Trojan Binary Asteroid Systems As Future Mission Targets

Total Page:16

File Type:pdf, Size:1020Kb

Trojan Binary Asteroid Systems As Future Mission Targets Trans. JSASS Aerospace Tech. Japan Vol. 8, No. ists27, pp. Pk_39-Pk_44, 2010 Original Paper Trojan Binary Asteroid Systems as Future Mission Targets By Julie BELLEROSE1) and Hajime YANO1),2) 1) JAXA Space Exploration Center (JSPEC), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Japan 2) Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Japan (Received July 17th, 2009) To date, the Jupiter-Sun Lagrangian points are populated with almost 4500 asteroids, for which their formation and history are still debated. In the current work, we look at rationales for a mission to Jovian Trojan asteroids, and discuss the scientific benefits to investigate binary systems and contact binary systems. We summarized the dynamics for a solar sail mission, which is currently thought to go along the Europa Jupiter System Mission (EJSM), and we show a case study of the contact binary Hektor, and its moon S/2006, which offer the most suitable conditions for spacecraft operations. Trojans asteroids offer many opportunities, and we list some of the targets in time. KeyKey Words Words:: JovianJovian Trojan Trojan Asteroids, asteroids, Binary binary Systems, systems, C contactontact Binary, binary, solarSolar sailSail dynamics, Dynamics, Jupiter Jupiter system System 2 5) Nomenclature to date − . To give a few examples, (617) Patroclus and its companion Menoetius were found to be a low density EKBO : Kuiper Belt Objects asteroid system, while (624) Hektor is a fairly dense system EJSM : Europa Jupiter System Mission 3,4). These two systems have sizes between 140 km and 225 R3BP : Restricted Three Body Problem km, while Hektor is more than 300 km in diameter with a [x,y,z] : Position of S/C in R3BP satellite of 15 km. Mann et al. (2007) 2) have discussed the ΩJup : Orbit rate of Jupiter properties of suspected binary systems located at L4 and L5. µJup : Specific gravity Jupiter The Trojan asteroids formation and evolution are still rJA : Position w.r.t Jupiter debated, as they may be tied to the formation of the giant r : Position w.r.t. the Sun SA planets, or tied to capture of some of the Edgeworth-Kuiper SRP : Solar radiation Pressure [ , , ] Belt Objects (EKBO) in the process of possible migration gx gy gz : Acceleration due SRP 6) 7) [x˜,y˜,z˜] : Position S/C in Hill appr. In their earlier work, Marzani et al. show that small 3 Ω = sqrtµsun/a : Orbit rate of the asteroid Trojans (with diameter < 1 km) are more stable at L5 due ast 8) µsun : Specific gravity Sun to gas drag. However, Gomes et al. have shown that aast : Asteroid distance to Sun planet migration tends to destabilize asteroids at this partic- U˜ : Asteroid potential ular region. Morbidelli has argued that their high inclina- [xˆ,yˆ,zˆ] : Position asteroid orbiter tions could only be explained from captures 9). Hence, it ωast : Asteroid spin rate is not clear if these asteroids were captured from outer re- aSRP : SRP, asteroid frame gions like the Kuiper Belt, or if they are remnants from the time of the giant planets formation. The work from Marzani 1. Introduction et al. 10), in Asteroids III, and more recently, Yano et al. 11) Trojan asteroids are orbiting the Sun in a 1:1 resonance also give a more complete description of these ques- with Jupiter, separated in two distinct regions, L4 and L5. tions and theories. Knowing more about the density, com- At the time of writing this paper, from the Minor Planet position, surface features such as impact history and space Center (MPC) (http://www.cfa.harvard.edu/iau/mpc.html), weathering of these objects can help validating these theo- we count 2798 at L4 and 1747 at L5. However, there are ries, and better complete our knowledge of the solar system only a fraction of them that have been more thoroughly formation. observed and have been given an estimated size. So far, Since Jovian Trojan asteroids are so remote, a solar pow- most of the spectrally observed Trojans have been classi- ered sail mission has now been proposed as part of the fied D-type, with a few being P-type 1). D-type asteroids coming international mission Europa Jupiter System Mis- are believed to be made of primordial, icy, and organic com- sion (EJSM) internationally worked on by NASA, ESA and 10,12) pounds. Among the Trojan asteroid population, sizes