The Official Magazine of The

Total Page:16

File Type:pdf, Size:1020Kb

The Official Magazine of The OceTHE OFFICIALa MAGAZINEn ogOF THE OCEANOGRAPHYra SOCIETYphy CITATION King, J.R. 2014. Review of Regional Fisheries of the California Current System: The CalCOFI Program, by S. McClatchie. Oceanography 27(4):177–178, http://dx.doi.org/ 10.5670/oceanog.2014.102. DOI http://dx.doi.org/10.5670/oceanog.2014.102 COPYRIGHT This article has been published in Oceanography, Volume 27, Number 4, a quarterly journal of The Oceanography Society. Copyright 2014 by The Oceanography Society. All rights reserved. USAGE Permission is granted to copy this article for use in teaching and research. Republication, systematic reproduction, or collective redistribution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to: [email protected] or The Oceanography Society, PO Box 1931, Rockville, MD 20849-1931, USA. DOWNLOADED FROM HTTP://WWW.TOS.ORG/OCEANOGRAPHY BOOK REVIEW REGIONAL FISHERIES OF THE CALIFORNIA CURRENT SYSTEM: THE CALCOFI PROGRAM By Sam McClatchie, 2014, Springer, 235 pages, ISBN 978-94-007-7223-6, e-book: $149 US, Hardcover: $189 US Reviewed by Jacquelynne R. King and provide a window into past think- the biological oceanography, specifically, ing on scientific issues. Though review advection versus upwelling currents as books often present only a limited num- they relate to zooplankton. This section ber of figures, here there are numerous provides a useful overview of the rele- figures to support the text. And while this vant literature, with the right amount of book does provide a thorough synthesis explanation of their methods and results. of CalCOFI research, the author period- The later sections of this chapter provide he California Cooperative Oceanic ically balances it with his own personal considerable detail on the regional pro- TFisheries Investigations (CalCOFI) views on alternate hypotheses or suggests cesses affecting production; they are spe- program has been operating for over avenues for future analyses without being cific to central and southern California 60 years and is one of the longest run- overly intrusive or biased to the synthesis. and likely of interest to researchers work- ning fisheries oceanography survey pro- The CalCOFI program was initiated ing within those regions, but perhaps of grams in the world. CalCOFI has made in 1950 to investigate the decline of the limited interest to others. significant contributions to the knowl- Pacific sardine fishery. Chapter 1 provides Chapter 3 may be the shortest chap- edge of oceanographic processes in the a brief background on that fishery and a ter of the book, but perhaps it is the California Current System and made perspective on oppositional hypothe- most important. Over the course of the this ocean region one of the best stud- ses with regard to its collapse. This chap- CalCOFI program, the survey gear and ied systems in the world. How odd then ter contains a section on Commercial methodology for biological sampling have that a contemporary, comprehensive syn- Fisheries of California over the past changed. An integral part of CalCOFI has thesis of fisheries oceanography in this 90 years, providing the reader with use- been documenting those changes and region has been lacking until now. The ful historical landings of several pelagic conducting the required comparisons of book Regional Fisheries Oceanography species of commercial importance in gear and methods in order to develop of the California Current System by Sam waters off California. The final two sec- correction factors. This chapter places McClatchie completes the difficult task tions of this chapter are a nice amalgama- all of the information on gear types and of providing an integrative review and tion of the CalCOFI sampling design and sampling methods contained in numer- brings the reader up to date on relevant its unique numbering system for its tran- ous reports into one place. If you are a literature, from peer-reviewed journal sects and stations. Here, the reader will researcher that uses CalCOFI time series, papers, to technical reports, to “gray liter- also find an explanation of the temporal this chapter will be important for ensuring ature,” that might not otherwise be read- and spatial changes to survey coverage. that you are aware of the changes across ily available to readers. Chapter 2 concatenates historical the years. It is also useful background for This book is not for the casual reader: it CalCOFI survey data (such as from students or researchers who are designing is technical, and while the author attempts CTDs) with modern technology, includ- a sampling program: it offers information to balance explanatory with expert text, it ing Argo float and glider data, to pro- on the specifications of the current gear is not a book for a quick overview. But it is vide a physical oceanographic descrip- employed by CalCOFI. One of the pro- engaging—the writing style and integra- tion of the