Interactions with Xanthan Gum, Guar Gum, and Locust Bean Gum

Total Page:16

File Type:pdf, Size:1020Kb

Interactions with Xanthan Gum, Guar Gum, and Locust Bean Gum CHARACTERIZATION AND RHEOLOGICAL PROPERTIES OF CAMELINA SATIVA GUM: INTERACTIONS WITH XANTHAN GUM, GUAR GUM, AND LOCUST BEAN GUM by YARITZA M. SANCHEZ GIL B.Sc., National University of Colombia, Medellin, Colombia, 2005 A THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Biological and Agricultural Engineering College of Engineering KANSAS STATE UNIVERSITY Manhattan, Kansas 2014 Approved by: Major Professor Donghai Wang Abstract Gums are water-soluble polysaccharides used in many industrial and food applications because of their functions such as thickening, gelling, emulsification, adhesion, and encapsulation. Interactions between gums are conducted to enhance functional properties of finished products and reduce processing costs. In this study, camelina gum, from the oil-seed plant Camelina sativa, is characterized by carbohydrate composition and morphological, thermal, and rheological properties. Interactions with xanthan gum, galactomannans guar gum, and locust bean gum (LBG) are also studied. Camelina gum is composed of arabinose, rhamnose, galactose, glucose, xylose and mannose; according to high-performance anion exchange chromatography analysis. Scanning electron microscopy and transmission electron microscopy images showed camelina gum with fibrillar structure and intermeshed network. Camelina gum solutions exhibited a shear thinning flow behavior in a range of concentrations (0.1% to 2.0% w/w) and shear rate (0.001 s-1 to 3000 s-1). Camelina gum is temperature independent at temperature ranges from 4 oC to 90 oC. The apparent viscosity increased as gum concentration increased. Mechanical properties of camelina gum demonstrated viscoelastic behavior with entangled molecular chains. Interaction of camelina gum with monovalent salt NaCl significantly reduced the viscosity of camelina gum solution at 1% when NaCl concentration increased. Camelina gum is soluble in water up to 60% ethanol content, in which the rheological properties do not significantly differ from camelina gum in water solution only. A synergy with xanthan and galactomannans was determined. All mixtures exhibited shear- thinning flow behavior, solid-like behavior at low frequencies, and liquid-like behavior at high frequencies. For camelina-galactomannans mixtures, synergistic interactions occurred in LBG- camelina mixtures at ratios of 1:1 and 3:1. For xanthan-camelina mixture, maximum synergy was observed at the ratio 1:1. Synergistic effects of gum mixtures suggest dependency on the ratios and chemical structures of the gums. The effect of temperature on apparent viscosity of mixtures is not significant. Results showed that camelina gum can be used for commercial applications. Table of Contents List of Figures ................................................................................................................................ vi Acknowledgements ...................................................................................................................... viii Chapter 1 - Introduction .................................................................................................................. 1 Chapter 2 - Literature Review ......................................................................................................... 5 2.1 Polysaccharide Gums ............................................................................................................ 5 2.2 Xanthan Gum ........................................................................................................................ 6 2.3 Galactomannans .................................................................................................................... 7 2.3.1. Guar Gum ...................................................................................................................... 7 2.3.2. Locust Bean Gum ......................................................................................................... 8 2.5 Camelina sativa ..................................................................................................................... 8 2.5.1 Uses and Applications.............................................................................................. 10 2.5.1.1 Biofuel................................................................................................................... 10 2.5.1.2 Human Food.......................................................................................................... 10 2.5.1.3 Various Uses and Products ................................................................................... 10 2.5.2 Seed Composition ........................................................................................................ 11 2.6 Rheology ............................................................................................................................. 11 2.6.1 Viscosity ...................................................................................................................... 12 2.6.2 Viscoelasticity .............................................................................................................. 12 2.6.3 Rheology of Synergistic Gum Interactions .................................................................. 13 Chapter 3 - Composition and Physicochemical Properties of Camelina Gum ............................. 15 3.1 Materials and Methods ........................................................................................................ 15 3.1.1 Materials ...................................................................................................................... 