vary JAXA . A mission going to the L4 Trojan asteroid 13) from a few kilometers to 100’s of kilometers, and spin rate population would benefit from Jupiter’s gravity assist . may be only a few hours to 100’s of hours. They orbit with Hence, we look especially at suspected contact binary aster- an average inclination of 11 and 15 , respectively for oid systems located in this region and we discuss the benefit ∼ ◦ ∼ ◦ each L4 and L5 population, with some having inclinations of exploring these Jovian Trojan binary systems in more de- reaching 50 . tails. As the mission could integrate solar sail technology, ∼ ◦ Among this asteroid population, a few binary asteroid we give an overview of the basics on the dynamics of Tro- systems and contact binary systems have been discovered jans and on the dynamics of solar sail spacecraft at these Copyright© 2010 by the Japan Society for Aeronautical and Space Sciences1 and ISTS. All rights reserved. Pk_39 Trans. JSASS Aerospace Tech. Japan Vol. 8, No. ists27 (2010) systems. Finally, we look at Hektor as a case study, and a same line of thoughts, looking at differences in processes target opportunities in time. such as space weathering is primordial; the effects may be 2. Jovian Trojan Binary Asteroid System Exploration less in outer regions even if the composition is similar. It may even be different for each of the binary components. By exploring binary asteroid systems at Jovian Trojan lo- By exploring these systems, we can also make a direct cor- cations, we can directly verify their composition, and thus relation with data at 50 AU since, by the time of arrival to verify if they are both from common origins. Their forma- Lagrangian regions, the New Horizons mission to the Pluto- tion may also be tied to captures of EKBO, or may be a Charon system would have returned data from this remote 3,5) product of fission or dynamical friction . Binary may system 14). Having data from New Horizons, links may be also show a direct view of their internal composition if made between the two families of small bodies and minor formed through fission, and, of course, provide two target planets. This will greatly enhance our knowledge of the opportunities at once instead of only one. solar system evolution, on the scale from 1 AU to 50 AU. From current interest in sending a spacecraft to L4, Ta- Since Trojan asteroids are of large size, exploring the 2) ble 1 lists some of these suspected contact binaries at L4 , small satellites, which is still kilometers in size, may of- along with their nominal diameter (D), rotation period (P), fer better and safer conditions for orbiting or performing and asteroid spectral class, also including Hektor which is proximity operations compared to approaching the main believed to be a contact binary itself with a small moon dis- body. These rationales for exploring secondary satellites 3) covered in 2006 . From the list shown in Table 1, only have been discussed in Bellerose and Yano (2009) 15), also Hektor, Antilochus, and Neoptolemus have been classified discussing other binary system populations, and we give a D-type, while the other ones are yet to be determined. In more comprehensive approach with the Hektor case study addition, the rotation period which factor in the proximity presented next. We start by giving an overview of the dy- operations are only available for Hektor, 1999 YY2, Poly- namics related to Trojan asteroids, from far to near fields poites, Antilochus, Automedon, and Neoptolemus, being for close operations. 6.9 hrs, 7 hrs, 43 hrs, 31.5 hrs, 10.2 hrs, and 12 hrs. Al- though of similar type, fast rotation periods may indicate 3. Dynamics at Trojan Asteroids a higher strength body while slow rotating ones may be 3.13.1. SolarSolar Sailsail Explorationexploration loosely packed. There has been a few studies and mission proposals to Trojans in this last decade. Yano et al. (2004) 16) discussed Table 1. Ecliptic crossing timeline for Jovian Trojan suspected binary con- a solar powered sail flyby at the L4 Lagrangian point, and 2) tact asteroids at L4 (targets listed in Mann et al. (2007) ). Empty cells robotic exploration missions are currently being studied, indicate unresolved data to date. such as PARIS 17) (ESA) and SHOTPUT 18) (JPL) target- Trojans D (km) P (hrs) Class 19) 2146 Stentor 77 ing both Hektor, and ILion (NASA) to investigate Trojan 624 Hektor 360 6.9 D asteroids at L5. JAXA is now currently looking at the feasi- 9694 Lycomedes 78 bility of exploring Trojan asteroids at L4, as part of the next 4068 Menestheus 78 possible flagship mission to the Jovian system, in collabo- 1999 YY2 47 7 10,12) 3709 Polypoites 87 43 ration with NASA and ESA , as represented in Fig. 1. 