California Current along with gram’s legacies is the CalCOFI Atlases: tion of disciplines makes it a pleasure to its origin waters. Taken together, these 35 volumes published between 1963 and read. There are number of elements that data help to paint a more complex and 2002 on ichthyoplankton and zooplank- make it accessible. Each chapter begins varying picture of the California Current ton. This section serves as an introduc- with a suite of historical quotes from than a “broad, weak, equatorward flow,” tion to the atlases, with brief descriptions people involved with CalCOFI or from as it is typically characterized. A partic- of krill, chaetognaths, copepods, and ich- California Current studies; they are a nice ular highlight of Chapter 2 is the section thyoplankton. A nice concluding section way to set the stage for the chapter theme that links the physical oceanography to deals with how the ichthyoplankton time Oceanography | December 2014 177 series generated by CalCOFI have been There are very few global examples program. This chapter is the jewel of the used to identify recurrent groups related of the operationalization of environ- book, and reading it was an absolute to regional and ENSO-driven differences mental factors into the provision of tac- pleasure. It brought the scientists to the in oceanography. tical advice for fisheries management. forefront, and reminds the reader that a Chapter 4 presents the multitude of Chapter 6 provides an outline of how world-class program such as CalCOFI is temporal-scale forcing concepts that have CalCOFI oceanographic and ichthyo- only successful because of its engaged, been developed to explain trends in phys- plankton time series have been incorpo- passionate, and determined scien- ical and biological time series. It is the rated into stock assessments for a number tists. The legacy of CalCOFI is not lim- only chapter where the author’s bias is of species, including sardine, anchovy, ited to its long-term data sets but must intrusive. The overview of regime shifts cowcod, boccacio, and Pacific mackerel. include the countless researchers who and climate indices is rather subjective, These examples are valuable to have, and have contributed to the program over which is perhaps fair to expect in a book one in particular, the case for sardine, the years. Technology makes data collec- of this type, but it would have been more provides an example of how the relation- tion such a different creature than it was refreshing to have a balanced account. ship of an environmental variable (here, when CalCOFI first started, and students These issues notwithstanding, the litera- sea surface temperature) to recruitment should understand and appreciate the ture provided is a good start toward net- can break down over time, and reliance efforts of those who came before them. working in order to build an understand- on these relationships without continu- I find it remarkable how many eventual ing of the climate indices and scales of ous revalidation can have major impacts CalCOFI researchers began as summer variability important to the California on the stock assessment process. and graduate students within the pro- Current System. This chapter is one from Chapter 7 may be the weakest chap- gram’s projects and labs. This speaks to which readers will need to build upon ter simply because it relies on a single ref- the long-standing role that CalCOFI has information provided in order to develop erence that places fisheries oceanogra- played in providing mentorship to young their own opinions regarding conflict- phy in California as the strong influence students and its provision of a vibrant ing hypotheses. The detailed account on the global development of the concept academic environment. This is not to say of major El Niño and La Niña impacts of ecosystem-based management (EBM). that the researchers were infallible; there on regional oceanography and biota of Though I can see the reasoning for incor- are, of course, personal accounts that tell the California Current system is thor- poration of such an argument within us about some of the mistakes made or ough. A focus of the CalCOFI program this book, it overstates the case and fails even how successes came about from trial is the environmental drivers of sardine to provide a balanced and informa- and error. These just make the program and anchovy recruitment, and this chap- tive review of the global development of all the more inspiring. ter provides the details of both. Missing EBM. That notwithstanding, CalCOFI is This book will appeal to research- is any research on Pacific hake, which is unequivocally a stellar example of expan- ers and graduate students who study the surprising given its changes in seasonal sion from a single-species focus (initially California Current System. It is truly migratory behavior and its importance as sardine) into a holistic approach to fish- regional, focusing only on the central a commercially exploited species.