15 3.1.2 Chemical Composition Analysis .................................................................................. 15 3.1.3 Monosaccharide Analysis ............................................................................................ 15 3.1.4 Fourier Transform Infrared Spectroscopy ................................................................... 16 3.1.5 Thermal Properties ....................................................................................................... 16 3.1.5.1 Thermal Gravimetric Analysis .............................................................................. 16 3.1.5.2 Differential Scanning Calorimetry ........................................................................ 16 iii 3.1.6 Morphological Properties ............................................................................................. 16 3.1.6.1 Scanning Electron Microscopy (SEM) ................................................................. 16 3.1.6.2 Transmission Electron Microscopy (TEM) .......................................................... 17 3.2 Results and Discussion ....................................................................................................... 17 3.2.1 Chemical and Monosaccharide Composition .............................................................. 17 3.2.2Fourier Transform Infrared Spectroscopy .................................................................... 19 3.2.3Thermal Properties ........................................................................................................ 20 3.2.3.1 Thermal Gravimetric Analysis .............................................................................. 20 3.2.3.2 Differential Scanning Calorimetry ........................................................................ 22 3.2.4 Morphological Properties ............................................................................................. 23 3.2.4.1 Scanning Electron Microscopy (SEM) ................................................................. 23 3.2.4.2 Transmission Electron Microscopy (TEM) .......................................................... 23 Chapter 4 - Rheological Characteristics of Camelina Gum, and Mixtures of Camelina Gum with Selected Hydrocolloids (Xanthan Gum, Locust Bean Gum, and Guar Gum) ....................... 25 4.1 Materials and Methods ........................................................................................................ 25 4.1.1 Materials ...................................................................................................................... 25 4.1.2 Preparation of Individual Gum Solutions and Gum Mixtures ..................................... 25 4.1.2.1 Individual Gum Solutions ..................................................................................... 25 4.1.2.2 Gum Mixtures ....................................................................................................... 26 4.1.3 Rheological Measurements .......................................................................................... 26 4.1.3.1 Apparent Viscosity Measurement ......................................................................... 26 4.1.3.2 Dynamic Viscoelastic Measurement..................................................................... 26 4.2 Results and Discussion ....................................................................................................... 27 4.2.1 Effect of Concentration on Apparent Viscosity of Camelina Gum Solutions ............. 27 4.2.2. Effect of Temperature on Apparent Viscosity of Camelina Gum Solutions .............. 29 4.2.3 Effect of Salt on Apparent Viscosity of Camelina Gum Solutions.............................. 29 4.2.4 Viscoelastic Properties of Camelina Gum Solutions ................................................... 31 4.2.5 Apparent viscosity
Recommended publications
  • Role of Beta-Glucan in Diabetes Management
    International Journal of Research and Review www.ijrrjournal.com E-ISSN: 2349-9788; P-ISSN: 2454-2237 Review Article Role of Beta-Glucan in Diabetes Management Ambreen Fatima, Reema Verma Lecturer (Home Science), Jhunjhunwala P.G. College & PhD Scholar, SHIATS, Allahabad, India. Corresponding Author: Ambreen Fatima Received: 23/01/2016 Revised: 28/01/2016 Accepted: 01/02/2016 ABSTRACT Diabetes is a universal metabolic disorder prevalent in world and in India it comprises 7.8% of world diabetic population. Beta cells of islets of Langerhans of pancreas secrete insulin hormone which regulate the cellular intake of glucose in human body. Due to insufficient insulin secretion or insulin in sensitivity or any injury in pancreas impairs cellular glucose intake leads rise in blood sugar level. This condition is called as diabetes. Beta glucan found in foods like barley oats etc is a pro-glucagon molecule which exerts strong insulinotropic effects in vivo. It is a good alternative of diabetic medicine for diabetes patients. Key words: Diabetes, Beta Glucan. INTRODUCTION involves an absolute or relative insulin The aetiology of diabetes in India is arises when the pancreas fails to produce multi factorial and includes genetic factors insulin due to destruction of the pancreatic coupled with environmental influences such beta cells usually resulting from an as obesity associated with rising living autoimmune disorder or deficiency occurs standards, steady urban migration, and life when insulin requirements are increased style changes. More than 80% of people live results in insulin resistance (Bowman and in low and middle income countries. Pattern Russel, 2001). It is generally accepted that of diabetes incidence are related to the beta-cell failure is caused by insulin geographical distribution of diabetes in resistance.
