Hom-Power Associative Algebras, in Which the Defining Identities (1.0.2) Are Relaxed by a Certain Linear Self-Map, Called the Twisting Map
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
DERIVATIONS and PROJECTIONS on JORDAN TRIPLES an Introduction to Nonassociative Algebra, Continuous Cohomology, and Quantum Functional Analysis
DERIVATIONS AND PROJECTIONS ON JORDAN TRIPLES An introduction to nonassociative algebra, continuous cohomology, and quantum functional analysis Bernard Russo July 29, 2014 This paper is an elaborated version of the material presented by the author in a three hour minicourse at V International Course of Mathematical Analysis in Andalusia, at Almeria, Spain September 12-16, 2011. The author wishes to thank the scientific committee for the opportunity to present the course and to the organizing committee for their hospitality. The author also personally thanks Antonio Peralta for his collegiality and encouragement. The minicourse on which this paper is based had its genesis in a series of talks the author had given to undergraduates at Fullerton College in California. I thank my former student Dana Clahane for his initiative in running the remarkable undergraduate research program at Fullerton College of which the seminar series is a part. With their knowledge only of the product rule for differentiation as a starting point, these enthusiastic students were introduced to some aspects of the esoteric subject of non associative algebra, including triple systems as well as algebras. Slides of these talks and of the minicourse lectures, as well as other related material, can be found at the author's website (www.math.uci.edu/∼brusso). Conversely, these undergraduate talks were motivated by the author's past and recent joint works on derivations of Jordan triples ([116],[117],[200]), which are among the many results discussed here. Part I (Derivations) is devoted to an exposition of the properties of derivations on various algebras and triple systems in finite and infinite dimensions, the primary questions addressed being whether the derivation is automatically continuous and to what extent it is an inner derivation. -
Moufang Loops and Alternative Algebras
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 132, Number 2, Pages 313{316 S 0002-9939(03)07260-5 Article electronically published on August 28, 2003 MOUFANG LOOPS AND ALTERNATIVE ALGEBRAS IVAN P. SHESTAKOV (Communicated by Lance W. Small) Abstract. Let O be the algebra O of classical real octonions or the (split) algebra of octonions over the finite field GF (p2);p>2. Then the quotient loop O∗=Z ∗ of the Moufang loop O∗ of all invertible elements of the algebra O modulo its center Z∗ is not embedded into a loop of invertible elements of any alternative algebra. It is well known that for an alternative algebra A with the unit 1 the set U(A) of all invertible elements of A forms a Moufang loop with respect to multiplication [3]. But, as far as the author knows, the following question remains open (see, for example, [1]). Question 1. Is it true that any Moufang loop can be imbedded into a loop of type U(A) for a suitable unital alternative algebra A? A positive answer to this question was announced in [5]. Here we show that, in fact, the answer to this question is negative: the Moufang loop U(O)=R∗ for the algebra O of classical octonions over the real field R andthesimilarloopforthe algebra of octonions over the finite field GF (p2);p>2; are not imbeddable into the loops of type U(A). Below O denotes an algebra of octonions (or Cayley{Dickson algebra) over a field F of characteristic =2,6 O∗ = U(O) is the Moufang loop of all the invertible elements of O, L = O∗=F ∗. -
Malcev Algebras
MALCEVALGEBRAS BY ARTHUR A. SAGLEO) 1. Introduction. This paper is an investigation of a class of nonassociative algebras which generalizes the class of Lie algebras. These algebras satisfy certain identities that were suggested to Malcev [7] when he used the com- mutator of two elements as a new multiplicative operation for an alternative algebra. As a means of establishing some notation for the present paper, a brief sketch of this development will be given here. If ^4 is any algebra (associative or not) over a field P, the original product of two elements will be denoted by juxtaposition, xy, and the following nota- tion will be adopted for elements x, y, z of A : (1.1) Commutator, xoy = (x, y) = xy — yx; (1.2) Associator, (x, y, z) = (xy)z — x(yz) ; (1.3) Jacobian, J(x, y, z) = (xy)z + (yz)x + (zx)y. An alternative algebra A is a nonassociative algebra such that for any elements xi, x2, x3 oí A, the associator (¡Ci,x2, x3) "alternates" ; that is, (xi, x2, xs) = t(xiv xh, xh) for any permutation i%,i2, i%of 1, 2, 3 where « is 1 in case the permutation is even, — 1 in case the permutation is odd. If we introduce a new product into an alternative algebra A by means of a commutator x o y, we obtain for any x, y, z of A J(x, y, z)o = (x o y) o z + (y o z) o x + (z o y) o x = 6(x, y, z). The new algebra thus obtained will be denoted by A(~K Using the preceding identity with the known identities of an alternative algebra [2] and the fact that the Jacobian is a skew-symmetric function in /l(-), we see that /1(_) satis- fies the identities (1.4) ïoï = 0, (1.5) (x o y) o (x o z) = ((x o y) o z) o x + ((y o z) o x) o x + ((z o x) o x) o y Presented to the Society, August 31, 1960; received by the editors March 14, 1961. -