Recommended publications
  • Fronts in the World Ocean's Large Marine Ecosystems. ICES CM 2007
    - 1 - This paper can be freely cited without prior reference to the authors International Council ICES CM 2007/D:21 for the Exploration Theme Session D: Comparative Marine Ecosystem of the Sea (ICES) Structure and Function: Descriptors and Characteristics Fronts in the World Ocean’s Large Marine Ecosystems Igor M. Belkin and Peter C. Cornillon Abstract. Oceanic fronts shape marine ecosystems; therefore front mapping and characterization is one of the most important aspects of physical oceanography. Here we report on the first effort to map and describe all major fronts in the World Ocean’s Large Marine Ecosystems (LMEs). Apart from a geographical review, these fronts are classified according to their origin and physical mechanisms that maintain them. This first-ever zero-order pattern of the LME fronts is based on a unique global frontal data base assembled at the University of Rhode Island. Thermal fronts were automatically derived from 12 years (1985-1996) of twice-daily satellite 9-km resolution global AVHRR SST fields with the Cayula-Cornillon front detection algorithm. These frontal maps serve as guidance in using hydrographic data to explore subsurface thermohaline fronts, whose surface thermal signatures have been mapped from space. Our most recent study of chlorophyll fronts in the Northwest Atlantic from high-resolution 1-km data (Belkin and O’Reilly, 2007) revealed a close spatial association between chlorophyll fronts and SST fronts, suggesting causative links between these two types of fronts. Keywords: Fronts; Large Marine Ecosystems; World Ocean; sea surface temperature. Igor M. Belkin: Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, Rhode Island 02882, USA [tel.: +1 401 874 6533, fax: +1 874 6728, email: [email protected]].
    [Show full text]
  • Tube-Nosed Seabirds) Unique Characteristics
    PELAGIC SEABIRDS OF THE CALIFORNIA CURRENT SYSTEM & CORDELL BANK NATIONAL MARINE SANCTUARY Written by Carol A. Keiper August, 2008 Cordell Bank National Marine Sanctuary protects an area of 529 square miles in one of the most productive offshore regions in North America. The sanctuary is located approximately 43 nautical miles northwest of the Golden Gate Bridge, and San Francisco California. The prominent feature of the Sanctuary is a submerged granite bank 4.5 miles wide and 9.5 miles long, which lay submerged 115 feet below the ocean’s surface. This unique undersea topography, in combination with the nutrient-rich ocean conditions created by the physical process of upwelling, produces a lush feeding ground. for countless invertebrates, fishes (over 180 species), marine mammals (over 25 species), and seabirds (over 60 species). The undersea oasis of the Cordell Bank and surrounding waters teems with life and provides food for hundreds of thousands of seabirds that travel from the Farallon Islands and the Point Reyes peninsula or have migrated thousands of miles from Alaska, Hawaii, Australia, New Zealand, and South America. Cordell Bank is also known as the albatross capital of the Northern Hemisphere because numerous species visit these waters. The US National Marine Sanctuaries are administered and managed by the National Oceanic and Atmospheric Administration (NOAA) who work with the public and other partners to balance human use and enjoyment with long-term conservation. There are four major orders of seabirds: 1) Sphenisciformes – penguins 2) *Procellariformes – albatross, fulmars, shearwaters, petrels 3) Pelecaniformes – pelicans, boobies, cormorants, frigate birds 4) *Charadriiformes - Gulls, Terns, & Alcids *Orders presented in this seminar In general, seabirds have life histories characterized by low productivity, delayed maturity, and relatively high adult survival.
    [Show full text]
  • Film Flight: Lost Production and Its Economic Impact on California
    I MILKEN INSTITUTE California Center I July 2010 Film Flight: Lost Production and Its Economic Impact on California by Kevin Klowden, Anusuya Chatterjee, and Candice Flor Hynek Film Flight: Lost Production and Its Economic Impact on California by Kevin Klowden, Anusuya Chatterjee, and Candice Flor Hynek ACKnowLEdgmEnts The authors gratefully acknowledge Armen Bedroussian and Perry Wong for their expert assistance in preparing this study. We also thank our editor, Lisa Renaud. About tHE mILKEn InstItutE The Milken Institute is an independent economic think tank whose mission is to improve the lives and economic conditions of diverse populations in the United States and around the world by helping business and public policy leaders identify and implement innovative ideas for creating broad-based prosperity. We put research to work with the goal of revitalizing regions and finding new ways to generate capital for people with original ideas. We focus on: human capital: the talent, knowledge, and experience of people, and their value to organizations, economies, and society; financial capital: innovations that allocate financial resources efficiently, especially to those who ordinarily would not have access to them, but who can best use them to build companies, create jobs, accelerate life-saving medical research, and solve long-standing social and economic problems; and social capital: the bonds of society that underlie economic advancement, including schools, health care, cultural institutions, and government services. By creating ways to spread the benefits of human, financial, and social capital to as many people as possible— by democratizing capital—we hope to contribute to prosperity and freedom in all corners of the globe.