    [Show full text]
  • Fermentation of Glucose and Xylose to Hydrogen in the Presence of Long Chain Fatty Acids
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 2009 Fermentation of Glucose and Xylose to Hydrogen in the Presence of Long Chain Fatty Acids Stephen Reaume University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Reaume, Stephen, "Fermentation of Glucose and Xylose to Hydrogen in the Presence of Long Chain Fatty Acids" (2009). Electronic Theses and Dissertations. 92. https://scholar.uwindsor.ca/etd/92 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. Fermentation of Glucose and Xylose to Hydrogen in the Presence of Long Chain Fatty Acids by Stephen Reaume A Thesis Submitted to the Faculty of Graduate Studies through the Environmental Engineering Program in Partial Fulfillment of the Requirements for the Degree of Master of Applied Science at the University of Windsor Windsor, Ontario, Canada 2009 © 2009 Stephen Reaume AUTHORS DECLARATION OF ORIGINALITY I hereby certify that I am the sole author of this thesis and that no part of this thesis has been published or submitted for publication.
    [Show full text]
  • Acute and Chronic Effects of Dietary Lactose in Adult Rats Are Not Explained by Residual Intestinal Lactase Activity
    Nutrients 2015, 7, 5542-5555; doi:10.3390/nu7075237 OPEN ACCESS nutrients ISSN 2072-6643 www.mdpi.com/journal/nutrients Article Acute and Chronic Effects of Dietary Lactose in Adult Rats Are not Explained by Residual Intestinal Lactase Activity Bert J. M. van de Heijning *, Diane Kegler, Lidewij Schipper, Eline Voogd, Annemarie Oosting and Eline M. van der Beek Danone Nutricia Research, PO Box 80141, TC Utrecht 3508, The Netherlands; E-Mails: [email protected] (D.K.); [email protected] (L.S.); [email protected] (E.V.); [email protected] (A.O.); [email protected] (E.M.B.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +31-30-2095-000. Received: 5 June 2015 / Accepted: 30 June 2015 / Published: 8 July 2015 Abstract: Neonatal rats have a high intestinal lactase activity, which declines around weaning. Yet, the effects of lactose-containing products are often studied in adult animals. This report is on the residual, post-weaning lactase activity and on the short- and long-term effects of lactose exposure in adult rats. Acutely, the postprandial plasma response to increasing doses of lactose was studied, and chronically, the effects of a 30% lactose diet fed from postnatal (PN) Day 15 onwards were evaluated. Intestinal lactase activity, as assessed both in vivo and in vitro, was compared between both test methods and diet groups (lactose vs. control). A 50%–75% decreased digestive capability towards lactose was observed from weaning into adulthood. Instillation of lactose in adult rats showed disproportionally low increases in plasma glucose levels and did not elicit an insulin response.
    [Show full text]
  • Effect of Intake of Food Hydrocolloids of Bacterial Origin on the Glycemic Response in Humans: Systematic Review and Narrative Synthesis
    nutrients Review Effect of Intake of Food Hydrocolloids of Bacterial Origin on the Glycemic Response in Humans: Systematic Review and Narrative Synthesis Norah A. Alshammari 1,2, Moira A. Taylor 3, Rebecca Stevenson 4 , Ourania Gouseti 5, Jaber Alyami 6 , Syahrizal Muttakin 7,8, Serafim Bakalis 5, Alison Lovegrove 9, Guruprasad P. Aithal 2 and Luca Marciani 2,* 1 Department of Clinical Nutrition, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; [email protected] 2 Translational Medical Sciences and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham NG7 2UH, UK; [email protected] 3 Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen’s Medical Centre, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham NG7 2UH, UK; [email protected] 4 Precision Imaging Beacon, University of Nottingham, Nottingham NG7 2UH, UK; [email protected] 5 Department of Food Science, University of Copenhagen, DK-1958 Copenhagen, Denmark; [email protected] (O.G.); [email protected] (S.B.) 6 Department of Diagnostic Radiology, Faculty of Applied Medical Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia; [email protected] 7 Indonesian Agency for Agricultural Research and Development, Jakarta 12540, Indonesia; Citation: Alshammari, N.A.; [email protected] Taylor, M.A.; Stevenson, R.; 8 School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK Gouseti, O.; Alyami, J.; Muttakin, S.; 9 Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK; [email protected] Bakalis, S.; Lovegrove, A.; Aithal, G.P.; * Correspondence: [email protected]; Tel.: +44-115-823-1248 Marciani, L.
