Abstract in PDF Format

Total Page:16

File Type:pdf, Size:1020Kb

Abstract in PDF Format Proterozoic Ultramafic-Mafic Intrusions of the Nipigon Plate, Beardmore, Ontario T.R. Hart1, M. terMeer1, C. Jolette1, and B.M. Duggan2 1Precambrian Geoscience Section, Ontario Geological Survey 2Department of Geological Sciences, Queens University e-mail: [email protected] A Proterozoic peridotite overlain by one of metasediment broken along bedding planes within a the Nipigon diabase sills is located in Eva and Kitto biotite-rich gabbro matrix indicates extensive townships, west of the town of Beardmore and interaction between the peridotite and country about 190 km northeast of Thunder Bay, Ontario. rocks. A tremolite rich hornfels zone, composed of The peridotite intrudes Archean clastic magnetite-rich and magnetite-poor lapilli to block metasedimentary rocks and mafic metavolcanic sized fragments, is also developed in the mafic rocks situated on the southern edge of the metavolcanic rocks and iron formation along the Beardmore-Geraldton belt (BGB), along the contact contact with the olivine gabbro. The shape of the between the eastern Wabigoon and Quetico intrusion is not known due to the lack of definitive subprovinces. A swarm of narrow, north-trending contact relationships, and could range from a diabase dykes cut the supracrustal rocks, and are steeply dipping cone sheet dyke to a shallow west- predominately 2170 Ma Marathon age dykes dipping sill. Controls on the location of the (Osmani, 1991) with lesser dykes representing intrusions may include a fault along the Archean branches of the Nipigon sills. The peridotite, metasedimentary and metavolcanic contact and/or mapped during the 2001 field season (Hart et al., the Wabigoon–Quetico subprovince boundary. 2001), has been interpreted to be time equivalent to A series of undulating, generally flat-lying the ultramafic (picrite) intrusions of the Leckie and to shallow-dipping, massive, medium- to fine- Disreali lakes area (Sutcliffe, 1991) that are grained diabase sills of the Nipigon Sill Complex currently being explored for platinum group intrude all rock units. Sills are generally 100 m element (PGE) mineralization (East West Resource thick, and vary by 50 to 60 m in elevation over Corporation, 2001). distances of 400 to 500 m. But a 185 m thick sill The peridotite forms a roughly ring-shaped was intersected in the workings of two local gold intrusion that is crudely zoned and dominated by a mines. The diabase contains trace to 5% fine- lherzolite inner zone with a wehrlite outer zone. grained olivine in distinct contrast to the Logan sills The lherzolite is composed of massive, medium- located closer to Lake Superior (J. Franklin and R. grained, cumulus olivine, orthopyroxene, and lesser Middleton, personal communication, 2001). Sill clinopyroxene. Irregular areas containing stratigraphy is varied and coarse-grained approximately 5% coarse-grained, subhedral granophyric zones were observed toward the base orthopyroxene phenocrysts and variable amounts of of the sill, and also near the sill top underlying a plagioclase are more common towards the inner magnetite porphyritic phase. Contacts are contact. The wehrlite lacks the irregular areas rich commonly polygonal jointed, aphanitic chills or in orthopyroxene phenocrysts, but occasionally xenolith-rich hybrid zone along the contact with contains very coarse-grained poikilitic adjacent metasedimentary rocks. The hybrid orthopyroxene. Both units contain 1% fine-grained contacts consist of a matrix of fine-grained, black biotite or hornblende in contrast to the Nipigon biotite diabase hosting blocks or pebble-size diabase. Outcrop exposure is sparse, and the only xenoliths of metasediment and subrounded to exposed peridotite contact has fine-grained to rounded pebble sized xenoliths of coarse-grained chilled diabase overlying the peridotite. A quartz and white to pinkish feldspar. These hybrid granophyric