    [Show full text]
  • Seasonal and Spatial Fluctuations of the Phytoplankton in Monterey Bay
    SEASONAL AND SPATIAL FLUCTUATIONS OF THE PHYTOPLANKTON IN MONTEREY BAY A Thesis Presented to the Graduate Faculty of California State University, Hayward In Partial Fulfillment of the Requirements for the Degree Master of Arts in Biological Science by Russ Waidelich January, 1976 ABSTRACT The seasonal and spatial fluctuations of phyto­ plankton in Monterey Bay were described for an 18-month period. Low winter levels were mainly due to instabi­ lity of the water column, while the spring bloom was brought a·bout by the commencement of upwelling and the subsequent stabilization of the water column, with resi­ dence time of water regulating chlorophyll concentra­ tions. The summer minimum shortly followed the cessa­ tion of upwelling, when it appeared that nitrates were limiting, although zooplankton was a major factor in re­ ducing the algal standing stock at this time. Adequate illumination and relaxation of grazing pressure rather than specificity of water type appeared to be the major factors regulating the occurrence of the fall bloom, indicating that the seasonal pattern of Monterey Bay conforms generally to that of the mid­ latitude marine ecosystems. An examination of the spatial distribution o.f phytoplankton revealed lower values over the canyon during upwelling months due to advection of water to the shelf areas, and lower values in the same area during non-upwelling months due to subsidence or downwelling and tur·bul enc e . ii ACENOWLEDGlVJENTS Many people were responsible for helping to make this thesis possible. I would first like to thank my major advisors, Dr. Mary Silver and Dr. John Martin, for their valuable advice and support.
    [Show full text]
  • STATE of the CALIFORNIA CURRENT 2017–18: STILL NOT QUITE NORMAL in the NORTH and GETTING INTERESTING in the SOUTH Calcofi Rep., Vol
    STATE OF THE CALIFORNIA CURRENT 2017–18: STILL NOT QUITE NORMAL IN THE NORTH AND GETTING INTERESTING IN THE SOUTH CalCOFI Rep., Vol. 59, 2018 STATE OF THE CALIFORNIA CURRENT 2017–18: STILL NOT QUITE NORMAL IN THE NORTH AND GETTING INTERESTING IN THE SOUTH ANDREW R. THOMPSON* SAM MCCLATCHIE ROBERT M. SURYAN1, National Marine Fisheries Service 38 Upland Rd, Huia JANE DOLLIVER2, AND Southwest Fisheries Science Center Auckland 0604, New Zealand STEPHANIE LOREDO2 8901 La Jolla Shores Drive 1NOAA Alaska Fisheries Science Center La Jolla, CA 92037-1509 CLARE E. PEABODY Auke Bay Laboratories/ [email protected] National Marine Fisheries Service Ted Stevens Marine Research Institute Southwest Fisheries Science Center 17109 Pt. Lena Loop Road ISAAC D. SCHROEDER1,2, 8901 La Jolla Shores Drive Juneau, AK 99801 STEVEN J. BOGRAD1, ELLIOTT L. HAZEN1, La Jolla, CA 92037-1509 2Department of Fisheries and Wildlife MICHAEL G. JACOX1,3, ANDREW LEISING1, 4 Oregon State University AND BRIAN K. WELLS TIMOTHY R. BAUMGARTNER, Hatfield Marine Science Center 1Southwest Fisheries Science Center BERTHA E. LAVANIEGOS, AND Newport, OR 97365 National Marine Fisheries Service JOSE GOMEZ-VALDES 99 Pacific Street, Suite 255A Oceanology Division JEANNETTE E. ZAMON Monterey, CA 93940-7200 Centro de Investigación Científica y Northwest Fisheries Science Center 2Institute of Marine Sciences Educación Superior de Ensenada Point Adams Research Station University of California, Santa Cruz, CA Carretera Ensenada-Tijuana No. 3918 520 Heceta Place and Southwest Fisheries Science Center Zona Playitas C.P. 22860 Hammond OR 97121 NOAA Ensenada, Baja California, Mexico Monterey, CA STEPHANIE R. SCHNEIDER1 AND RICHARD D. BRODEUR1, 2 3 RICHARD T.