9431 1996 PS1 59 1583 Antilochus 99 31.5 D 11668 Balios 47 2001 CE21 33 1868 Thersites 80 1999 XW261 44 2920 Automedon 111 10.2 1869 Philoctetes 34 1998 VA50 45 1647 Menelaus 37 1999 XJ55 38 2260 Neoptolemus 77 12 D 4834 Thoas 91 2002 EZ13 36 4833 Meges 95 If these Trojan asteroids are mostly composed of rocky material, and of similar composition to giant planets, they may indicate an outward migration of giants as the aster- oids may have formed from rocky material inside the snow Fig.
Recommended publications
  • Ty996i the Astronomical Journal Volume 71, Number
    coPC THE ASTRONOMICAL JOURNAL VOLUME 71, NUMBER 6 AUGUST 1966 TY996I Observations of Comets, Minor Planets, and Satellites Elizabeth Roemer* and Richard E. Lloyd U. S. Naval Observatory, Flagstaff Station, Arizona (Received 10 May 1966) Accurate positions and descriptive notes are presented for 38 comets, 33 minor planets, 5 faint natural satellites, and Pluto, for which astrometric reduction of the series of Flagstaff observations has been completed. THE 1022 positions and descriptive notes presented reference star positions; therefore, she bears responsi- here supplement those given by Roemer (1965), bility for the accuracy of the results given here. who also described the program, the equipment used, Coma diameters and tail dimensions given in the and the procedures of observation and of reduction. Notes to Table I refer to the exposures taken for In this paper as in the earlier one, the participation astrometric purposes unless otherwise stated. In of those who shared in critical phases of the work is general, longer exposures show more extensive head and indicated in the Obs/Meas column of Table I according tail structure. to the following letters: For brighter comets the minimum exposure is determined by the necessity of recording measurable R=Elizabeth Roemer. images of 12th-13th magnitude reference stars. On Part-time assistants under contract Nonr-3342(00) such exposures the position of the nuclear condensation with Lowell Observatory: may be more or less obscured by the overexposed coma and be correspondingly difficult and uncertain to L = Richard E. Lloyd, measure. T = Maryanna Thomas, A colon has been used to indicate greater than normal S = Marjorie K.
    [Show full text]
  • On the Accuracy of Restricted Three-Body Models for the Trojan Motion
    DISCRETE AND CONTINUOUS Website: http://AIMsciences.org DYNAMICAL SYSTEMS Volume 11, Number 4, December 2004 pp. 843{854 ON THE ACCURACY OF RESTRICTED THREE-BODY MODELS FOR THE TROJAN MOTION Frederic Gabern1, Angel` Jorba1 and Philippe Robutel2 Departament de Matem`aticaAplicada i An`alisi Universitat de Barcelona Gran Via 585, 08007 Barcelona, Spain1 Astronomie et Syst`emesDynamiques IMCCE-Observatoire de Paris 77 Av. Denfert-Rochereau, 75014 Paris, France2 Abstract. In this note we compare the frequencies of the motion of the Trojan asteroids in the Restricted Three-Body Problem (RTBP), the Elliptic Restricted Three-Body Problem (ERTBP) and the Outer Solar System (OSS) model. The RTBP and ERTBP are well-known academic models for the motion of these asteroids, and the OSS is the standard model used for realistic simulations. Our results are based on a systematic frequency analysis of the motion of these asteroids. The main conclusion is that both the RTBP and ERTBP are not very accurate models for the long-term dynamics, although the level of accuracy strongly depends on the selected asteroid. 1. Introduction. The Restricted Three-Body Problem models the motion of a particle under the gravitational attraction of two point masses following a (Keple- rian) solution of the two-body problem (a general reference is [17]). The goal of this note is to discuss the degree of accuracy of such a model to study the real motion of an asteroid moving near the Lagrangian points of the Sun-Jupiter system. To this end, we have considered two restricted three-body problems, namely: i) the Circular RTBP, in which Sun and Jupiter describe a circular orbit around their centre of mass, and ii) the Elliptic RTBP, in which Sun and Jupiter move on an elliptic orbit.