olivine gabbro located along the inner contact textures are interpreted to indicate the contact between the peridotite and the supracrustal assimilation of adjacent metasedimentary rocks by rocks is interpreted to represent the upper contact of the diabase. the peridotite. A portion of the gabbro is coarse- The peridotite is compositionally similar grained with pinkish feldspar and small, irregular, to the ultramafic intrusions at Seagull and Disreali possibly mariolitic cavities interpreted to indicate lakes, south of Lake Nipigon, recently reclassified emplacement of the peridotite at a shallow crustal as dunites and lherzolites by Middleton (2001). level. A hybrid contact containing pebble to cobble The peridotite is also geochemically similar to the size, angular to subangular xenoliths of lower suite of the Osler Group volcanic rocks (Sutcliffe, 1987), with TiO2: 0.56 to 2.54%, Mg- Belt of the Pontiac Subprovince and the numbers: 0.71 to 0.80, La/Sm: 2.61 to 4.0, Gd/Yb: Use of Cu-Pd Ratios in Interpreting 1.76 to 3.73, and Th/Ta: 0.13 to 0.31. The olivine Platinum-Group Element Distributions. gabbro has similar ratios, but higher elemental Economic Geology, 88, p.1402-1418. abundances, than the peridotite indicating that it is East West Resources, 2001. East West Resources the fractionated and crustal contaminated upper Corporation website; Geology of the portion of the intrusion. However, this intrusion is Seagull and Disreali properties; older than the diabase sill and could be part of a www.eastwestres.com/prop_disraeli.htm magmatic event related to earlier rifting in the Hart, T.R., terMeer, M., Jolette,C. Duggan, B.M. Nipigon Plate. Nickel depletion within the 2001. Phoenix Bedrock Mapping Project: intrusion is relatively weak, but Cu/Pd ratios fall Geology of the Proterozoic Mafic and within the enriched range of Barnes et al. (1993) Ultramafic Intrusions in the Beardmore and overlaps with the Cu/Pd ratios reported for the Area. in Summary of Field Work and Disreali and Seagull lakes intrusions (Middleton, Other Activities, Ontario Geological 2001). There are a number of interflow chert- Survey, Open File Report 6070, p.20-1 to magnetite iron formations with minor sulphide 20-11. mineralization in the adjacent metavolcanic rocks Mackasey, W.O. 1975. Geology of Dorothea, that are potential sulphur sources for the formation Sandra and Irwin townships, District of of PGE mineralization in the peridotite Thunder Bay; Ontario Division of Mines, The diabase is geochemically similar to Report 122, 83p. the upper suite of the Osler Group (Sutcliffe, 1987), Middleton, R. 2001. Noril’sk Style Cu-Ni-PGE with TiO2: 0.66 to 2.49%, Mg-numbers: 0.29 to Mineralization in the Nipigon Plate-Lake 0.70, La/Sm: 1.59 to 2.93, Gd/Yb: 1.37 to 1.79, and Superior Region; abstract in Superior PGE Th/Ta: 0.11 to 0.33. Mineralization within the 2001, CIM Geological Society Field diabase consists of trace amounts of disseminated Conference, September 16-19, 2001. pyrrhotite and pyrite and chalcopyrite in joints Osmani, I.A. 1991. Proterozoic Mafic Dyke close to the upper or lower contacts. The Swarms in the Superior Province of assimilation of adjacent metasedimentary rocks Ontario; in Geology of Ontario, Ontario increases the potential for contact-style PGE Geological Survey, Special Volume 4, Part mineralization, with occurrences present near the 1, p.661-681. upper contact of a sill in southeast Kitto Township Sutcliffe, R.H. 1987. Petrology of Middle and the lower contact of a sill in southwestern Eva Proterozoic diabases and picrites from Township. Lake Nipigon, Canada. Contributions to Mineralogy and Petrology, 96, p.201-211. References Sutcliffe, R.H. 1991. Proterozoic geology of the Barnes, S.J., Couture, J.-F., Swayer, E.W., and Lake Superior area; in Geology of Ontario, Bouchaib, C. 1993. Nickel-Copper Ontario Geological Survey, Special Occurrences in the Belleterre-Angliers Volume 4, Part 1, p.627-658. .