    [Show full text]
  • Hypoglycemic Activity and Mechanism of the Sulfated Rhamnose Polysaccharides Chromium(III) Complex in Type 2 Diabetic Mice
    Bioorganic Chemistry 88 (2019) 102942 Contents lists available at ScienceDirect Bioorganic Chemistry journal homepage: www.elsevier.com/locate/bioorg Hypoglycemic activity and mechanism of the sulfated rhamnose T polysaccharides chromium(III) complex in type 2 diabetic mice Han Yea, Zhaopeng Shenb, Jiefen Cuia, Yujie Zhua, Yuanyuan Lia, Yongzhou Chia, ⁎ Jingfeng Wanga, Peng Wanga, a College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China b College of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China ARTICLE INFO ABSTRACT Keywords: The sulfated rhamnose polysaccharides found in Enteromorpha prolifera belong to a class of unique polyanionic Chromium polysaccharides with high chelation capacity. In this study, a complex of sulfated rhamnose polysaccharides with Glucose metabolism chromium(III) (SRPC) was synthesized, and its effect on type 2 diabetes mellitus (T2DM) in mice fed a high-fat, Hypoglycemic high-sucrose diet was investigated. The molecular weight of SRPC is 4.57 kDa, and its chromium content is Mice 28 μg/mg. Results indicated that mice treated by oral administration of SRPC (10 mg/kg and 30 mg/kg body Sulfated rhamnose polysaccharides mass per day) for 11 weeks showed significantly improved oral glucose tolerance, decreased body mass gain, reduced serum insulin levels, and increased tissue glycogen content relative to T2DM mice (p < 0.01). SRPC treatment improved glucose metabolism via activation of the IR/IRS-2/PI3K/PKB/GSK-3β signaling pathway (which is related to glycogen synthesis) and enhanced glucose transport through insulin signaling casca- de–induced GLUT4 translocation. Because of its effectiveness and stability, SRPC could be used as a therapeutic agent for blood glucose control and a promising nutraceutical for T2DM treatment.
    [Show full text]
  • Xylose Fermentation to Ethanol by Schizosaccharomyces Pombe Clones with Xylose Isomerase Gene." Biotechnology Letters (8:4); Pp
    NREL!TP-421-4944 • UC Category: 246 • DE93000067 l I Xylose Fermenta to Ethanol: A R ew '.) i I, -- , ) )I' J. D. McMillan I ' J.( .!i �/ .6' ....� .T u�.•ls:l ., �-- • National Renewable Energy Laboratory II 'J 1617 Cole Boulevard Golden, Colorado 80401-3393 A Division of Midwest Research Institute Operated for the U.S. Department of Energy under Contract No. DE-AC02-83CH10093 Prepared under task no. BF223732 January 1993 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, com­ pleteness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily con­ stitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Printed in the United States of America Available from: National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA22161 Price: Microfiche A01 Printed Copy A03 Codes are used for pricing all publications. The code is determined by the number of pages in the publication. Information pertaining to the pricing codes can be found in the current issue of the following publications which are generally available in most libraries: Energy Research Abstracts (ERA); Govern­ ment Reports Announcements and Index ( GRA and I); Scientific and Technical Abstract Reports(STAR); and publication NTIS-PR-360 available from NTIS at the above address.
