Do Not Exclude Consideration of Nil Simple Algebras-Flexible Power-Associative

Total Page:16

File Type:pdf, Size:1020Kb

Do Not Exclude Consideration of Nil Simple Algebras-Flexible Power-Associative DETERMINATION OF A+ FOR THE SIMPLE FLEXIBLE ALGEBRAS* BY RICHARD E. BLOCK UNIVERSITY OF CALIFORNIA (RIVERSIDE) Communicated by A. Adrian Albert, July 26, 1968 1. Introduction.-We consider nonassociative algebras which are finite- dimensional over a field of characteristic $ 2. For any algebra A (with product written as xy), the symmetrized algebra A+ is defined as the algebra with the same underlying vector space as A and with product xmy = '/2(xy + yx). The algebra A is called flexible if (xy)x = x(yx) for all x,y in A. One of the principal problems in the theory of noncommutative power-associative algebras has been the determination of A+ when A is a simple flexible power-associative algebra. Using idempotent decomposition methods, a number of authors have determined A + in various cases. However, as in other situations, the degree 2 case has been especially difficult and this one case, at characteristic p, remains open. In this note we shall give a uniform determination of the structure of A +, in particular solving the above problem for degree 2 algebras. The result leads in principle to a determination of A. The proof is chiefly based on the author's very general new theorem on differentiably simple algebras' and does not assume power- associativity. The flexible algebras (introduced by Albert2) provide a natural setting for the application to noncommutative algebras of idempotent decompositions in commutative algebras. Included among the flexible algebras are all commuta- tive and anticommutative algebras (in particular, Jordan and Lie algebras) and alternative algebras, as well as the noncommutative Jordan algebras (defined by Schafer3 as flexible algebras with (x2y)x = x2(yx) for all x,y in A). For the con- cepts of degree, nodal, etc., mentioned below, see for example the book by Schafer.4 If A is a finite-dimensional flexible strictly power-associative non-nil simple algebra over a field F of characteristic # 2, 3, then A has a unity element and hence a degree t. If t > 2, work of Schafer3 and Oehmke' shows that A+ is a simple Jordan algebra. At characteristic 0, Kokoris6 has shown that A + is simple if t = 2, and Kleinfeld and Kokoris7 have obtained the same result if t = 1 (Anderson8 has given another proof of this last case). At characteristic p when t = 2, Oehmke' has shown that A+ is simple if A is noncommutative Jordan, and Tsai9 has obtained the same conclusion if A is partially stable; when t = 1, Kokoris'0 has shown that A + need not be simple but (at least when F is algebraically closed, so that A is nodal) A + _B,(F) for some n _ 0 where B (F) is the (commutative associative) truncated polynomial algebra F [Xi,..., Xn]/(Xlp... Xnp) (and Bo(F) = F). The case in which A is a nil simple algebra seems not to have been discussed in the literature. (Here, by saying that A is simple we merely mean that A has no proper ideals and A22 0. We do not exclude consideration of nil simple algebras-flexible power-associative ones may all be anticommutative, and the present result shows that this would be true if there are no commutative nil simple algebras.) 394 Downloaded by guest on October 1, 2021 VOL. 61, 1968 MATHEMATICS: R. E. BLOCK 395 2. The Main Result.-In any algebra A we write (x,y,z) for the associator (xy)z - x(yz) and [x,y] for the commutator xy -yx. Thus the flexible law is equivalent to the property that (x,y,z) + (z,y,x) = 0 for all x,y,z in A. If A is flexible, the mapping d. defined by dxy = [x,y] (y E A) is a derivation of A+, i.e., dx(y * z) = (day) *z + y dz (y,z £ A). In fact, the latter is equivalent to (x,yz) + (z,y,x) + (x,z,y) + (y,z,x) = (y,x,z) + (z,x,y). (This in turn, with x = z, gives flexibility.) Let D = {dIx E A }. If I is a D-ideal of A + (i.e., an ideal invariant under all d_ in D), then I (considered as a subset of A) is an ideal of A, and conversely. Therefore A is simple and not anticommutative if and only if A + is D-simple (A + is called D-simple if it has no proper D-ideals and A+2 # 0; this implies that it is differentiably simple, i.e., that it is a nontrivial algebra with no proper ideals invariant under all deriva- tions). The following is the main result of this paper. THEOREM. Let A be a finite-dimensional algebra over a field F of characteristic $ 2. If A is flexible, simple, and not anticommutative, then either A + is simple or the characteristic is prime and A + -- B.