Gauging the Octonion Algebra
UM-P-92/60_» Gauging the octonion algebra A.K. Waldron and G.C. Joshi Research Centre for High Energy Physics, University of Melbourne, Parkville, Victoria 8052, Australia By considering representation theory for non-associative algebras we construct the fundamental and adjoint representations of the octonion algebra. We then show how these representations by associative matrices allow a consistent octonionic gauge theory to be realized. We find that non-associativity implies the existence of new terms in the transformation laws of fields and the kinetic term of an octonionic Lagrangian. PACS numbers: 11.30.Ly, 12.10.Dm, 12.40.-y. Typeset Using REVTEX 1 L INTRODUCTION The aim of this work is to genuinely gauge the octonion algebra as opposed to relating properties of this algebra back to the well known theory of Lie Groups and fibre bundles. Typically most attempts to utilise the octonion symmetry in physics have revolved around considerations of the automorphism group G2 of the octonions and Jordan matrix representations of the octonions [1]. Our approach is more simple since we provide a spinorial approach to the octonion symmetry. Previous to this work there were already several indications that this should be possible. To begin with the statement of the gauge principle itself uno theory shall depend on the labelling of the internal symmetry space coordinates" seems to be independent of the exact nature of the gauge algebra and so should apply equally to non-associative algebras. The octonion algebra is an alternative algebra (the associator {x-1,y,i} = 0 always) X -1 so that the transformation law for a gauge field TM —• T^, = UY^U~ — ^(c^C/)(/ is well defined for octonionic transformations U. -
O/Zp OCTONION ALGEBRA and ITS MATRIX REPRESENTATIONS
Palestine Journal of Mathematics Vol. 6(1)(2017) , 307313 © Palestine Polytechnic University-PPU 2017 O Z OCTONION ALGEBRA AND ITS MATRIX = p REPRESENTATIONS Serpil HALICI and Adnan KARATA¸S Communicated by Ayman Badawi MSC 2010 Classications: Primary 17A20; Secondary 16G99. Keywords and phrases: Quaternion algebra, Octonion algebra, Cayley-Dickson process, Matrix representation. Abstract. Since O is a non-associative algebra over R, this real division algebra can not be algebraically isomorphic to any matrix algebras over the real number eld R. In this study using H with Cayley-Dickson process we obtain octonion algebra. Firstly, We investigate octonion algebra over Zp. Then, we use the left and right matrix representations of H to construct repre- sentation for octonion algebra. Furthermore, we get the matrix representations of O Z with the = p help of Cayley-Dickson process. 1 Introduction Let us summarize the notations needed to understand octonionic algebra. There are only four normed division algebras R, C, H and O [2], [6]. The octonion algebra is a non-commutative, non-associative but alternative algebra which discovered in 1843 by John T. Graves. Octonions have many applications in quantum logic, special relativity, supersymmetry, etc. Due to the non-associativity, representing octonions by matrices seems impossible. Nevertheless, one can overcome these problems by introducing left (or right) octonionic operators and xing the direc- tion of action. In this study we investigate matrix representations of octonion division algebra O Z . Now, lets = p start with the quaternion algebra H to construct the octonion algebra O. It is well known that any octonion a can be written by the Cayley-Dickson process as follows [7]. -
Split Octonions