    [Show full text]
  • Upper Ocean Hydrology of the Northern Humboldt Current System
    Progress in Oceanography 165 (2018) 123–144 Contents lists available at ScienceDirect Progress in Oceanography journal homepage: www.elsevier.com/locate/pocean Upper ocean hydrology of the Northern Humboldt Current System at T seasonal, interannual and interdecadal scales ⁎ Carmen Gradosa, , Alexis Chaigneaub, Vincent Echevinc, Noel Domingueza a Instituto del MAR de PErú (IMARPE), Callao, Peru b Laboratoire d'Études en Géophysique et Océanographie Spatiale (LEGOS), Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France c Laboratoire d'Océanographie et de Climatologie: Expérimentation et Analyse Numérique (LOCEAN), LOCEAN-IPSL, IRD/CNRS/Sorbonnes Universités (UPMC)/MNHN, UMR 7159, Paris, France ARTICLE INFO ABSTRACT Keywords: Since the 1960s, the Instituto del Mar del Perú (IMARPE) collected tens of thousands of in-situ temperature and North Humboldt Current System salinity profiles in the Northern Humboldt Current System (NHCS). In this study, we blend this unique database Hydrology with the historical in-situ profiles available from the World Ocean Database for the period 1960–2014 and apply Water masses a four-dimensional interpolation scheme to construct a seasonal climatology of temperature and salinity of the Seasonal variations NHCS. The resulting interpolated temperature and salinity fields are gridded at a high spatial resolution Geostrophic currents (0.1° × 0.1° in latitude/longitude) between the surface and 1000 m depth, providing a detailed view of the ENSO Interdecadal variability hydrology and geostrophic circulation of this region. In particular, the mean distribution and characteristics of the main water-masses in the upper ocean of the NHCS are described, as well as their seasonal variations be- tween austral summer and winter.
    [Show full text]
  • California Current Integrated Ecosystem
    Agenda Item G.1.a IEA Team Report 1 March 2020 CALIFORNIA CURRENT INTEGRATED ECOSYSTEM ASSESSMENT (CCIEA) CALIFORNIA CURRENT ECOSYSTEM STATUS REPORT, 2020 A report of the NOAA CCIEA Team to the Pacific Fishery Management Council, March 5, 2020. Editors: Dr. Chris Harvey (NWFSC), Dr. Toby Garfield (SWFSC), Mr. Greg Williams (PSMFC), and Dr. Nick Tolimieri (NWFSC) 1 INTRODUCTION Section 1.4 of the 2013 Fishery Ecosystem Plan (FEP) established a reporting process wherein NOAA provides the Pacific Fishery Management Council (Council) with a yearly update on the status of the California Current Ecosystem (CCE), as derived from environmental, biological, economic and social indicators. NOAA’s California Current Integrated Ecosystem Assessment (CCIEA) team is responsible for this report. This is our 8th report, with prior reports in 2012 and 2014-2019. This report summarizes CCE status based on data and analyses that generally run through 2019. Highlights are summarized in Box 1.1. Appendices provide additional information or clarification, as requested by the Council, the Scientific and Statistical Committee (SSC), or other advisory bodies. Box 1.1: Highlights of this report • In 2019, the system experienced weak to neutral El Niño conditions, average to slightly positive Pacific Decadal Oscillation (PDO), and very weak North Pacific circulation • A large marine heatwave emerged in mid 2019, similar in size and intensity to the 2013- 2016 “Blob,” but it weakened by December, and we do not yet know what effects it had • Several ecological indicators
    [Show full text]
  • Climate Change and Seabirds of the California Current and Pacific Islands Ecosystems: Observed and Potential Impacts and Management Implications
    Climate Change and Seabirds of the California Current and Pacific Islands Ecosystems: Observed and Potential Impacts and Management Implications Final Report to the U.S. Fish and Wildlife Service, Region 1 Lindsay Young Pacific Rim Conservation Honolulu, Hawaii Robert M. Suryan Oregon State University Newport, Oregon David Duffy University of Hawaii Honolulu, Hawaii William J. Sydeman Farallon Institute Petaluma, California 3 May 2012 1 Contents Executive Summary ....................................................................................................................................... 3 Introduction .................................................................................................................................................. 6 Climate Change and Seabirds ................................................................................................................... 6 Geographic Scope ..................................................................................................................................... 7 Natural Climate Variability and North Pacific Ecosystems........................................................................ 8 The California Current ................................................................................................................................... 9 Climate Change factors ........................................................................................................................... 10 Atmospheric circulation .....................................................................................................................