(E) for some n > 0 and some field E over F (in the latter case A has a 1, and if A is regarded as an algebra over its center, then some scalar extension AK is nodal, with AK+- Bm(K) for some m > 0). We now give the proof. The author's main theorem on differentiably simple algebras' states that any finite-dimensional differentiably simple algebra is either simple or has characteristic p and is isomorphic to the tensor product S 0 Bn(F) over F for some simple S and some n > 0. The remarks above show that this applies to A +. Thus we may assume that the characteristic is p and A + = S 0 Bn(F), n > 0, where S = S 0 1 is a (commutative) simple sub- algebra of A+. The centroid of an algebra is by definition the associative algebra of all linear transformations of the algebra which commute with all left and right multiplications by elements of the algebra. For the present we assume that S is central, i.e., that its centroid consists of just the scalar mappings. Then we may identify the centroid C of S 0 Bn(F) with Bn(F) in the following way. For each b in B = Bn(F), define a mapping Tb of S 0 B into itself by rb(5 0 b') = s 0 (b b ). Then T is a one-one homomorphism of B into C. If c E C and {bi I is a basis of B, writing c(s 0 1) = 2 ic(s) 0 b, we see that each ci is in the centroid of S and hence there is a b, in B such that c(s 0 1) = s 0 b, for all s. But then c[(s s') 0 (1 b)] = (s ps') 0 (bi.b) and hence r is onto. We also use the known facts' that for each d in D the mapping d' of C into C defined by d'(c) = [d,c](c C C) is a derivation of C and that C is D'-simple where D' = {d' C D}. We claim that if a E A, then tada is a derivation of A+, where ta denotes multiplication by a in A +: tax = am x. Indeed, the flexible law implies that a(ax) - a(xa) + (ax)a - (xa)a = a(ax) - (xa)a = -(a,a,x) + a2x- xa2 - (x,a,a) = [a2,x], so that tda = (1/2) da2. We write C = Bn(F) = F[xi,. .,x,.] where xiP = 0, i = 1,. .,n. Then the Downloaded by guest on October 1, 2021 396 MATHEMATICS: R. E. BLOCK PRoc. N. A. S. radical R of C is (x,. .. ,x.) and there is some a in A of the form u 0 b (u E 8, b £ B.(F)) such that da'R is not contained in R. Hence there is some c in Csuchthatda'c = 1 +r,r£R. But (tada)'C = tadaC - Ctada = tadaC - tacda = ta(1 + r) E C. Applying this to s 0 1, we get (u * s) X (b + b * r) = s X bi for some bi in B (F) and all s in S. For an si in S such that u5si 5 0 this gives u-s, = as,(aCE F), bi = a (b + b-r), and u-s = as for all s. Hence S has a 1 and u = al. For any s in S either d'8,,b R or d'(,,+ u) ®9 b R is not contained in R. In the first case s C Fl, and in the second s + u E F1, so again s E Fl. Therefore S = F1 and A+ = Bn(F). Now suppose that S is not necessarily central. Regarding A as an algebra over its centroid, take the scalar extension to the algebraic closure K. Then AK is flexible and simple, AK+ _ Bm(K) for some m by the previous case, A + is asso- ciative, and hence S, being simple and commutative, is a field. The unit element 1 of A + is also a unit element of A since 2tDd, = di implies that di = 0. Then since AK is power-associative,7 it is nodal. This completes the proof. COROLLARY. A finite-dimensional simple nil noncommutative Jordan algebra of characteristic $2 is anticommutative. This corollary follows immediately from the theorem above and the theorem of Albert that nil Jordan algebras are nilpotent. PROPOSITION. Let B be a commutative algebra of characteristic $ 2, with products written as x y. Then there is a flexible algebra A with A + = B if and only if there is a linear mapping 5: x - d, of B into the derivation algebra of B such that d,(x) = 0 for all x in B; multiplication in A is given by xy = x.