    [Show full text]
  • Enhanced Trehalose Production Improves Growth of Escherichia Coli Under Osmotic Stress† J
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, July 2005, p. 3761–3769 Vol. 71, No. 7 0099-2240/05/$08.00ϩ0 doi:10.1128/AEM.71.7.3761–3769.2005 Copyright © 2005, American Society for Microbiology. All Rights Reserved. Enhanced Trehalose Production Improves Growth of Escherichia coli under Osmotic Stress† J. E. Purvis, L. P. Yomano, and L. O. Ingram* Department of Microbiology and Cell Science, Box 110700, University of Florida, Gainesville, Florida 32611 Downloaded from Received 7 July 2004/Accepted 9 January 2005 The biosynthesis of trehalose has been previously shown to serve as an important osmoprotectant and stress protectant in Escherichia coli. Our results indicate that overproduction of trehalose (integrated lacI-Ptac-otsBA) above the level produced by the native regulatory system can be used to increase the growth of E. coli in M9-2% glucose medium at 37°C to 41°C and to increase growth at 37°C in the presence of a variety of osmotic-stress agents (hexose sugars, inorganic salts, and pyruvate). Smaller improvements were noted with xylose and some fermentation products (ethanol and pyruvate). Based on these results, overproduction of trehalose may be a useful trait to include in biocatalysts engineered for commodity chemicals. http://aem.asm.org/ Bacteria have a remarkable capacity for adaptation to envi- and lignocellulose (6, 7, 10, 28, 30, 31, 32, 45). Biobased pro- ronmental stress (39). A part of this defense system involves duction of these renewable chemicals would be facilitated by the intracellular accumulation of protective compounds that improved growth under thermal stress and by increased toler- shield macromolecules and membranes from damage (9, 24).
    [Show full text]
  • Conversion of Carbohydrates to Furfural Via Selective Cleavage Of
    Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2015 Conversion of carbohydrates to furfural via selective cleavage of carbon-carbon bond: cooperative effect of zeolite and solvent Jinglei Cui,ab Jingjing Tan,ab Tiansheng Deng,a Xiaojing Cui,a Yulei Zhu*ac and Yongwang Liac a State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China. E-mail: [email protected]; Fax: +86-351-7560668. b University of Chinese Academy of Sciences, Beijing, 100049, PR China. c Synfuels China Co. Ltd., Beijing, PR China. 1. Materials Cellulose, inulin, starch, sucrose, maltose, D-glucose, D-fructose, D-xylose, D- arabinose, 5-hydromethylfurfural (HMF), formic acid (FA) and levulinic acid (LA) were purchased from Aladdin. γ-valerolactone (GVL), γ-butyrolactone (GBL), 1,4- dioxane, gluconic acid, H2SO4 (98%), Amberlyst-15, AlCl3 and γ-Al2O3 were purchased from Sinopharm Chemical Reagent Co., Ltd.. All the above agents were utilized without further purification. Hβ, HY, H-Mordenite and HZSM-5 zeolite were purchased from The Catalyst Plant of Nankai University. 2. Experiments 2.1 The computational formula The conversion of sugars and the yield of the products were quantified according to the following equations: 푚표푙 표푓 푠푢푔푎푟(푖푛푙푒푡)-푚표푙 표푓 푠푢푔푎푟(표푢푡푙푒푡) Conversion = 푚표푙 표푓 푠푢푔푎푟(푖푛푙푒푡) ×100% 푚표푙 표푓 표푛푒 푝푟표푑푢푐푡 푝푟표푑푢푐푒푑 Yield =푚표푙 표푓 푡ℎ푒표푟푒푡푖푐푎푙 푝푟표푑푢푐푡 푣푎푙푢푒×100% 2.2 Procedures for the catalyst recycling After the first run was completed, the reaction products were centrifuged for 10 min to separate the Hβ zeolite from the solutions.