Split Octonions Benjamin Prather Florida State University Department of Mathematics November 15, 2017 Group Algebras Split Octonions Let R be a ring (with unity). Prather Let G be a group. Loop Algebras Octonions Denition Moufang Loops An element of group algebra R[G] is the formal sum: Split-Octonions Analysis X Malcev Algebras rngn Summary gn2G Addition is component wise (as a free module). Multiplication follows from the products in R and G, distributivity and commutativity between R and G. Note: If G is innite only nitely many ri are non-zero. Group Algebras Split Octonions Prather Loop Algebras A group algebra is itself a ring. Octonions In particular, a group under multiplication. Moufang Loops Split-Octonions Analysis A set M with a binary operation is called a magma. Malcev Algebras Summary This process can be generalized to magmas. The resulting algebra often inherit the properties of M. Divisibility is a notable exception. Magmas Split Octonions Prather Loop Algebras Octonions Moufang Loops Split-Octonions Analysis Malcev Algebras Summary Loops Split Octonions Prather Loop Algebras In particular, loops are not associative. Octonions It is useful to dene some weaker properties. Moufang Loops power associative: the sub-algebra generated by Split-Octonions Analysis any one element is associative. Malcev Algebras diassociative: the sub-algebra generated by any Summary two elements is associative. associative: the sub-algebra generated by any three elements is associative. Loops Split Octonions Prather Loop Algebras Octonions Power associativity gives us (xx)x = x(xx). Moufang Loops This allows x n to be well dened. Split-Octonions Analysis −1 Malcev Algebras Diassociative loops have two sided inverses, x . -
Universal Enveloping Algebras for Simple Malcev Algebras
Pr´e-Publica¸c˜oes do Departamento de Matem´atica Universidade de Coimbra Preprint Number 10–32 UNIVERSAL ENVELOPING ALGEBRAS FOR SIMPLE MALCEV ALGEBRAS ELISABETE BARREIRO AND SARA MADARIAGA Abstract: It is our goal to present an universal enveloping algebra for the simple (non-Lie) 7-dimensional Malcev algebra M(α, β, γ) in order to obtain an universal enveloping algebra for simple Malcev algebras and to study its properties. Keywords: Simple Malcev algebra; universal enveloping algebra. Introduction The universal enveloping algebra of an algebra is a basic tool in the study of its representation theory. Given a algebra A, let us denote by A− the algebra obtained from A by replacing the product xy by the commutator [x, y]= xy yx, for elements x, y A. It is known that if A is an associative − ∈ algebra one obtains a Lie algebra A− and, conversely, the Poincar´e-Birkhoff- Witt Theorem establishes that any Lie algebra is isomorphic to a subalgebra of A− for some associative algebra A ([1], [2]). If we start with an alternative algebra A (alternative means that x(xy)= 2 2 x y and (yx)x = yx , for x, y A) then A− is a Malcev algebra. Since any associative algebra is in particular∈ an alternative algebra, then the Mal- cev algebra A− is a natural generalization of the Lie algebra A−. In [4], P´erez-Izquierdo and Shestakov presented an enveloping algebra of Malcev algebras (constructed in a more general way), generalizing the classical no- tion of universal enveloping algebra for Lie algebras. They proved that for every Malcev algebra M there exist an algebra U(M) and an injective Malcev algebra homomorphism ι : M U(M)− such that the image of M lies into the alternative nucleus of U(M−→), being U(M) a universal object with respect to such homomorphism. -
Fundamental Theorems in Mathematics
SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635]. -
Euclidean Jordan Algebras for Optimization
Euclidean Jordan algebras for optimization Michael Orlitzky Euclidean Jordan algebras for optimization Michael Orlitzky Cover image by Vexels March 23, 2021 WARNING ¡ CUIDADO ! ACHTUNG This is a draft. It contains more or less correct proofs of statements that say more or less what they should. Beyond that, I make no promises. I’ve made many, many, many, many large-scale changes to notation without ever going back to proofread from page one. Caveat emptor. 1 Contents Contents2 Glossary5 1 Preface6 1.1 Notation notation........................... 10 I Fundamentals 11 2 Vector space structure 12 2.1 Algebraic building blocks...................... 12 2.2 Vector and Hilbert spaces...................... 17 2.3 Continuity and compactness..................... 26 2.4 Algebras................................ 29 2.5 Solutions to exercises......................... 33 3 Polynomials and power-associativity 35 3.1 Univariate polynomials........................ 35 3.2 Multivariate polynomials....................... 44 3.3 Polynomial ring embeddings..................... 56 3.4 Rational functions.......................... 58 3.5 Power-associative algebras...................... 60 3.6 Polynomial continuity........................ 63 3.7 Solutions to exercises......................... 68 4 Linear Algebra 72 4.1 Linear operators, matrix representation.............. 72 4.2 Eigenvalues and self-adjoint operators............... 76 4.3 Positive semi-definite operators................... 86 4.4 Characteristic and minimal polynomials.............. 87 4.5 Solutions -
Noncommutative Jordan Algebras of Characteristic 0