Recommended publications
  • Noncommutative Jordan Algebras of Characteristic 0
    NONCOMMUTATIVE JORDAN ALGEBRAS OF CHARACTERISTIC 0 R. d. SCHAFER1 Jordan algebras are commutative algebras satisfying the identity (1) (x2a)x = x2(ax). These algebras have been studied extensively. A natural generalization to noncommutative algebras is the class of algebras A satisfying (1). Linearization of (1), if the base field con- tains at least 3 elements, yields (2) (xy + yx, a, z) + (yz + zy, a, x) + (zx + xz, a, y) = 0 where (x, y, z) denotes the associator (x, y, z) = (xy)z —x(yz). If A con- tains a unity element 1, and if the characteristic is ¥-2, then z = l in (2) implies (3) (y, a, x) + (x, a, y) =■=0, or, equivalently, (4) (xa)x = x(ax). That is, A \s flexible (a weaker condition than commutativity). If a unity element is adjoined to A in the usual fashion, then a necessary and sufficient condition that (2) be satisfied in the extended algebra is that both (2) and (3) be satisfied in A. We define a noncommutative lordan algebra A over an arbitrary field F to be an algebra satisfying (1) and (4). These algebras include the best-known nonassociative algebras (Jordan, alternative, quasi- associative, and—trivially—Lie algebras). In 1948 they were studied briefly by A. A. Albert in [l, pp. 574-575],2 but the assumptions (1) and (4) seemed to him inadequate to yield a satisfactory theory, and he restricted his attention to a less general class of algebras which he called "standard." In this paper, using Albert's method of trace- admissibility3 and his results for trace-admissible algebras, we give a Presented to the Society, October 30, 1954; received by the editors August 18, 1954.
    [Show full text]
  • On Differentiably Simple Algebras
    Pacific Journal of Mathematics ON DIFFERENTIABLY SIMPLE ALGEBRAS T. S. RAVISANKAR Vol. 33, No. 3 May 1970 PACIFIC JOURNAL OF MATHEMATICS Vol. 33, No. 3, 1970 ON DIFFERENTIABLY SIMPLE ALGEBRAS T. S. RAVISANKAR The main contribution of the present paper is a direct and simple approach to a special case of a recent definitive theorem of Block. Block's theorem settles the problem of determina- tion of differentiably simple algebras. The main result of the present paper relates to an allied part of this determination which answers the question: When is a differentiably semi- simple algebra a direct sum of differentiably simple algebras? Let A be a finite dimensional nonassociative algebra over a field F and D be a set of derivations (linear mappings d of A into A such that (xy)d = (xd)y + x(yd) for all x, y in A) of A. An ideal of A invariant under all the derivations in D is called a D-ίdeal. We shall call the maximal solvable D-ideal R of A the D-radίcal of A (see [14]). For an alternative or Jordan algebra (but not for a Lie algebra), R is also the maximal nilpotent D-ideal (D-nilradical). Further, corresponding to any notion of a radical for the algebra A, there exists an associated notion of D-radical, and the latter is, in general, the maximal D-ideal of A contained in the radical. For in- stance, the D-radical in a power-associative algebra A is its maximal nil D-ideal. The algebra A is said to be D-semisimple if its D-radical R is the zero ideal.
    [Show full text]
  • Some Lie Admissible Algebras
    SOME LIE ADMISSIBLE ALGEBRAS P. J. LAUFER AND M. L. TOMBER Several studies have been made to obtain larger classes of non-associative algebras from classes of algebras with a known structure. Thus, we have right alternative algebras (2)* and non-commutative Jordan algebras (6), (7), (8), and (9). These algebras are defined by a subset of the set of identities of the algebras from which they derive their names. Also, Albert (1), among others has studied Jordan admissible algebras. This paper is concerned with algebras which are related to Lie algebras in that they satisfy some of the identities of a Lie algebra and are Lie admissible. Theorem 2 answers a question raised by Albert in (1). 1. For an algebra 21, the algebra 2I(-) is defined as the same vector space as 21, but with a multiplication given by [x, y] = xy — yx where juxtaposition denotes multiplication in 2t. The algebra 2l(-) is clearly an anticommutative algebra. 21 is said to be Lie admissible if 2I(_) is a Lie algebra, that is, [*, b» *]] + \y, [z, x]] + [z, [x, y]] = 0 and [x, y] + b, x] = 0. An algebra 21 is Lie admissible (1, p. 573) if and only if (1) R[X,V] — L[Xfy] = [RX — LX, Ry — Ly] where Ra and La are right and left multiplications by a in the algebra 21. Let $ be a field of characteristic 9e 2, 3. One way to generalize Lie algebras would be to study an algebra 21 which satisfies the identity (2) x(yz) + y(zx) + z{xy) = 0 or equivalently (3) LyLx + RXLV + Rxy = 0.