    [Show full text]
  • Astrocladistics of the Jovian Trojan Swarms
    MNRAS 000,1–26 (2020) Preprint 23 March 2021 Compiled using MNRAS LATEX style file v3.0 Astrocladistics of the Jovian Trojan Swarms Timothy R. Holt,1,2¢ Jonathan Horner,1 David Nesvorný,2 Rachel King,1 Marcel Popescu,3 Brad D. Carter,1 and Christopher C. E. Tylor,1 1Centre for Astrophysics, University of Southern Queensland, Toowoomba, QLD, Australia 2Department of Space Studies, Southwest Research Institute, Boulder, CO. USA. 3Astronomical Institute of the Romanian Academy, Bucharest, Romania. Accepted XXX. Received YYY; in original form ZZZ ABSTRACT The Jovian Trojans are two swarms of small objects that share Jupiter’s orbit, clustered around the leading and trailing Lagrange points, L4 and L5. In this work, we investigate the Jovian Trojan population using the technique of astrocladistics, an adaptation of the ‘tree of life’ approach used in biology. We combine colour data from WISE, SDSS, Gaia DR2 and MOVIS surveys with knowledge of the physical and orbital characteristics of the Trojans, to generate a classification tree composed of clans with distinctive characteristics. We identify 48 clans, indicating groups of objects that possibly share a common origin. Amongst these are several that contain members of the known collisional families, though our work identifies subtleties in that classification that bear future investigation. Our clans are often broken into subclans, and most can be grouped into 10 superclans, reflecting the hierarchical nature of the population. Outcomes from this project include the identification of several high priority objects for additional observations and as well as providing context for the objects to be visited by the forthcoming Lucy mission.
    [Show full text]
  • Appendix 1 1311 Discoverers in Alphabetical Order
    Appendix 1 1311 Discoverers in Alphabetical Order Abe, H. 28 (8) 1993-1999 Bernstein, G. 1 1998 Abe, M. 1 (1) 1994 Bettelheim, E. 1 (1) 2000 Abraham, M. 3 (3) 1999 Bickel, W. 443 1995-2010 Aikman, G. C. L. 4 1994-1998 Biggs, J. 1 2001 Akiyama, M. 16 (10) 1989-1999 Bigourdan, G. 1 1894 Albitskij, V. A. 10 1923-1925 Billings, G. W. 6 1999 Aldering, G. 4 1982 Binzel, R. P. 3 1987-1990 Alikoski, H. 13 1938-1953 Birkle, K. 8 (8) 1989-1993 Allen, E. J. 1 2004 Birtwhistle, P. 56 2003-2009 Allen, L. 2 2004 Blasco, M. 5 (1) 1996-2000 Alu, J. 24 (13) 1987-1993 Block, A. 1 2000 Amburgey, L. L. 2 1997-2000 Boattini, A. 237 (224) 1977-2006 Andrews, A. D. 1 1965 Boehnhardt, H. 1 (1) 1993 Antal, M. 17 1971-1988 Boeker, A. 1 (1) 2002 Antolini, P. 4 (3) 1994-1996 Boeuf, M. 12 1998-2000 Antonini, P. 35 1997-1999 Boffin, H. M. J. 10 (2) 1999-2001 Aoki, M. 2 1996-1997 Bohrmann, A. 9 1936-1938 Apitzsch, R. 43 2004-2009 Boles, T. 1 2002 Arai, M. 45 (45) 1988-1991 Bonomi, R. 1 (1) 1995 Araki, H. 2 (2) 1994 Borgman, D. 1 (1) 2004 Arend, S. 51 1929-1961 B¨orngen, F. 535 (231) 1961-1995 Armstrong, C. 1 (1) 1997 Borrelly, A. 19 1866-1894 Armstrong, M. 2 (1) 1997-1998 Bourban, G. 1 (1) 2005 Asami, A. 7 1997-1999 Bourgeois, P. 1 1929 Asher, D.