Recommended publications
  • Uranium Deposits of Ontario- Their Distribution and Classification
    Ontario Geological Survey Miscellaneous Paper 86 The Uranium Deposits of Ontario- Their Distribution and Classification By James A. Robertson 1981 lanWPope Ministry of !^st£ Natural ...__ W.T. Foster Deputy Minister Ontario ®OMNR-OGS 1981 ISSN 0704-2752 Printed in Canada ISBN 0-7743-602627 Publications of the Ontario Ministry of Natural Resources and price list are available through the Ministry of Natural Resources, Public Service Centre Room 1640, Whitney Block, Queen's Park, Toronto, Ontario, M7A 1W3 (personal shopping and mail orders). and reports only from the Ontario Government Bookstore, Main Floor 880 Bay St., Toronto for per- sonal shopping. Out-of-Town customers write to Ministry of Government Services, Publica- tions Services Section, 5th Floor, 880 Bay St., Toronto. Ontario. M7A 1N8. Telephone 965-6015. Toll free long distance 1 •800-268-7540, in Area Code 807 dial 0-Zenith 67200. Orders for publications should be accompanied by cheque or money order payable to the Treasurer of Ontario. Every possible effort is made to ensure the accuracy of the information con- tained in this report, but the Ministry of Natural Resources does not assume any liability for errors that may occur. Source references are included in the report and users may wish to verify critical information. Parts of this publication may be quoted if credit is given. It is recommended that reference to this report be made in the following form: Robertson, James A. 1981: The Uranium Deposits ol Ontario-Their Distribution and Classifica- tion; Ontario Geological
    [Show full text]
  • Geology of the Grand River Watershed an Overview of Bedrock and Quaternary Geological Interpretations in the Grand River Watershed
    Geology of the Grand River Watershed An Overview of Bedrock and Quaternary Geological Interpretations in the Grand River watershed Prepared by Bob Janzen, GIT December 2018 i Table of Contents List of Maps ..................................................................................................................... iii List of Figures .................................................................................................................. iii 1.0 Introduction ........................................................................................................... 1 2.0 Bedrock Geology .................................................................................................. 1 Algonquin Arch ......................................................................................................... 2 Bedrock Cuestas ...................................................................................................... 3 2.1 Bedrock Surface ................................................................................................. 4 2.2 Bedrock Formations of the Grand River watershed ........................................... 8 2.2.1 Queenston Formation ................................................................................ 15 2.2.2 Clinton–Cataract Group ............................................................................. 15 2.2.2.1 Whirlpool Formation ............................................................................ 16 2.2.2.2 Manitoulin Formation ..........................................................................
    [Show full text]
  • Geology Datasets of North America for Use with Ice Sheet Models Evan J
    Discussions Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-139 Earth System Manuscript under review for journal Earth Syst. Sci. Data Science Discussion started: 22 November 2018 c Author(s) 2018. CC BY 4.0 License. Open Access Open Data Geology datasets of North America for use with ice sheet models Evan J. Gowan1, Lu Niu1, Gregor Knorr1, and Gerrit Lohmann1 1Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany Correspondence: Evan J. Gowan ([email protected]) Abstract. The ice-substrate interface is an important boundary condition for ice sheet modelling. The substrate affects the ice sheet by allowing sliding through sediment deformation and accommodating the storage and drainage of subglacial water. We present three datasets with different geological parameters for the region that was covered by the ice sheets in North America, including 5 Greenland and Iceland. The first dataset includes the distribution surficial sediments, which is separated into continuous, discontinuous and predominantly rock categories. The second dataset includes sediment grain size properties, which is divided into three classes: clay, silt and sand, based on the dominant grain size of the glacial sediments. The third dataset is the generalized bedrock geology. We demonstrate the utility of these datasets for governing ice sheet dynamics by using an ice sheet model with a simulation that extends through the last glacial cycle. Changes in ice thickness by up to 40% relative to 10 a reference simulation happened when the shear friction angle was reduced to account for a weaker substrate. These datasets provide a basis to improve the basal boundary conditions in ice sheet models.
    [Show full text]
  • Seamless Quaternary Geology of Southern Ontario
    Miscellaneous Release—Data 128 – Revised Surficial Geology of Southern Ontario Project Summary and Technical Document Originally released as MRD 128 in October 2003 Revised version of MRD 128 (MRD 128—Revised) released April 2010 Table of Contents ABSTRACT ...................................................................................................................................................3 INTRODUCTION...........................................................................................................................................4 GENERAL QUATERNARY GEOLOGY OF SOUTHERN ONTARIO...........................................................4 DATA SOURCES..........................................................................................................................................5 QUATERNARY/SURFICIAL GEOLOGY MAPS......................................................................................................5 OTHER DATA SOURCES ............................................................................................................................6 FIELD INVESTIGATIONS .................................................................................................................................6 BEDROCK GEOLOGY MAPS............................................................................................................................6 AERIAL PHOTO INTERPRETATION...................................................................................................................6 AGGREGATE RESOURCES
    [Show full text]
  • Constraining the Formation and Alteration of Sudbury Breccia, Ontario, Canada: Implications for Footwall Cu-Ni-PGE Exploration
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 9-6-2016 12:00 AM Constraining the Formation and Alteration of Sudbury Breccia, Ontario, Canada: Implications for Footwall Cu-Ni-PGE Exploration Jonathan W. O'Callaghan The University of Western Ontario Supervisor Dr. G.R. Osinski The University of Western Ontario Joint Supervisor Dr. R.L. Linnen The University of Western Ontario Graduate Program in Geology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Jonathan W. O'Callaghan 2016 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Geology Commons Recommended Citation O'Callaghan, Jonathan W., "Constraining the Formation and Alteration of Sudbury Breccia, Ontario, Canada: Implications for Footwall Cu-Ni-PGE Exploration" (2016). Electronic Thesis and Dissertation Repository. 4075. https://ir.lib.uwo.ca/etd/4075 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. i Abstract Sudbury breccia is an impactite situated in the footwall of the 1.85 Ga Sudbury impact structure, situated in Ontario. Developing exploration vectors towards Sudbury breccia- hosted Cu-Ni-PGE mineralization is inhibited by an insufficient understanding of the relative contributions of footwall lithologies versus impact melt. By combining whole-rock geochemistry, field observations, statistical modelling and petrography, this study has determined that Sudbury breccia is a parautochthonous shock melt, which does not require a melt sheet contribution.