    [Show full text]
  • Hermann Weyl - Space-Time-Matter
    - As far as I see, all a priori statements in physics have their origin in ... http://www.markus-maute.de/trajectory/trajectory.html Free counter and web stats Music of the week (Spanish): Home | Akivis Algebra Abstract Algebra *-Algebra (4,3) - Association Type Identities (4,2) - Association Type Identities (4,2) - Association Type Identities Taking the identities with , for each of them we can replace the element in one of the positions by another one. I.e. there are identities of rank all in all. These are also given in [1] and to facilitate comparisons, we'll list the labelling used there as well. Identity Abbreviation [1] Type of Quasigroup Right-alternative Right-alternative Jordan identity Trivial if right-alternative Trivial if flexible Trivial if left-alternative Trivial if mono-associative Jordan identity Trivial if mono-associative Trivial if right-alternative Trivial if flexible Trivial if left-alternative Jordan identity Jordan identity Due to the property of unique resolvability of quasigroups. Furthermore we can replace two elements by two other identical elements. For each identity there are inequivalent ways of doing so. Hence we get another rank- identities, listed in the following table: Identity Abbreviation [1] Type of Quasigroup Trivial if left-alternative Trivial if flexible 1 of 80 28.01.2015 18:08 - As far as I see, all a priori statements in physics have their origin in ... http://www.markus-maute.de/trajectory/trajectory.html Trivial if right-alternative Trivial if right-alternative Trivial if flexible Trivial if left-alternative See also: Association type identities (4,3) - association type identities Google books: [1] Geometry and Algebra of Multidimensional Three-webs (1992) - M.
    [Show full text]
  • Hom-Power Associative Algebras, in Which the Defining Identities (1.0.2) Are Relaxed by a Certain Linear Self-Map, Called the Twisting Map
    HOM-POWER ASSOCIATIVE ALGEBRAS DONALD YAU Abstract. A generalization of power associative algebra, called Hom-power associative algebra, is studied. The main result says that a multiplicative Hom-algebra is Hom-power associative if and only if it satisfies two identities of degrees three and four. It generalizes Albert’s result that power associativity is equivalent to third and fourth power associativity. In particular, multiplicative right Hom-alternative algebras and non-commutative Hom-Jordan algebras are Hom-power associative. 1. Introduction Power associative algebras were first systematically studied by Albert [1, 2]. These non-associative algebras play an important role in the studies of associative bilinear forms, loops, the Cayley-Dickson algebras, and Banach algebras, among many other subjects [3, 6, 14]. A power associative algebra can be defined conceptually as an algebra in which every element generates an associative sub-algebra. Equivalently, power associative algebras can be algebraically characterized as follows. For an element x in an algebra A, define the right powers x1 = x and xn+1 = xnx (1.0.1) for n ≥ 1. Then an algebra A is power associative if and only if xn = xn−ixi (1.0.2) for all x ∈ A, n ≥ 2, and i ∈ {1,...,n − 1}. Therefore, one can also think of (1.0.2) as the defining identities for power associative algebras. If A satisfies (1.0.2) for a particular integer n, then A is called nth power associative. A theorem of Albert [1] says that (in characteristic 0, which is assumed throughout this paper) an algebra is power associative if and only if it is third and fourth power associative, which in turn is equivalent to x2x = xx2 and x4 = x2x2 (1.0.3) arXiv:1007.4118v1 [math.RA] 23 Jul 2010 for all elements x.