    [Show full text]
  • Appendix 1 897 Discoverers in Alphabetical Order
    Appendix 1 897 Discoverers in Alphabetical Order Abe, H. 22 (7) 1993-1999 Bohrmann, A. 9 1936-1938 Abraham, M. 3 (3) 1999 Bonomi, R. 1 (1) 1995 Aikman, G. C. L. 3 1994-1997 B¨orngen, F. 437 (161) 1961-1995 Akiyama, M. 14 (10) 1989-1999 Borrelly, A. 19 1866-1894 Albitskij, V. A. 10 1923-1925 Bourgeois, P. 1 1929 Aldering, G. 3 1982 Bowell, E. 563 (6) 1977-1994 Alikoski, H. 13 1938-1953 Boyer, L. 40 1930-1952 Alu, J. 20 (11) 1987-1993 Brady, J. L. 1 1952 Amburgey, L. L. 1 1997 Brady, N. 1 2000 Andrews, A. D. 1 1965 Brady, S. 1 1999 Antal, M. 17 1971-1988 Brandeker, A. 1 2000 Antonini, P. 25 (1) 1996-1999 Brcic, V. 2 (2) 1995 Aoki, M. 1 1996 Broughton, J. 179 1997-2002 Arai, M. 43 (43) 1988-1991 Brown, J. A. 1 (1) 1990 Arend, S. 51 1929-1961 Brown, M. E. 1 (1) 2002 Armstrong, C. 1 (1) 1997 Broˇzek, L. 23 1979-1982 Armstrong, M. 2 (1) 1997-1998 Bruton, J. 1 1997 Asami, A. 5 1997-1999 Bruton, W. D. 2 (2) 1999-2000 Asher, D. J. 9 1994-1995 Bruwer, J. A. 4 1953-1970 Augustesen, K. 26 (26) 1982-1987 Buchar, E. 1 1925 Buie, M. W. 13 (1) 1997-2001 Baade, W. 10 1920-1949 Buil, C. 4 1997 Babiakov´a, U. 4 (4) 1998-2000 Burleigh, M. R. 1 (1) 1998 Bailey, S. I. 1 1902 Burnasheva, B. A. 13 1969-1971 Balam, D.
    [Show full text]
  • Mission to the Trojan Asteroids: Lessons Learned During a JPL Planetary Science Summer School Mission Design Exercise
    Mission to the Trojan Asteroids: lessons learned during a JPL Planetary Science Summer School mission design exercise Serina Diniegaa, Kunio M. Sayanagib,c,d,Jeffrey Balcerskie, Bryce Carandef, Ricardo A Diaz- Silvag, Abigail A Fraemanh, Scott D Guzewichi, Jennifer Hudsonj,k, Amanda L. Nahml, Sally Potter-McIntyrem, Matthew Routen, Kevin D Urbano, Soumya Vasishtp, Bjoern Bennekeq, Stephanie Gilq, Roberto Livir, , Brian Williamsa, Charles J Budneya, Leslie L Lowesa aJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, bUniversity of California, Los Angeles, CA, cCalifornia Institute of Technology, Pasadena, CA, dCurrent Affilliation: Hampton University, Hampton, VA, eCase Western Reserve University, Cleveland, OH, fArizona State University, Tempe, AZ, gUniversity of California, Davis, CA, hWashington University in Saint Louis, Saint Louis, MO, iJohns Hopkins University, Baltimore, MD, jUniversity of Michigan, Ann Arbor, MI, kCurrent affiliation: Western Michigan University, Kalamazoo, MI, lUniversity of Texas at El Paso, El Paso, TX, mThe University of Utah, Salt Lake City, UT, nPennsylvania State University, University Park, PA, oCenter for Solar-Terrestrial Research, New Jersey Institute of Technology, Newark, NJ, pUniversity of Washington, Seattle, WA, qMassachusetts Institute of Technology, Cambridge, MA, rUniversity of Texas at San Antonio, San Antonio, TX Email: [email protected] Published in Planetary and Space Science submitted 21 April 21 2012; accepted 29 November 2012; available online 29 December 2012 doi:10.1016/j.pss.2012.11.011 ABSTRACT The 2013 Planetary Science Decadal Survey identified a detailed investigation of the Trojan asteroids occupying Jupiter’s L4 and L5 Lagrange points as a priority for future NASA missions. Observing these asteroids and measuring their physical characteristics and composition would aid in identification of their source and provide answers about their likely impact history and evolution, thus yielding information about the makeup and dynamics of the early Solar System.