    [Show full text]
  • STATE of the CALIFORNIA CURRENT 2018–19: a NOVEL ANCHOVY REGIME and a NEW MARINE HEATWAVE? Calcofi Rep., Vol
    STATE OF THE CALIFORNIA CURRENT 2018–19: A NOVEL ANCHOVY REGIME AND A NEW MARINE HEATWAVE? CalCOFI Rep., Vol. 60, 2019 STATE OF THE CALIFORNIA CURRENT 2018–19: A NOVEL ANCHOVY REGIME AND A NEW MARINE HEAT WAVE? ANDREW R. THOMPSON* MATI KAHRU EDWARD D. WEBER National Marine Fisheries Service AND RALF GOERICKE AND WILLIAM WATSON Southwest Fisheries Science Center Scripps Institution of Oceanography National Marine Fisheries Service 8901 La Jolla Shores Drive University of California, San Diego Southwest Fisheries Science Center La Jolla, CA, 92037-1509 La Jolla, CA 92093 8901 La Jolla Shores Drive [email protected] La Jolla, CA 92037-1509 CLARE E. PEABODY ISAAC D. SCHROEDER1,2, National Marine Fisheries Service JESSICA M. PORQUEZ1, STEVEN J. BOGRAD1, ELLIOTT L. HAZEN1, Southwest Fisheries Science Center JANE DOLLIVER1, MICHAEL G. JACOX1,3, ANDREW LEISING1, 8901 La Jolla Shores Drive DONALD E. LYONS1,2, AND AND BRIAN K. WELLS4 La Jolla, CA 92037-1509 RACHAEL A. ORBEN1 1Southwest Fisheries Science Center 1Department of Fisheries and Wildlife National Marine Fisheries Service TIMOTHY R. BAUMGARTNER, Oregon State University 99 Pacific Street, Suite 255A BERTHA E. LAVANIEGOS, Hatfield Marine Science Center Monterey, CA 93940-7200 LUIS E. MIRANDA, Newport, OR 97365 ELIANA GOMEZ-OCAMPO, 2Institute of Marine Sciences 2National Audubon Society University of California AND JOSE GOMEZ-VALDES 104 Nash Hall Santa Cruz, CA Oceanology Division Corvallis, OR 97331 and Centro de Investigación Científica y Southwest Fisheries Science Center Educación Superior de Ensenada JEANNETTE E. ZAMON NOAA Carretera Ensenada-Tijuana No. 3918 Northwest Fisheries Science Center Monterey, CA Zona Playitas C.P.