NONCOMMUTATIVE JORDAN ALGEBRAS OF CHARACTERISTIC 0 R. d. SCHAFER1 Jordan algebras are commutative algebras satisfying the identity (1) (x2a)x = x2(ax). These algebras have been studied extensively. A natural generalization to noncommutative algebras is the class of algebras A satisfying (1). Linearization of (1), if the base field con- tains at least 3 elements, yields (2) (xy + yx, a, z) + (yz + zy, a, x) + (zx + xz, a, y) = 0 where (x, y, z) denotes the associator (x, y, z) = (xy)z —x(yz). If A con- tains a unity element 1, and if the characteristic is ¥-2, then z = l in (2) implies (3) (y, a, x) + (x, a, y) =■=0, or, equivalently, (4) (xa)x = x(ax). That is, A \s flexible (a weaker condition than commutativity). If a unity element is adjoined to A in the usual fashion, then a necessary and sufficient condition that (2) be satisfied in the extended algebra is that both (2) and (3) be satisfied in A. We define a noncommutative lordan algebra A over an arbitrary field F to be an algebra satisfying (1) and (4). These algebras include the best-known nonassociative algebras (Jordan, alternative, quasi- associative, and—trivially—Lie algebras). In 1948 they were studied briefly by A. A. Albert in [l, pp. 574-575],2 but the assumptions (1) and (4) seemed to him inadequate to yield a satisfactory theory, and he restricted his attention to a less general class of algebras which he called "standard." In this paper, using Albert's method of trace- admissibility3 and his results for trace-admissible algebras, we give a Presented to the Society, October 30, 1954; received by the editors August 18, 1954. -
Arxiv:1412.2365V1 [Math.AG]
POLARIZATION ALGEBRAS AND THEIR RELATIONS Ualbai Umirbaev1 Abstract. Using an approach to the Jacobian Conjecture by L.M. Dru˙zkowski and K. Rusek [12], G. Gorni and G. Zampieri [19], and A.V. Yagzhev [27], we describe a correspondence between finite dimensional symmetric algebras and homogeneous tuples of elements of polynomial algebras. We show that this correspondence closely relates Albert’s problem [10, Problem 1.1] in classical ring theory and the homogeneous de- pendence problem [13, page 145, Problem 7.1.5] in affine algebraic geometry related to the Jacobian Conjecture. We demonstrate these relations in concrete examples and formulate some open questions. Mathematics Subject Classification (2010): Primary 14R15, 17A40, 17A50; Sec- ondary 14R10, 17A36. Key words: the Jacobian Conjecture, polynomial mappings, homogeneous depen- dence, Engel algebras, nilpotent and solvable algebras. 1. Introduction The main objective of this paper is to connect two groups of specialists who are working on a closely connected problems and sometimes have intersections. Joining the efforts of these groups may be fruitful in studying the Jacobian Conjecture [13]. Namely, Albert’s problem [10, Problem 1.1] in classical ring theory and the homogeneous dependence prob- lem [13, page 145, Problem 7.1.5] in affine algebraic geometry are closely connected. Ring theory specialists are focused in studying only binary algebras and have some positive results in small dimensions. Affine algebraic geometry specialists have also some positive results in small dimensions and have some negative results for m-ary algebras if m ≥ 3. To make the subject more intriguing let’s start with two examples. -
Arxiv:1808.03808V1 [Math.RA]
THE UNIVERSALITY OF ONE HALF IN COMMUTATIVE NONASSOCIATIVE ALGEBRAS WITH IDENTITIES VLADIMIR G. TKACHEV Abstract. In this paper we will explain an interesting phenomenon which occurs in general nonasso- ciative algebras. More precisely, we establish that any finite-dimensional commutative nonassociative 1 algebra over a field satisfying an identity always contains 2 in its Peirce spectrum. We also show 1 that the corresponding 2 -Peirce module satisfies the Jordan type fusion laws. The present approach is based on an explicit representation of the Peirce polynomial for an arbitrary algebra identity. To work with fusion rules, we develop the concept of the Peirce symbol and show that it can be explicitly determined for a wide class of algebras. We also illustrate our approach by further applications to genetic algebras and algebra of minimal cones (the so-called Hsiang algebras). 1. Introduction Algebras whose associativity is replaced by identities were a central topic in mathematics in the 20th century, including the classical theory of Lie and Jordan algebras. Recall that an algebra is called Jordan if any two elements y,z ∈ A satisfy the following two identities: (1) zy − yz =0, (2) z((zz)y) − (zz)(zy)=0. The Peirce decomposition relative to an algebra idempotent is an important tool in the structure study of any nonassociative algebra. For example, the multiplication operator by an idempotent in a Jordan algebra is diagonalizable and the corresponding Peirce decomposition (relative to an idempotent c) into invariant subspaces 1 (3) A = Ac(0) ⊕ Ac(1) ⊕ Ac( 2 ) is compatible with the multiplication in the sense that the multiplication of eigenvectors is described by certain multiplication rules, also known as fusion laws.