    [Show full text]
  • Broadband Linear Polarization of Jupiter Trojans
    A&A 585, A122 (2016) Astronomy DOI: 10.1051/0004-6361/201526889 & c ESO 2016 Astrophysics Broadband linear polarization of Jupiter Trojans S. Bagnulo1, I. Belskaya2, A. Stinson1;3, A. Christou1, and G. B. Borisov1;4 1 Armagh Observatory, College Hill, Armagh BT61 9DG, UK e-mail: sba;ast;aac;[email protected] 2 Institute of Astronomy, V.N. Karazin Kharkiv National University, 35 Sumska str., 61022 Kharkiv, Ukraine e-mail: [email protected] 3 Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking RH5 6NT, UK 4 Institute of Astronomy and National Astronomical Observatory, Bulgarian Academy of Sciences, 72, Tsarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria Received 3 July 2015 / Accepted 29 September 2015 ABSTRACT Context. Trojan asteroids orbit in the Lagrange points of the system Sun-planet-asteroid. Their dynamical stability make their physical properties important proxies for the early evolution of our solar system. Aims. To study their origin, we want to characterize the surfaces of Jupiter Trojan asteroids and check possible similarities with objects of the main belt and of the Kuiper Belt. Methods. We have obtained high-accuracy broadband linear polarization measurements of six Jupiter Trojans of the L4 population and tried to estimate the main features of their polarimetric behaviour. We have compared the polarimetric properties of our targets among themselves, and with those of other atmosphere-less bodies of our solar system. Results. Our sample show approximately homogeneous polarimetric behaviour, although some distinct features are found between them. In general, the polarimetric properties of Trojan asteroids are similar to those of D- and P-type main-belt asteroids.
    [Show full text]
  • Mission to the Trojan Asteroids Lessons Learned During a JPL
    Planetary and Space Science 76 (2013) 68–82 Contents lists available at SciVerse ScienceDirect Planetary and Space Science journal homepage: www.elsevier.com/locate/pss Mission to the Trojan asteroids: Lessons learned during a JPL Planetary Science Summer School mission design exercise Serina Diniega a,n, Kunio M. Sayanagi b,c,1, Jeffrey Balcerski d, Bryce Carande e, Ricardo A. Diaz-Silva f, Abigail A. Fraeman g, Scott D. Guzewich h, Jennifer Hudson i,2, Amanda L. Nahm j, Sally Potter-McIntyre k, Matthew Route l, Kevin D. Urban m, Soumya Vasisht n, Bjoern Benneke o, Stephanie Gil o, Roberto Livi p, Brian Williams a, Charles J. Budney a, Leslie L. Lowes a a Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, United States b University of California, Los Angeles, CA 90095, United States c California Institute of Technology, Pasadena, CA 91106, United States d Case Western Reserve University, Cleveland, OH 44106, United States e Arizona State University, Tempe, AZ 85281, United States f University of California, Davis, CA 95616, United States g Washington University in Saint Louis, Saint Louis, MO, United States h Johns Hopkins University, Baltimore, MD 21218, United States i University of Michigan, Ann Arbor, MI 48105, United States j University of Texas at El Paso, El Paso, TX 79968, United States k The University of Utah, Salt Lake City, UT 84112, United States l Pennsylvania State University, University Park, PA 16802, United States m Center for Solar-Terrestrial Research, New Jersey Institute of Technology, Newark, NJ 07103, United States n University of Washington, Seattle, WA 98195, United States o Massachusetts Institute of Technology, Cambridge, MA 02139, United States p University of Texas at San Antonio, San Antonio, TX 78249, United States article info abstract Article history: The 2013 Planetary Science Decadal Survey identified a detailed investigation of the Trojan asteroids Received 20 April 2012 occupying Jupiter’s L4 and L5 Lagrange points as a priority for future NASA missions.