    [Show full text]
  • An Introduction to Nonassociative Algebras, by R
    The Project Gutenberg EBook of An Introduction to Nonassociative Algebras, by R. D. Schafer This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org Title: An Introduction to Nonassociative Algebras Author: R. D. Schafer Release Date: April 24, 2008 [EBook #25156] Language: English Character set encoding: ASCII *** START OF THIS PROJECT GUTENBERG EBOOK NONASSOCIATIVE ALGEBRAS *** AN INTRODUCTION TO NONASSOCIATIVE ALGEBRAS R. D. Schafer Massachusetts Institute of Technology An Advanced Subject-Matter Institute in Algebra Sponsored by The National Science Foundation Stillwater, Oklahoma, 1961 Produced by David Starner, David Wilson, Suzanne Lybarger and the Online Distributed Proofreading Team at http://www.pgdp.net Transcriber’s notes This e-text was created from scans of the multilithed book published by the Department of Mathematics at Oklahoma State University in 1961. The book was prepared for multilithing by Ann Caskey. The original was typed rather than typeset, which somewhat limited the symbols available; to assist the reader we have here adopted the convention of denoting algebras etc by fraktur symbols, as followed by the author in his substantially expanded version of the work published under the same title by Academic Press in 1966. Minor corrections to punctuation and spelling and minor modifications to layout are documented in the LATEX source. iii These are notes for my lectures in July, 1961, at the Advanced Subject Matter Institute in Algebra which was held at Oklahoma State University in the summer of 1961.
    [Show full text]
  • Flexible Algebras of Degree Two
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 172, October 1972 FLEXIBLE ALGEBRAS OF DEGREE TWO BY JOSEPH H. MAYNEÍ1) ABSTRACT. All known examples of simple flexible power-associative algebras of degree two are either commutative or noncommutative Jordan. In this paper we construct an algebra which is partially stable but not commuta- tive and not a noncommutative Jordan algebra. We then investigate the multi- plicative structure of those algebras which are partially stable over an algebraically closed field of characteristic p fc 2, 3, 5. The results obtained are then used to develop conditions under which such algebras must be commutative. I. Introduction. An algebra A over a field F is flexible if it satisfies the identity (1) (x, y, x) = 0 for all x, y in A where {a, b, c) = (ab)c - a(bc). If the characteristic of F is not two, then this identity is equivalent to (2) (x, y, z) + (z, y, x) = 0 for all x, y, z in A, the linearized form of the flexible law. If any element in A generates an associative subalgebra, then A is power-associative and A is strictly power- associative if the algebra A „ = K ®„ A is power-associative for every extension field K of F. We shall assume that all algebras are finite dimensional over the base field. If A is power-associative and contains an idempotent u, then A has a Peirce decomposition A = A (1) + A C/Ç) + A (0) (vector space direct sum) where A (s), s = 0, lA, 1, is a subspace of A such that x is in A (s) if and only if xu + ux = 2sx.
    [Show full text]
  • Varieties of Algebras
    ADVANCES IN MATHEMATICS 8, 163-369 (1972) Varieties of Algebras J. MARSHALL OSBORN Depavtmest of Mathematics, University of Wisconsin, Madison, Wisconsin 53706 Preface ............................ 163 I. The Basic Theory ...................... 166 I. Some Definitions. .................... 166 2. V-Free Algebras and Birkhoff’s Theorem .......... 170 3. Linearization ...................... 174 4. Changing the Domain of Operators ............. 187 II. Identities on Commutative Algebras .............. 201 5. Finding Interesting Identities ............... 201 6. The Peirce Development of an Identity ........... 209 7. Metatheorems on Peirce Development and Examples of Charac- teristic 3 and 5. ..................... 227 8. Associative Bilinear Forms. ................ 244 III. Identities on Noncommutative Algebras. ............ 264 9. Finding Noncommutative Identities. ............ 264 10. Developing Noncommutative Identities ........... 275 11. Associative Algebras Satisfying an Additional Identity ..... 298 IV. Periodic Rings. ....................... 312 12. Classes of Algebras That Do Not Form Varieties ....... 312 13. Basic Facts About Periodic Rings .............. 318 14. Associative Periodic Rings. ................ 324 15. Jordan Periodic Rings .................. 341 16. Periodic Power-Associative Rings and Associative Rings with Involution with Periodic Symmetric Elements ........ 355 PREFACE In this paper, we study varieties of (not necessarily associative) rings and algebras. Although many classes of algebras defined by identities have been studied in the last 25 years, the approach has usually been to study each identity individually. Some steps toward a more unified theory have been taken, particularly in the last five years, but a complete theory does not exist as yet. We attempt in this paper to put together some pieces of a unified theory that exist in the literature as well as many 163 ~0 1972 by Academic Press, Inc. 607/8/2-r 164 OSBORN facts which are known to most people working in the area, but which are not written down anywhere.
