and Odor, Cyst, VOCs, an average of 2.1 gallons of water per 1 gallon of filtered water produced, Fluoride, Pentavalent Arsenic, Barium, Radium 226/228, Cadmium, Hexavalent saving you water and money over the life of the product!. Chromium, Trivalent Chromium, Lead, RO Filter Auto Flushing – Significantly extends life of RO filter. Copper, Selenium and TDS as verified Chrome Faucet Included – With integrated LED filter change indicator. and substantiated by test data. The RC100 conforms to NSF/ANSI 372 for Space Saving Compact Design – Integrated rapid refill tank means more low lead compliance. space under the sink. SPECIFICATIONS Product Name H2O+ Circle Reverse Osmosis Water Filtration System Model / SKU RC100 Installation Undercounter Sediment Filter, Pre-Carbon Plus Filter, Post Carbon Block Filter (RF-20): 6 months Filters & Lifespan RO Membrane Filter (RF-40): 24 months Tank Capacity 6 Liters (refills fully in less than one hour) Dimensions 9.25” (W) x 16.5” (H) x 13.75” (D) Net weight 14.6 lbs Min/Max Operating Pressure 40 psi – 120 psi (275Kpa – 827Kpa) Min/Max Water Feed Temp 41º F – 95º F (5º C – 35º C) Faucet Flow Rate 0.26 – 0.37 gallons per minute (gpm) at incoming water pressure of 20–100 psi Rated Service Flow 0.07 gallons per minute (gpm) Warranty One Year Warranty PO Box 470085, San Francisco CA, 94147–0085 brondell.com 888-542-3355. -
Sedimentation and Clarification Sedimentation Is the Next Step in Conventional Filtration Plants
Sedimentation and Clarification Sedimentation is the next step in conventional filtration plants. (Direct filtration plants omit this step.) The purpose of sedimentation is to enhance the filtration process by removing particulates. Sedimentation is the process by which suspended particles are removed from the water by means of gravity or separation. In the sedimentation process, the water passes through a relatively quiet and still basin. In these conditions, the floc particles settle to the bottom of the basin, while “clear” water passes out of the basin over an effluent baffle or weir. Figure 7-5 illustrates a typical rectangular sedimentation basin. The solids collect on the basin bottom and are removed by a mechanical “sludge collection” device. As shown in Figure 7-6, the sludge collection device scrapes the solids (sludge) to a collection point within the basin from which it is pumped to disposal or to a sludge treatment process. Sedimentation involves one or more basins, called “clarifiers.” Clarifiers are relatively large open tanks that are either circular or rectangular in shape. In properly designed clarifiers, the velocity of the water is reduced so that gravity is the predominant force acting on the water/solids suspension. The key factor in this process is speed. The rate at which a floc particle drops out of the water has to be faster than the rate at which the water flows from the tank’s inlet or slow mix end to its outlet or filtration end. The difference in specific gravity between the water and the particles causes the particles to settle to the bottom of the basin. -
Avogadro Number, Boltzmann Constant, Planck Constant, Information Theory, Comparative and Relative Uncertainties
American Journal of Computational and Applied Mathematics 2018, 8(5): 93-102 DOI: 10.5923/j.ajcam.20180805.02 h, k, NA: Evaluating the Relative Uncertainty of Measurement Boris Menin Mechanical & Refrigeration Consultation Expert, Beer-Sheba, Israel Abstract For verification of the measurement accuracy of fundamental physical constants, the CODATA unique technique is used. This procedure is a complex process based on a careful discussion of the input data, and the justification and construction of tables of values sufficient for the direct use of the relative uncertainty are conducted using modern advanced statistical methods and powerful computers. However, at every stage of data processing, researchers must rely on common sense, that is, an expert conclusion. In this article, the author proposes a theoretical and informational grounded justification for calculating the relative uncertainty by using the comparative uncertainty. A detailed description of the data and the processing procedures do not require considerable time. Examples of measurements results of three fundamental constants are analysed, applying information-oriented approach. Comparison of the achieved relative and comparative uncertainties is introduced and discussed. Keywords Avogadro number, Boltzmann constant, Planck constant, Information theory, Comparative and relative uncertainties theories of physics can be proved by carefully studying the 1. Introduction numerical values of these constants, determined from different experiments in different fields of physics. It is expected that in 2018 that the International System of One needs to note the main feature of the CODATA Units (SI) will be redefined on the basis of certain values of technique in determining the relative uncertainty of one some fundamental constants [1]. -
X-Ray Crystal Density Method to Determine the Avogadro and Planck Constants