    [Show full text]
  • The Fischer Proof of the Structure of (+)-Glucose Started in 1888, 12
    The Fischer proof of the structure of (+)-glucose Started in 1888, 12 years after the proposal that carbon was tetrahedral, and thus had stereoisomers. Tools: - melting points - optical rotation (determine whether a molecule is optically active) - chemical reactions Fischer knew: - (+)-glucose is an aldohexose. - Therefore, there are 4 stereocenters and 24 = 16 stereoisomers (8 D-sugars and 8 L-sugars) - At this time could not determine the actual configuration (D or L) of sugars - Fischer arbitrarily assigned D-glyceraldehyde the following structure. CHO H OH CH2OH - In 1951 Fischer was shown to have guessed correctly. CO2H CHO H OH HO H HO H CH2OH CO2H L-Tartaric acid L-glyceraldehyde Which of the 8 D-aldohexoses is (+)-glucose??? 1) Oxidation of (+)-glucose with nitric acid gives an aldaric acid, glucaric acid, that is optically active. Therefore (+)-glucose cannot have structures 1 or 7, which would give optically inactive aldaric acids. HNO3 (+)-glucose Glucaric acid Optically active CHO CO2H H OH H OH 1 H OH HNO3 H OH Mirror plane H OH H OH H OH H OH Since these aldaric CH2OH CO2H acids have mirror planes they are meso structures. CHO CO2H They are not optically H OH H OH active HO H HNO3 HO H 7 Mirror plane HO H HO H H OH H OH CH2OH CO2H 2) Ruff degradation of (+)-glucose gives (-)-arabinose. Oxidation of (-)-arabinose with nitric acid gives arabanaric acid, which is optically active. Therefore, (-)-arabinose cannot have structures 9 or 11, which would give optically inactive aldaric acids. If arabinose cannot be 9 or 11, (+)-glucose cannot be 2 (1 was already eliminated), 5 or 6, which would give 9 or 11 in a Ruff degradation.
    [Show full text]
  • Glycogen in Human Peripheral Blood Leukocytes: II
    Glycogen in human peripheral blood leukocytes: II. The macromolecular state of leukocyte glycogen Robert B. Scott, W. J. S. Still J Clin Invest. 1968;47(2):353-359. https://doi.org/10.1172/JCI105731. Glycogen of normal human blood leukocytes was studied in cell suspensions containing chiefly neutrophiles. In electron micrographs of neutrophiles stained with lead the glycogen particles appear to be relatively uniform with a diameter of 20 mμ. At high magnification the 20 mμ particle appears to be composed of at least eight subunits. Leukocyte glycogen released by lysis or homogenization sediments as a single peak of high molecular weight material. The great majority of the cell glycogen can be accounted for in the large molecular weight material. The large molecular weight material is degraded to small fragments by α-amylase and partially degraded by β-amylase. Purification of cell glycogen by alkali extraction and ethanol precipitation produces a relatively uniform particle smaller than the original native macromolecule. Native glycogen was prepared in pure form by a sucrose density gradient technique and its purity demonstrated by its susceptibility to purified α-amylase and by analytical ultracentrifugation. Find the latest version: https://jci.me/105731/pdf Glycogen in Human Peripheral Blood Leukocvtes II. THE MACROMOLECULAR STATE OF LEUKOCYTE GLYCOGEN ROBERT B. Scorr and W. J. S. STILL with the technical assistance of LAVERNE W. COOPER From the Departments of Medicine and Pathology, Medical College of Virginia, Richmond, Virginia A B S T R A C T Glycogen of normal human blood readily accessible, provide a convenient system in leukocytes was studied in cell suspensions con- which glycogen metabolism can l)e stll(lied.