    [Show full text]
  • Near-Infrared Spectroscopy of Trojan Asteroids: Evidence for Two Compositional Groups
    Near-Infrared Spectroscopy of Trojan Asteroids: Evidence for Two Compositional Groups J. P. Emery1 Earth and Planetary Science Dept & Planetary Geosciences Institute University of Tennessee, Knoxville, TN 37996 D. M. Burr1 Earth and Planetary Science Dept & Planetary Geosciences Institute University of Tennessee, Knoxville, TN 37996 D. P. Cruikshank NASA Ames Research Center, Moffett Field, CA 94035 Astronomical Journal, in press Manuscript pages: 38 Tables: 3 Figures: 7 (color for online, B&W for print) Appendix: 1 Proposed Running Head: Trojan asteroid spectral groups Corresponding author: Joshua P. Emery 306 EPS Building 1412 Circle Dr Knoxville, TN 37996 (865) 974-8039 (office) (865) 974-2368 (fax) E-mail: [email protected] 1 Visiting astronomer at NASA IRTF 2 Abstract The Trojan asteroids, a very substantial population of primitive bodies trapped in Jupiter’s stable Lagrange regions, remain quite poorly understood. Because they occupy these orbits, the physical properties of Trojans provide unique perspective on chemical and dynamical processes that shaped the Solar System. The current study was therefore undertaken to investigate surface compositions of these objects. We present 66 new near-infrared (NIR; 0.7 to 2.5 μm) spectra of 58 Trojan asteroids, including members of both the leading and trailing swarms. We also include in the analysis previously published NIR spectra of 13 Trojans (3 of which overlap with the new sample). This data set permits not only a direct search for compositional signatures, but also a search for patterns that may reveal clues to the origin of the Trojans. We do not report any confirmed absorption features in the new spectra.
    [Show full text]
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 43, NUMBER 4, A.D. 2016 OCTOBER-DECEMBER 283. LIGHTCURVES FOR TWO NEAR-EARTH-ASTEROIDS BY Observatory Telescope (meters) CCD ASTEROIDS OBSERVERS (OBAS) – MPPD: C.A.A.T. 0.45 DK SBIG STL-11002 2016 APRIL - MAY Zonalunar 0.20 NW QHY6 Vicente Mas Martinez, Gonzalo Fornas Silva, Angel Flores Vallbona 0.25 SCT SBIG ST7-XME Martinez, CAAT - Centro Astronómico del Alto Turia, SPAIN TRZ 0.20 R-C QHY8 [email protected] Elche 0.25 DK SBIG ST8-XME Alfonso Carreño Garcerán Oropesa 0.20 SCT Atik 16I Zonalunar Observatory,Valencia, SPAIN Bétera 0.23 SCT Atik 314L+ Serra Observatory 0.25 NW Atik 414L+ Enrique Arce Mansego Table I. List of instruments used for the observations. SCT is Vallbona Observatory, Valencia, SPAIN Schmidt-Cassegrain. R-C is Ritchey-Chrétien. DK is Dall-Kirkham. NW is Newton. Pedro Brines Rodriguez TRZ Observatory, Valencia, SPAIN Table I shows the equipment at the observatories that participated in this work. We concentrated on asteroids with no reported period Juan Lozano de Haro and those where the reported period was poorly established and Elche Observatory, Alicante, SPAIN needed confirmation. All the targets were selected from the Collaborative Asteroid Lightcurve (CALL) website at Alvaro Fornas Silva (http://www.minorplanet.info/call.html) and Minor Planet Center Oropesa Observatory, Castellón, SPAIN (http://www.minorplanet.net) Onofre Rodrigo Chiner Images were measured using MPO Canopus (Bdw Publishing) Bétera Observatory, Valencia, SPAIN with a differential photometry technique.