X-ray Crystal Density Method to Determine the Avogadro and Planck Constants Horst Bettin Physikalisch-Technische Bundesanstalt Braunschweig, Germany Proposed New Definition of the Kilogram The kilogram, symbol kg, is the SI unit of mass. It is defined by taking the fixed numerical value of the Planck constant h to be 6.626 070 040 x 10 -34 when expressed in the unit J s, which is equal to kg m2 s-1, where the metre and the second c ∆ν are defined in terms of and Cs . *) X represents one or more digits to be added at the time the new definition is finally adopted. α 2 - = M (e )c NAh 2 R∞ N h −10 A = 3.990 312 7110(18) × 10 Js/mol, Amedeo Avogadro Max Planck with relative uncertainty of 0.45 × 10 -9 (1776-1856) (1858-1947) Page 2 of 19 Avogadro Constant Definition of Avogadro constant NA • Number of molecules per mol • 6.022... x 10 23 mol -1 Amedeo Avogadro Current definition of mol (1776-1856) • Number “entities” like 12 C atoms in 12 g • i. e. 6.022... x 10 23 12 C atoms have a mass of 12 g 12 12 g/mol = NA m( C ) Faraday constant F = NA e (e: elementary charge) Molar gas constant R = NA k (k: Boltzmann constant) Page 3 of 19 Counting Atoms: XRCD Method 3 Use of a silicon crystal! 1. Volume a0 of the unit cell 3 2. Volume of an atom: a0 /8 3. Volume V of a sphere 4. Number N of the atoms 8 V8 VM N = = ⋅ mol A N 3 3 a0 a0msphere Page 4 of 19 Lattice parameter measurement (INRIM) d220 (2011)=192014712.67(67) am d220 (2014)=192014711.98(34) am -9 ur(2014) = 1.8 x 10 Page 5 of 19 Lattice parameter set-up at PTB S M1 M M2 AL AA OH Page 6 of 19 Sphere Interferometer of PTB mK-temperature stabilisation Camera 1 Camera 2 Fizeau- Fizeau- Collimator Objective 1 Objective 2 Diode laser Page 7 of 19 Diameter results (2014) Relative Mean apparent Sphere Lab. -
A Lexicon of Alchemy
A Lexicon of Alchemy by Martin Rulandus the Elder Translated by Arthur E. Waite John M. Watkins London 1893 / 1964 (250 Copies) A Lexicon of Alchemy or Alchemical Dictionary Containing a full and plain explanation of all obscure words, Hermetic subjects, and arcane phrases of Paracelsus. by Martin Rulandus Philosopher, Doctor, and Private Physician to the August Person of the Emperor. [With the Privilege of His majesty the Emperor for the space of ten years] By the care and expense of Zachariah Palthenus, Bookseller, in the Free Republic of Frankfurt. 1612 PREFACE To the Most Reverend and Most Serene Prince and Lord, The Lord Henry JULIUS, Bishop of Halberstadt, Duke of Brunswick, and Burgrave of Luna; His Lordship’s mos devout and humble servant wishes Health and Peace. In the deep considerations of the Hermetic and Paracelsian writings, that has well-nigh come to pass which of old overtook the Sons of Shem at the building of the Tower of Babel. For these, carried away by vainglory, with audacious foolhardiness to rear up a vast pile into heaven, so to secure unto themselves an immortal name, but, disordered by a confusion and multiplicity of barbarous tongues, were ingloriously forced. In like manner, the searchers of Hermetic works, deterred by the obscurity of the terms which are met with in so many places, and by the difficulty of interpreting the hieroglyphs, hold the most noble art in contempt; while others, desiring to penetrate by main force into the mysteries of the terms and subjects, endeavour to tear away the concealed truth from the folds of its coverings, but bestow all their trouble in vain, and have only the reward of the children of Shem for their incredible pain and labour. -
2 Weighing and Preparation of Aqueous Solutions
2 WEIGHING AND PREPARATION OF AQUEOUS SOLUTIONS Theory In chemistry, a solution is a homogeneous mixture composed of two or more substances. In such a mixture, a solute is dissolved in another substance, known as a solvent. An aqueous solution is a solution in which the solvent is water. Concentration is the measure of how much of a given substance (solute) there is mixed with another substance (solvent). This can apply to any sort of chemical mixture, but most frequently the concept is limited to homogeneous solutions, where it refers to the amount of solute in a solution. For scientific or technical applications, concentration is expressed in a quantitative way. There are a number of different ways to quantitatively express concentration; the most common are listed below. They are based on mass or volume or both. Depending on what they are based on it is not always trivial to convert one measure to the other, because knowledge of the density might be needed to do so. At times this information may not be available, particularly if the temperature varies. Mass can be determined at a precision of ~ 0.1 mg on a routine basis with an analytical balance. Both solids and liquids are easily quantified by weighing. Some units of concentration - particularly the most popular one (molarity) - require to express the mass of substance in the moles. The mol is the SI basic unit that measures an amount of substance. „One mole contains exactly 6.022 140 76 × 1023 elementary entities. This number is the −1 fixed numerical value of the Avogadro constant, NA, when expressed in the unit mol and is called the Avogadro number.“ The previous definition was based on the number of carbon atoms in 12 g of material and was the following; a mol is the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kilogram (or 12 g) of carbon-12 (12C), where the carbon – 12 atoms are unbound, at rest and in their ground state. -
CIVL 1101 Introduction to Filtration 1/15