    [Show full text]
  • Combinatorial and Asymptotic Methods of Algebra Non
    196 V. A. Ufnarovskij Small, L. W., Stafford, J.T., Warfleld, Jr., R.B. (1985): Affine algebras of Gelfand-Kirillov dimension one are PI. Math. Proc. Sot. Camb. Philos. Sot. 97, 407-414. Zbl. 561.16005 Stanley, R. (1978): Hilbert Functions of Graded Algebras. Adv. Math. 28, 57-83. Zbl. 384.13012 Sturmfels, B. (1993): Algorithms in Invariant Theory. Springer-Verlag, Vienna Ufnarovskij, V.A. (1993): Calculations of growth and Hilbert series by computer. Lect. Notes Pure Appl. Math. 151, 247-256 Vaughan-Lee, M. (1993): The restricted Burnside problem. Second ed., Oxford SC. Publi- cations, London Math. Sot. Monographs, New series 8, Clarendon Press, Oxford. Zbl., 713.20001 (1st ed.) II. Non-Associative Structures Vaughan-Lee, M., Zelmanov, E.I. (1993): Upper bounds in the restricted Burnside problem. J. Algebra 162, No. 1, 107-146 E. N. Kuz’min, I. P. Shestakov Wilf, H.S. (1990): Generatingfunctionology. Academic Press, Inc, Harcourt Brace Jovanovich Publishers, Boston Wilf, H.S., Zeilberger, D. (1992): An algorithmic proof theory for hypergeometric (ordinary Translated from the Russian and “q”) multisum/integral identities. Invent. Math. 103, 575-634. Zbl. 782.05009 by R. M. DimitriC Zelmanov, E.I. (1993): On additional laws in the Burnside problem for periodic groups. Int. J. Algebra Comput. 3, No. 4, 583-600 Contents $1. Introduction to Non-Associative Algebras ............. 199 1.1. The Main Classes of Non-Associative Algebras ....... 199 1.2. General Properties of Non-Associative Algebras ....... 202 52. Alternative Algebras ......................... 213 2.1. Composition Algebras ..................... 213 2.2. Projective Planes and Alternative Skew-Fields ....... 219 2.3.
    [Show full text]
  • Some Lie Admissible Algebras
    SOME LIE ADMISSIBLE ALGEBRAS P. J. LAUFER AND M. L. TOMBER Several studies have been made to obtain larger classes of non-associative algebras from classes of algebras with a known structure. Thus, we have right alternative algebras (2)* and non-commutative Jordan algebras (6), (7), (8), and (9). These algebras are defined by a subset of the set of identities of the algebras from which they derive their names. Also, Albert (1), among others has studied Jordan admissible algebras. This paper is concerned with algebras which are related to Lie algebras in that they satisfy some of the identities of a Lie algebra and are Lie admissible. Theorem 2 answers a question raised by Albert in (1). 1. For an algebra 21, the algebra 2I(-) is defined as the same vector space as 21, but with a multiplication given by [x, y] = xy — yx where juxtaposition denotes multiplication in 2t. The algebra 2l(-) is clearly an anticommutative algebra. 21 is said to be Lie admissible if 2I(_) is a Lie algebra, that is, [*, b» *]] + \y, [z, x]] + [z, [x, y]] = 0 and [x, y] + b, x] = 0. An algebra 21 is Lie admissible (1, p. 573) if and only if (1) R[X,V] — L[Xfy] = [RX — LX, Ry — Ly] where Ra and La are right and left multiplications by a in the algebra 21. Let $ be a field of characteristic 9e 2, 3. One way to generalize Lie algebras would be to study an algebra 21 which satisfies the identity (2) x(yz) + y(zx) + z{xy) = 0 or equivalently (3) LyLx + RXLV + Rxy = 0.