    [Show full text]
  • Planetary-Scale Astronomical Bench
    PAB Phase I Final Report Final Report Planetary-scale Astronomical Bench NASA Institute for Advanced Concepts Phase I Study submitted by: SVS Inc. Timothy L. Howard (Principal Investigator) Lee M. Gutheinz Jack Sanders-Reed Carl Tuttle Bill Witt 9 Jan 2000 1 PAB Phase I Final Report Table of Contents 1. Executive Summary 3 2. Introduction 5 3. Science Objectives 7 a. Astrometry 7 b. Aperture Synthesis 12 c. Microlensing 17 d. Conventional Astronomy 18 e. Asteroid Studies 19 f. Other Applications 19 4. System Concepts 20 a. Station Concepts and Basing 22 b. Environments 29 5. Technology 31 a. Large Optics 31 b. Separated-spacecraft interferometry and metrology 32 d. Electronics 34 e. Robotics 35 f. Other Technology Areas 37 g. Technology Expectations 38 6. Exosolar Planet Detection 40 7. Summary and Conclusions 41 Appendices I. Limits on Separated-aperture interferometry 42 II. Libration orbit modeling 48 III. Environmental disturbances at Jupiter’s orbit 50 IV. Microlensing timescales 53 V. Astrometric depth sensing 54 VI. Summary data on the Trojan asteroids 55 References 57 2 PAB Phase I Final Report Executive Summary This report documents a concept study for a large-scale astronomical observatory that we refer to as the Planetary-scale Astronomical Bench, or PAB. The basic concept behind PAB is to place space telescopes at each of Jupiter’s Lagrange points L4 and L5 for use in cooperative, long-baseline astronomical observations. In conducting the study we looked at: the types of missions and science objectives that would be enabled or enhanced by the PAB concept; system configuration, basing, and the number and types of instruments; environmental considerations resulting from a location in the Jovian orbit; and technology needed for development of PAB systems and instruments.
    [Show full text]
  • On the Accuracy of Restricted Three-Body Models for the Trojan Motion
    On the accuracy of Restricted Three-Body Models for the Trojan motion Frederic Gabern,∗ Angel` Jorba∗and Philippe Robutel† Abstract In this note we compare the frequencies of the motion of the Trojan asteroids in the Restricted Three-Body Problem (RTBP), the Elliptic Restricted Three-Body Problem (ERTBP) and the Outer Solar System (OSS) model. The RTBP and ERTBP are well-known academic models for the motion of these asteroids, and the OSS is the standard model used for realistic simulations. Our results are based on a systematic frequency analysis of the motion of these asteroids. The main conclusion is that both the RTBP and ERTBP are not very accurate models for the long-term dynamics, although the level of accuracy strongly depends on the selected asteroid. Keywords: Symplectic integrators, frequency analysis, Trojan asteroids. 1 Introduction The Restricted Three-Body Problem models the motion of a particle under the gravit- ational attraction of two point masses following a (Keplerian) solution of the two-body problem (a general reference is [17]). The goal of this note is to discuss the degree of ac- curacy of such a model to study the real motion of an asteroid moving near the Lagrangian points of the Sun-Jupiter system. To this end, we have considered two restricted three-body problems, namely: i) the Circular RTBP, in which Sun and Jupiter describe a circular orbit around their centre of mass, and ii) the Elliptic RTBP, in which Sun and Jupiter move on an elliptic orbit. The realistic model used to test the results from the restricted models is the so-called Outer Solar System (OSS).
    [Show full text]