CIVL 1101 Introduction to Filtration 1/15 Water Treatment Water Treatment Water treatment describes those industrial-scale The goal of all water treatment process is to processes used to make water more acceptable remove existing contaminants in the water, or for a desired end-use. reduce the concentration of such contaminants so These can include use for drinking water, industry, the water becomes fit for its desired end-use. medical and many other uses. One such use is returning water that has been used back into the natural environment without adverse ecological impact. Water Treatment Water Treatment Basis water treatment consists Coagulation of four processes: This process helps removes Coagulation/Flocculation particles suspended in water. Sedimentation Chemicals are added to water to form tiny sticky particles Filtration called "floc" which attract the Disinfection particles. Water Treatment Water Treatment Flocculation Sedimentation Flocculation refers to water The heavy particles (floc) treatment processes that settle to the bottom and the combine or coagulate small clear water moves to filtration. particles into larger particles, which settle out of the water as sediment. CIVL 1101 Introduction to Filtration 2/15 Water Treatment Water Treatment Filtration Disinfection The water passes through A small amount of chlorine is filters, some made of layers of added or some other sand, gravel, and charcoal disinfection method is used to that help remove even smaller kill any bacteria or particles. microorganisms that may be in the water. Water Treatment Water Treatment 1. Coagulation 1. Coagulation - Aluminum or iron salts plus chemicals 2. Flocculation called polymers are mixed with the water to make the 3. -
Topic720 Composition: Mole Fraction: Molality: Concentration a Solution Comprises at Least Two Different Chemical Substances
Topic720 Composition: Mole Fraction: Molality: Concentration A solution comprises at least two different chemical substances where at least one substance is in vast molar excess. The term ‘solution’ is used to describe both solids and liquids. Nevertheless the term ‘solution’ in the absence of the word ‘solid’ refers to a liquid. Chemists are particularly expert at identifying the number and chemical formulae of chemical substances present in a given closed system. Here we explore how the chemical composition of a given system is expressed. We consider a simple system prepared using water()l and urea(s) at ambient temperature and pressure. We designate water as chemical substance 1 and urea as chemical substance j, so that the closed system contains an aqueous solution. The amounts of the two substances are given by n1 = = ()wM11 and nj ()wMjj where w1 and wj are masses; M1 and Mj are the molar masses of the two chemical substances. In these terms, n1 and nj are extensive variables. = ⋅ + ⋅ Mass of solution, w n1 M1 n j M j (a) = ⋅ Mass of solvent, w1 n1 M1 (b) = -1 For water, M1 0.018 kg mol . However in reviewing the properties of solutions, chemists prefer intensive composition variables. Mole Fraction The mole fractions of the two substances x1 and xj are given by the following two equations: =+ =+ xnnn111()j xnnnjj()1 j (c) += Here x1 x j 10. In general terms for a system comprising i - chemical substances, the mole fraction of substance k is given by equation (d). ji= = xnkk/ ∑ n j (d) j=1 ji= = Hence ∑ x j 10. -
Membrane Filtration
Membrane Filtration A membrane is a thin layer of semi-permeable material that separates substances when a driving force is applied across the membrane. Membrane processes are increasingly used for removal of bacteria, microorganisms, particulates, and natural organic material, which can impart color, tastes, and odors to water and react with disinfectants to form disinfection byproducts. As advancements are made in membrane production and module design, capital and operating costs continue to decline. The membrane processes discussed here are microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO). MICROFILTRATION Microfiltration is loosely defined as a membrane separation process using membranes with a pore size of approximately 0.03 to 10 micronas (1 micron = 0.0001 millimeter), a molecular weight cut-off (MWCO) of greater than 1000,000 daltons and a relatively low feed water operating pressure of approximately 100 to 400 kPa (15 to 60psi) Materials removed by MF include sand, silt, clays, Giardia lamblia and Crypotosporidium cysts, algae, and some bacterial species. MF is not an absolute barrier to viruses. However, when used in combination with disinfection, MF appears to control these microorganisms in water. There is a growing emphasis on limiting the concentrations and number of chemicals that are applied during water treatment. By physically removing the pathogens, membrane filtration can significantly reduce chemical addition, such as chlorination. Another application for the technology is for removal of natural synthetic organic matter to reduce fouling potential. In its normal operation, MF removes little or no organic matter; however, when pretreatment is applied, increased removal of organic material can occur. -
Paracelsus, Helmont, Iatrochemistry, Pharmacology