    [Show full text]
  • Communication Abstracts
    Moulay Isma¨ılUniversity Faculty of Sciences and Technology of Errachidia Department of Mathematics THE INTERNATIONAL CONFERENCE ON ALGEBRA AND ITS APPLICATIONS Communication Abstracts FST Errachidia, Morocco April 26{28, 2017 The International Conference on Algebra and its Applications 26-28 April 2017, Errachidia, Morocco The Faculty of Sciences and Technology of Errachidia and Department of Mathe- matics organize an international conference whose theme is : The International Conference on Algebra and its Applications Errachidia April 26{28, 2017. The scope of the ICAA-2017 conference encompasses, but is not limited to, the following areas : • Associative algebra and its applications. • Commutative algebra and its applications. • Homological algebra and its applications. • Number theory and its applications. • Cryptography and its applications. • Non-commutative algebra and its applications. • Applications of algebra to real problems. Page i The International Conference on Algebra and its Applications 26-28 April 2017, Errachidia, Morocco ORGANIZING COMMITTEE : • A. MAMOUNI, FST Errachidia (Chair). • M. TAOUS, FST Errachidia (Co-Chair). • E. H. El KINANI, ENSAM Meknes. • A. EL AZZOUZI, FP Taza. • N. MAHDOU, FST Fez. • L. OUKHTITE, FST Fez. • A. RAADA, FST Errachidia. • S. SALHI CRMEF, Rabat. • M. TAMEKKANTE, FS Meknes • A. ZEKHNINI, FP Nador • Department of Mathematics Members, FST Errachidia. • Association des Oeuvres Sociales de la FSTE : AOS-FSTE. SCIENTIFIC COMMITTEE : • M. ASHRAF, Aligarh Muslim University, Aligarh, India. • A. AZIZI, FS Oujda, Oujda, Morocco. • A. BADAWI, American University of Sharjah, Sharjah, UAE. • M. FONTANA, University of degli Studi ROMA TRE, Roma, Italy. • S. KABBAJ, KFU of Petroleum and Minerals, Dhahran, KSA. • E. A. KAIDI, University of Almeria, Almeria, Spain. • N. MAHDOU, FST of Fez, Fez, Morocco.
    [Show full text]
  • Some Classes of Flexible Lie-Admissible Algebras^)
    TRANSACTIONS of the AMERICAN MATHEMATICAL SOCIETY Volume 167, May 1972 SOME CLASSES OF FLEXIBLE LIE-ADMISSIBLE ALGEBRAS^) BY HYO CHUL MYUNG Abstract. Let M be a finite-dimensional, flexible, Lie-admissible algebra over a field of characteristic ^2. Suppose that 91~ has a split abelian Cartan subalgebra g> which is nil in 91. It is shown that if every nonzero root space of 91" for S is one- dimensional and the center of 91~ is 0, then 31 is a Lie algebra isomorphic to 31". This generalizes the known result obtained by Laufer and Tomber for the case that 91" is simple over an algebraically closed field of characteristic 0 and 31 is power- associative. We also give a condition that a Levi-factor of 91" be an ideal of 31when the solvable radical of 31" is nilpotent. These results yield some interesting applica- tions to the case that 31" is classical or reductive. 1. Introduction. Let 91 be a finite-dimensional nonassociative algebra over a field. A. A. Albert [1] proved that if 91is a flexible algebra of characteristic ^2, 3 such that 9t + is a simple Jordan algebra of degree ^3 then 91 is either quasi- associative or a Jordan algebra. As an analog to this result, Laufer and Tomber [7] have proved that if 91 is a flexible power-associative algebra over an algebraically closed field of characteristic 0 such that 91" is a simple Lie algebra, then 91 is a Lie algebra isomorphic to 91". In this case it is shown that the simplicity of 91~ implies that 91 is nil ([8], [10]).
    [Show full text]