    [Show full text]
  • 406-3 Wood Sugars.Pdf
    Wood Chemistry Wood Chemistry Wood Carbohydrates l Major Components Wood Chemistry » Hexoses – D-Glucose, D-Galactose, D-Mannose PSE 406/Chem E 470 » Pentoses – D-Xylose, L-Arabinose Lecture 3 » Uronic Acids Wood Sugars – D-glucuronic Acid, D Galacturonic Acid l Minor Components » 2 Deoxy Sugars – L-Rhamnose, L-Fucose PSE 406 - Lecture 3 1 PSE 406 - Lecture 3 2 Wood Chemistry Wood Sugars: L Arabinose Wood Chemistry Wood Sugars: D Xylose l Pentose (5 carbons) CHO l Pentose CHO l Of the big 5 wood sugars, l Xylose is the major constituent of H OH arabinose is the only one xylans (a class of hemicelluloses). H OH found in the L form. » 3-8% of softwoods HO H HO H l Arabinose is a minor wood » 15-25% of hardwoods sugar (0.5-1.5% of wood). HO H H OH CH OH 2 CH2OH PSE 406 - Lecture 3 3 PSE 406 - Lecture 3 4 1 1 Wood Chemistry Wood Sugars: D Mannose Wood Chemistry Wood Sugars: D Glucose CHO l Hexose (6 carbons) CHO l Hexose (6 carbons) l Glucose is the by far the most H OH l Mannose is the major HO H constituent of Mannans (a abundant wood monosaccharide (cellulose). A small amount can HO H class of hemicelluloses). HO H also be found in the » 7-13% of softwoods hemicelluloses (glucomannans) H OH » 1-4% of hardwoods H OH H OH H OH CH2OH CH2OH PSE 406 - Lecture 3 5 PSE 406 - Lecture 3 6 Wood Chemistry Wood Sugars: D Galactose Wood Chemistry Wood Sugars CHO CHO l Hexose (6 carbons) CHO H OH H OH l Galactose is a minor wood D Xylose L Arabinose HO H HO H monosaccharide found in H OH HO H H OH certain hemicelluloses CH2OH HO H CHO CH2OH CHO CHO » 1-6% of softwoods HO H H OH H OH » 1-1.5% of hardwoods HO H HO H HO H HO H HO H H OH H OH H OH H OH H OH H OH CH2OH CH2OH CH2OH CH2OH D Mannose D Glucose D Galactose PSE 406 - Lecture 3 7 PSE 406 - Lecture 3 8 2 2 Wood Chemistry Sugar Numbering System Wood Chemistry Uronic Acids CHO 1 CHO l Aldoses are numbered l Uronic acids are with the structure drawn HO H 2 polyhydroxy carboxylic H OH vertically starting from the aldehydes.
    [Show full text]
  • 58. Cross-Induction of the L-Fucose System by L-Rhamnose In
    JOURNAL OF BACTERIOLOGY, Aug. 1987, p. 3712-3719 Vol. 169, No. 8 0021-9193/87/083712-08$02.00/0 Copyright © 1987, American Society for Microbiology Cross-Induction of the L-Fucose System by L-Rhamnose in Escherichia coli Y.-M. CHEN,1 J. F. TOBIN,2 Y. ZHU,' R. F. SCHLEIF,2 AND E. C. C. LIN'* Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115,1 and Department ofBiochemistry, Brandeis University, Waltham, Massachusetts 022542 Received 6 January 1987/Accepted 21 May 1987 Dissimilation of L-fucose as a carbon and energy source by Escherichia coli involves a permease, an isomerase, a kinase, and an aldolase encoded by the fuc regulon at minute 60.2. Utilization of L-rhamnose involves a similar set of proteins encoded by the rha operon at minute 87.7. Both pathways lead to the formation of L-lactaldehyde and dihydroxyacetone phosphate. A common NAD-linked oxidoreductase encoded by fucO serves to reduce L-lactaldehyde to L-1,2-propanediol under anaerobic growth conditions, irrespective of whether the aldehyde is derived from fucose or rhamnose. In this study it was shown that anaerobic growth on rhamnose induces expression of not only thefucO gene but also the entirefuc regulon. Rhamnose is unable to induce the fuc genes in mutants defective in rhaA (encoding L-rhamnose isomerase), rhaB (encoding L-rhamnulose kinase), rhaD (encoding L-rhamnulose 1-phosphate aldolase), rhaR (encoding the positive regulator for the rha structural genes), or fucR (encoding the positive regulator for the fuc regulon). Thus, cross-induction of the L-fucose enzymes by rhamnose requires formation of L-lactaldehyde; either the aldehyde itself or the L-fuculose 1-phosphate (known to be an effector) formed from it then interacts with the fucR-encoded protein to induce the fuc regulon.
    [Show full text]