Basic Sciences of Medicine 2014, 3(3): 60-62 DOI: 10.5923/j.medicine.20140303.03 Paracelsus, the Founder of Chemical Therapeutic Who Initiated the Application of Chemistry to Life Hosein Tajadod Hafiz, an International Journal of Iranian studies, Tehran, Iran Abstract Paracelsus, a German-Swiss physician, alchemist, philosopher, and astrologer who denounced the Galenic system of medicine. The application of chemistry to life was initiated by him. In fact, he stressed the spiritual side of disease but also advocated the use of mineral as drugs, rather than just using plants and animal products. He burned the works of Avicenna, and quarreled with most of his colleagues at Basel and was dismissed in disgrace and resumed his wandering from place to place, teaching chemical therapy (iatrochemistry). Johannes Baptiste van Helmont, Flemish physician was the leading iatrochemist of seventeenth century, but he opposed the dogma of Galen, astrology of Paracelsus and many other established doctrines. Keywords Paracelsus, Helmont, Iatrochemistry, Pharmacology In the Renaissance some Europeans reacted against the 1. Paracelsus, the Creator of anatomy and other medical teachings expounded in medieval Iatrochemistry Islamic text, particularly the “Canon of Medicine” (al-Quanon fil-Tib), written by Avicenna (980-1037), a Iatrochemistry , the study of chemical phenomena in order famous and influential Iranian physician and to obtain results of medical value was founded by Paracelsus. philosopher-scientist. Leonardo da Vinci (1452-1519), Iatrochemists the followers of Paracelsus treated the Italian and the greatest artist and scientist of the Renaissance human body as a chemical system. In iatrochemistry, disease who studied the skeletal movement and muscle structures in was associated with upsets of body chemistry and treatment relation to function, rejected the anatomy, though by was directed toward restoration of the chemical balance. -
Water Filtration Background
Water Filtration Background Water Filtration It's a modern-day engineering challenge to remove human-made contaminants from drinking water. After a quick review of the treatment processes that municipal water goes through before it comes from the tap you will learn about the still-present measurable contamination of drinking water due to anthropogenic (human-made) chemicals. Substances such as prescription medication, pesticides and hormones are detected in the drinking water supplies of American and European metropolitan cities. The engineering design process can be used to design solutions for a real-world problem (contaminated water) that could affect health. Engineering Connection The water that comes from our faucets has passed through a complex system designed by many different types of engineers. Civil, chemical, electrical, environmental, geotechnical, hydraulic, structural and architectural engineers all play roles in the design, development and implementation of municipalities' drinking water supplies and delivery systems. Hydraulic engineers design systems that safely filter the water at a rate needed to supply a specific region and population. Chemical engineers precisely determine the amounts and types of chemicals added to source water for coagulation and decontamination to make the water safe to drink and not taste bad. Even so, modern pharmaceutical and agricultural practices persist in contaminating our water supplies. 1 Water Filtration Background Treating the Public Water Supply: What Is In Your Water, and How Is It Made Safe to Drink? Human Use of Freshwater Humans' Need for Clean Freshwater Water is perhaps the most important nutrient in our diets. In fact, a human adult needs to drink approximately 2 liters (8 glasses) of water every day to replenish the water that is lost from the body through the skin, respiratory tract, and urine. -
Avogadro's Constant
Avogadro's Constant Nancy Eisenmenger Question Artem, 8th grade How \Avogadro constant" was invented and how scientists calculated it for the first time? Answer What is Avogadro's Constant? • Avogadros constant, NA: the number of particles in a mole • mole: The number of Carbon-12 atoms in 0.012 kg of Carbon-12 23 −1 • NA = 6:02214129(27) × 10 mol How was Avogadro's Constant Invented? Avogadro's constant was invented because scientists were learning about measuring matter and wanted a way to relate the microscopic to the macroscopic (e.g. how many particles (atoms, molecules, etc.) were in a sample of matter). The first scientists to see a need for Avogadro's constant were studying gases and how they behave under different temperatures and pressures. Amedeo Avogadro did not invent the constant, but he did state that all gases with the same volume, pressure, and temperature contained the same number of gas particles, which turned out to be very important to the development of our understanding of the principles of chemistry and physics. The constant was first calculated by Johann Josef Loschmidt, a German scientist, in 1865. He actually calculated the Loschmidt number, a constant that measures the same thing as Avogadro's number, but in different units (ideal gas particles per cubic meter at 0◦C and 1 atm). When converted to the same units, his number was off by about a factor of 10 from Avogadro's number. That may sound like a lot, but given the tools he had to work with for both theory and experiment and the magnitude of the number (∼ 1023), that is an impressively close estimate.