    [Show full text]
  • Regional Geomechanics – Southern Ontario
    Regional Geomechanics – Southern Ontario March 2011 Prepared by: Nuclear Waste Management Organization and AECOM Canada Ltd. NWMO DGR-TR-2011-13 DGR-GUID-00531-0001-R000 Regional Geomechanics – Southern Ontario March 2011 Prepared by: Nuclear Waste Management Organization and AECOM Canada Ltd. NWMO DGR-TR-2011-13 Regional Geomechanics - ii - March 2011 THIS PAGE HAS BEEN LEFT BLANK INTENTIONALLY Regional Geomechanics - iii - March 2011 Document History Title: Regional Geomechanics - Southern Ontario Report Number: NWMO DGR-TR-2011-13 Revision: R000 Date: March 2011 Nuclear Waste Management Organization and AECOM Canada Ltd. Prepared by: T. Lam (NWMO), S. Usher (AECOM Canada Ltd.) Reviewed by: T. Engelder (Pennsylvania State University) Approved by: R.E.J. Leech Nuclear Waste Management Organization Reviewed by: M. Jensen Accepted by: M. Jensen Regional Geomechanics - iv - March 2011 THIS PAGE HAS BEEN LEFT BLANK INTENTIONALLY Regional Geomechanics - v - March 2011 EXECUTIVE SUMMARY This report presents a comprehensive review of the state of knowledge regarding the geomechanical framework of southern Ontario. The information in this report supports Ontario Power Generation’s (OPG) proposed Deep Geologic Repository (DGR) project at the Bruce nuclear site in the Municipality of Kincardine, Ontario. The report draws information from southern Ontario and the neighbouring states of Michigan, Ohio, Pennsylvania and New York to present a synthesis of current scientific understanding of the Precambrian-Paleozoic sequence within the Regional Study Area (RSA) surrounding the Bruce nuclear site. The purpose of the regional geomechanical review is to present a regional understanding of the geomechanical properties of the deep sedimentary formations that will host and enclose the proposed DGR as they relate to the ability of the sedimentary sequence to isolate and contain Low and Intermediate Level radioactive waste.
    [Show full text]
  • Stratigraphic Lexicon for Michigan
    Stratigraphic Lexicon for Michigan AUTHORS Paul A. Catacosinos David B. Westjohn [Professor Emeritus, United States Geological Survey Delta College [Associate Professor (Adjunct), University Center, MI 48710] Michigan State University] 1001 Martingale Lane SE 6520 Mercantile Way #6 Albuquerque, NM 87123-4305 Lansing, MI 48911 William B. Harrison, III Mark S. Wollensak, CPG Professor, Department of Geosciences EarthFax Engineering, Inc. Western Michigan University 15266 Ann Drive Kalamazoo, MI 49008 Bath, MI 48808 Robert F. Reynolds Reynolds Geological, L.L.C. 504 Hall Blvd. Mason, MI, 48854 Bulletin 8 Lansing, Michigan, 2001 Geological Survey Division and the Michigan Basin Geological Society State of Michigan John Engler, Govenor Michigan Department of Environmental Quality Russell J. Harding, Director MDEQ Geological Survey Division, P O Box 30256, Lansing, MI 48909-7756 On the Internet @ HTTP://W WW .DEQ.STATE.MI.US/GSD Printed by Authority of Act 451, PA 1994 as amended The Michigan Department of Environmental Quality (MDEQ) will not discriminate Total number of copies printed ........... 1,000 against any individual or group on the basis of race, sex, religion, age, national origin, Total cost: .................................... $2,500.00 color, marital status, disability or political beliefs. Directed questions or concerns to the Cost per copy: ..................................... $2.50 MDEQ Office of Personnel Services, P.O. Box 30473, and Lansing, MI 48909 Page 2 - - Stratigraphic Lexicon for Michigan DEDICATION The authors gratefully dedicate this volume to the memories of Helen M. Martin and Muriel Tara Straight. This volume would not have been possible without their monumental reference work Bulletin 50, An Index of Helen Melville Martin Michigan Geology published by the Michigan Geological Survey in 1956.