    [Show full text]
  • Phytoplankton Species in the California Current System Off Southern California: the Spatial Dimensions Calcofi Rep., Vol
    VENRICK: PHYTOPLANKTON SPECIES IN THE CALIFORNIA CURRENT SYSTEM OFF SOUTHERN CALIFORNIA: THE SPATIAL DIMENSIONS CalCOFI Rep., Vol. 56, 2015 PHYTOPLANKTON SPECIES IN THE CALIFORNIA CURRENT SYSTEM OFF SOUTHERN CALIFORNIA: THE SPATIAL DIMENSIONS ELIZABETH L. VENRICK Integrative Oceanography Division Scripps Institution of Oceanography University of California, San Diego La Jolla, CA 92093-0227 ph: (858) 534-2068 fax: (858) 534-6500 [email protected] ABSTRACT temporal cycles have been defined and studied, includ- This paper examines 16 years of microscopic infor- ing the seasonal cycle (Lynn and Simpson 1987; Legaard mation about phytoplankton taxonomic composition and Thomas 2006); the El Niño–Southern Oscillation and abundances from each of four regions in the Cal- (ENSO; Chelton et al. 1982; Bograd and Lynn 2001); COFI area. The NE region is approximately the region and two decadal cycles, the Pacific Decadal Oscilla- of the Southern California Bight; the SE region is the tion (Ebesmeyer et al. 1991; Roemmich and McGowan lower edge of the bight; the Offshore is the western- 1995a, b; Mantua et al. 1997); and the North Pacific most region; and the Alley is the path between the NE Gyre Oscillation (Bond et al. 2003; Di Lorenzo et al. and the Offshore through which the California Cur- 2008). Information on these scales of variability pro- rent meanders. vides a background against which to evaluate longer The NE region and the Alley consistently had the period changes. highest phytoplankton abundances, dominated by dia- Routine sampling for phytoplankton species on toms. These two areas were most similar with respect ­CalCOFI cruises began in 1990.
    [Show full text]
  • Selected BOEM-Funded Research Informing Renewable Energy Offshore California JUNE 2021
    Selected BOEM-Funded Research Informing Renewable Energy Offshore California JUNE 2021 Biological Studies ................................................................................. PAGE 1 Cultural & Archaeological Studies ................................................................. PAGE 6 Information Synthesis Studies .................................................................... PAGE 7 Physical Oceanography & Geology Studies ....................................................... PAGE 8 Resource, Technology & Infrastructure Studies ................................................... PAGE 9 Socioeconomic Studies .......................................................................... PAGE 10 Biological Studies Ongoing (2014–2022) — Potential Impacts of Submarine Power Cables on Crab Harvest This two-part research effort is to learn more about whether the electromagnetic fields (EMF) emitted from subsea power- transmission cables may affect the movement and harvest of commercial crab species. The first part was conducted by the University of California, Santa Barbara, which collected data on red rock crab in the Santa Barbara Channel and Dungeness crab in Puget Sound. The second part is collecting and analyzing additional data. Study Profile: https://www.boem.gov/pc-19-02/ Ongoing (2017-2022) — Seabird and Marine Mammal Surveys Near Potential Renewable Energy Sites Offshore Central and Southern California This study by the U.S. Geological Survey will provide up-to-date information on species composition, distribution,
    [Show full text]
  • The California Current System: a Multiscale Overview And
    Dynamics of Atmospheres and Oceans 52 (2011) 131–169 Contents lists available at ScienceDirect Dynamics of Atmospheres and Oceans journal homepage: www.elsevier.com/locate/dynatmoce The California Current System: A multiscale overview and the development of a feature-oriented regional modeling system (FORMS) a,∗ b c Avijit Gangopadhyay , Pierre F.J. Lermusiaux , Leslie Rosenfeld , d e f Allan R. Robinson , Leandro Calado , Hyun Sook Kim , b b Wayne G. Leslie , Patrick J. Haley Jr. a School for Marine Science and Technology, University of Massachusetts at Dartmouth, Suite 325, 200 Mill Road, Fairhaven, MA 02719, United States b Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States c Naval Postgraduate School, Monterey, CA, United States d Division of Applied Sciences, Harvard University, Cambridge, MA, United States e Marinha do Brasil, Instituto de Estudos do Mar Almirante Paulo Moreira-IEAPM, Rua Kioto, 253-Praia dos Anjos, Arraial do Cabo, RJ 28930-000, Brazil f National Centers for Environmental Prediction (NCEP), Silver Springs, MD, United States a r t i c l e i n f o a b s t r a c t Available online 19 May 2011 Over the past decade, the feature-oriented regional modeling methodology has been developed and applied in several ocean domains, including the western North Atlantic and tropical North Keywords: Atlantic. This methodology is model-independent and can be uti- California Current System lized with or without satellite and/or in situ observations. Here we Feature models develop new feature-oriented models for the eastern North Pacific ◦ ◦ FORMS from 36 to 48 N – essentially, most of the regional eastern bound- Upwelling ary current.
    [Show full text]