    [Show full text]
  • Geology of the Canadian Shield in Ontario
    ISSN 0826-9580 ISBN 978-1-4249-3434-8 THESE TERMS GOVERN YOUR USE OF THIS DOCUMENT Your use of this Ontario Geological Survey document (the “Content”) is governed by the terms set out on this page (“Terms of Use”). By downloading this Content, you (the “User”) have accepted, and have agreed to be bound by, the Terms of Use. Content: This Content is offered by the Province of Ontario’s Ministry of Northern Development and Mines (MNDM) as a public service, on an “as-is” basis. Recommendations and statements of opinion expressed in the Content are those of the author or authors and are not to be construed as statement of government policy. You are solely responsible for your use of the Content. You should not rely on the Content for legal advice nor as authoritative in your particular circumstances. Users should verify the accuracy and applicability of any Content before acting on it. MNDM does not guarantee, or make any warranty express or implied, that the Content is current, accurate, complete or reliable. MNDM is not responsible for any damage however caused, which results, directly or indirectly, from your use of the Content. MNDM assumes no legal liability or responsibility for the Content whatsoever. Links to Other Web Sites: This Content may contain links, to Web sites that are not operated by MNDM. Linked Web sites may not be available in French. MNDM neither endorses nor assumes any responsibility for the safety, accuracy or availability of linked Web sites or the information contained on them. The linked Web sites, their operation and content are the responsibility of the person or entity for which they were created or maintained (the “Owner”).
    [Show full text]
  • Supplementary Materials (A) Geological
    Supplementary Materials (A) Geological Settings of Samples 1. Fig Tree Group, Barberton Greenstone Belt, Swaziland Supergroup, South Africa, ~3.26-3.23 Ga (Veizer et al. 1989b) The depositional setting is considered to be marine deepening from south to north from shallow- platformal to deep-water facies (Lowe 1980, 1982; Paris et al. 1985; Brandl et al. 2006). The middle part of the 3.26-3.23 Ga Fig Tree Group (the Mapepe Formation; Armstrong et al. 1990; Byerly et al. 1996; Kröner et al. 1991) contains a section of interbedded dolomite and chert 30 to 50 m thick in the Barite Syncline (Heinrichs and Reimer 1977) at the southern edge of farm Heemstede 378JU. The sequence contains unquestionable sedimentary textures and structures, which have been described in Lowe and Knauth (1977; locality 5), Heinrichs and Reimer (1977), and Bao et al. (2007), indicating deposition above the fair-weather-wave base. 2. Woman Lake Assemblage, Uchi Greenstone Belt, Ontario, Canada, ~2.87-2.86 Ga (Veizer et al. 1989b) The geology of the Woman Lake area of the Uchi Greenstone Belt has been summarized in Hofmann et al. (1985). Grey siliceous, stromatolitic limestones from SE Shabu Lake, Woman Lake, and Confideration Lake that experienced greenschist facies metamorphism and cap the mafic to felsic volcanic cycle were analyzed. The ~2600 m thick cycle starts with amygdaloidal pillowed basaltic flows grading to subaqueous, intermediate pumice flows, felsic tuffs, lapilli- tuffs, and finally felsic tuff, indicating local subaerial volcanism in a caldera setting (Hofmann et al. 1985). Stromatolitic limestone, up to 60 m in thickness, contains stratiform structures with corrugated laminae; 2) small hemispheroidal mounds; and 3) columnar structures; all indicating shallow-water setting within the photic zone.
    [Show full text]
  • Glacial Stratigraphy of the Ridge River Area, Northern Ontario: Refining Wisconsinan Glacial History and Evidence for Laurentide Ice Streaming
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 9-15-2014 12:00 AM Glacial Stratigraphy of the Ridge River Area, Northern Ontario: Refining Wisconsinan Glacial History and Evidence for Laurentide Ice Streaming Maurice Nguyen The University of Western Ontario Supervisor Dr. Stephen Hicock The University of Western Ontario Graduate Program in Geology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Maurice Nguyen 2014 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Geology Commons Recommended Citation Nguyen, Maurice, "Glacial Stratigraphy of the Ridge River Area, Northern Ontario: Refining Wisconsinan Glacial History and Evidence for Laurentide Ice Streaming" (2014). Electronic Thesis and Dissertation Repository. 2470. https://ir.lib.uwo.ca/etd/2470 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Glacial Stratigraphy of the Ridge River Area, Northern Ontario: Refining Wisconsinan Glacial History and Evidence for Laurentide Ice Streaming Thesis format: Monograph by Maurice Nguyen Graduate Program in Geology A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science The School of Graduate and Postdoctoral Studies Western University London, Ontario, Canada © Maurice Nguyen 2014 Abstract Detailed field studies of Quaternary sediments were undertaken during the summer of 2012 in the remote Ridge River area of the Hudson Bay Lowland. Grain size, carbonate content, stone lithologic analyses and stratigraphy of 31 sites were compiled, and revealed two main till units likely deposited by the advance and retreat of the Laurentide Ice Sheet.
    [Show full text]
  • N Shore, L. Superior: Geology, Scenery
    THESE TERMS GOVERN YOUR USE OF THIS DOCUMENT Your use of this Ontario Geological Survey document (the “Content”) is governed by the terms set out on this page (“Terms of Use”). By downloading this Content, you (the “User”) have accepted, and have agreed to be bound by, the Terms of Use. Content: This Content is offered by the Province of Ontario’s Ministry of Northern Development and Mines (MNDM) as a public service, on an “as-is” basis. Recommendations and statements of opinion expressed in the Content are those of the author or authors and are not to be construed as statement of government policy. You are solely responsible for your use of the Content. You should not rely on the Content for legal advice nor as authoritative in your particular circumstances. Users should verify the accuracy and applicability of any Content before acting on it. MNDM does not guarantee, or make any warranty express or implied, that the Content is current, accurate, complete or reliable. MNDM is not responsible for any damage however caused, which results, directly or indirectly, from your use of the Content. MNDM assumes no legal liability or responsibility for the Content whatsoever. Links to Other Web Sites: This Content may contain links, to Web sites that are not operated by MNDM. Linked Web sites may not be available in French. MNDM neither endorses nor assumes any responsibility for the safety, accuracy or availability of linked Web sites or the information contained on them. The linked Web sites, their operation and content are the responsibility of the person or entity for which they were created or maintained (the “Owner”).
    [Show full text]
  • Canada INFO-0597
    INFO 0597 CA9600098 if- MOL Atomic Energy Commission de contrôle Control Board de l'énergie atomique Canada INFO-0597 Faulting in Unconsolidated Sediments and Bedrock East of Toronto — Phase 1 by C. Rogojina I A.A. Mohajerand N. Eyles Seismican Geophysical Limited I 1 I Prepared for I the Atomic Energy Control Board under its Regulatory Research and Support Program I Ottawa, Canada I AECB Project No. 2.263. I October 1995 I I Atomic Energy Commission de contrôle 1*1 Control Board de l'énergie atomique Canada I | NEXT PAGE(S) left BLANK FAULTING IN UNCONSOLIDATED SEDIMENTS AND BEDROCK EAST OF TORONTO — PHASE 1 A report prepared by C. Rogojina, A.A. Mohajer and N. Eyles, Seismican Geophysical Limited, under contract to the Atomic Energy Control Board. ABSTRACT Increasing concern with the potential earthquake hazard in southern Ontario has focused attention on neotectonic structures affecting bedrock. Within the boundaries of the metropolitan Toronto area (632 km2), about 2500 fracture orientations have been measured in more than 70 bedrock outcrops. An east-northeast systematic fracture set and an abutting orthogonal truncated fracture set constitute the most commonly-oriented fundamental fracture system in the study area. The east-northeast systematic fracture set may be the product of the current compressive stress field combined with regional uplift, but this should be confirmed by further field investigation. Anomalous fracture patterns were identified at the periphery of Metropolitan Toronto, specifically along the West Humber and Rouge rivers. Four post- glacial pop-ups were identified within Metro Toronto. Careful mapping and description of these pop-ups show a possible relationship with the contemporary principal stresses in the area and the local fracture pattern.
    [Show full text]