An Introduction to Nonassociative Algebras, by R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:2009.05574V4 [Hep-Th] 9 Nov 2020 Predict a New Massless Spin One Boson [The ‘Lorentz’ Boson] Which Should Be Looked for in Experiments
Trace dynamics and division algebras: towards quantum gravity and unification Tejinder P. Singh Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India e-mail: [email protected] Accepted for publication in Zeitschrift fur Naturforschung A on October 4, 2020 v4. Submitted to arXiv.org [hep-th] on November 9, 2020 ABSTRACT We have recently proposed a Lagrangian in trace dynamics at the Planck scale, for unification of gravitation, Yang-Mills fields, and fermions. Dynamical variables are described by odd- grade (fermionic) and even-grade (bosonic) Grassmann matrices. Evolution takes place in Connes time. At energies much lower than Planck scale, trace dynamics reduces to quantum field theory. In the present paper we explain that the correct understanding of spin requires us to formulate the theory in 8-D octonionic space. The automorphisms of the octonion algebra, which belong to the smallest exceptional Lie group G2, replace space- time diffeomorphisms and internal gauge transformations, bringing them under a common unified fold. Building on earlier work by other researchers on division algebras, we propose the Lorentz-weak unification at the Planck scale, the symmetry group being the stabiliser group of the quaternions inside the octonions. This is one of the two maximal sub-groups of G2, the other one being SU(3), the element preserver group of octonions. This latter group, coupled with U(1)em, describes the electro-colour symmetry, as shown earlier by Furey. We arXiv:2009.05574v4 [hep-th] 9 Nov 2020 predict a new massless spin one boson [the `Lorentz' boson] which should be looked for in experiments. -
DERIVATIONS and PROJECTIONS on JORDAN TRIPLES an Introduction to Nonassociative Algebra, Continuous Cohomology, and Quantum Functional Analysis
DERIVATIONS AND PROJECTIONS ON JORDAN TRIPLES An introduction to nonassociative algebra, continuous cohomology, and quantum functional analysis Bernard Russo July 29, 2014 This paper is an elaborated version of the material presented by the author in a three hour minicourse at V International Course of Mathematical Analysis in Andalusia, at Almeria, Spain September 12-16, 2011. The author wishes to thank the scientific committee for the opportunity to present the course and to the organizing committee for their hospitality. The author also personally thanks Antonio Peralta for his collegiality and encouragement. The minicourse on which this paper is based had its genesis in a series of talks the author had given to undergraduates at Fullerton College in California. I thank my former student Dana Clahane for his initiative in running the remarkable undergraduate research program at Fullerton College of which the seminar series is a part. With their knowledge only of the product rule for differentiation as a starting point, these enthusiastic students were introduced to some aspects of the esoteric subject of non associative algebra, including triple systems as well as algebras. Slides of these talks and of the minicourse lectures, as well as other related material, can be found at the author's website (www.math.uci.edu/∼brusso). Conversely, these undergraduate talks were motivated by the author's past and recent joint works on derivations of Jordan triples ([116],[117],[200]), which are among the many results discussed here. Part I (Derivations) is devoted to an exposition of the properties of derivations on various algebras and triple systems in finite and infinite dimensions, the primary questions addressed being whether the derivation is automatically continuous and to what extent it is an inner derivation. -
Part I. Origin of the Species Jordan Algebras Were Conceived and Grew to Maturity in the Landscape of Physics
1 Part I. Origin of the Species Jordan algebras were conceived and grew to maturity in the landscape of physics. They were born in 1933 in a paper \Uber VerallgemeinerungsmÄoglichkeiten des Formalismus der Quantenmechanik" by the physicist Pascual Jordan; just one year later, with the help of John von Neumann and Eugene Wigner in the paper \On an algebraic generalization of the quantum mechanical formalism," they reached adulthood. Jordan algebras arose from the search for an \exceptional" setting for quantum mechanics. In the usual interpretation of quantum mechanics (the \Copenhagen model"), the physical observables are represented by Hermitian matrices (or operators on Hilbert space), those which are self-adjoint x¤ = x: The basic operations on matrices or operators are multiplication by a complex scalar ¸x, addition x + y, multipli- cation xy of matrices (composition of operators), and forming the complex conjugate transpose matrix (adjoint operator) x¤. This formalism is open to the objection that the operations are not \observable," not intrinsic to the physically meaningful part of the system: the scalar multiple ¸x is not again hermitian unless the scalar ¸ is real, the product xy is not observable unless x and y commute (or, as the physicists say, x and y are \simultaneously observable"), and the adjoint is invisible (it is the identity map on the observables, though nontrivial on matrices or operators in general). In 1932 the physicist Pascual Jordan proposed a program to discover a new algebraic setting for quantum mechanics, which would be freed from dependence on an invisible all-determining metaphysical matrix structure, yet would enjoy all the same algebraic bene¯ts as the highly successful Copenhagen model. -
Formal Power Series - Wikipedia, the Free Encyclopedia
Formal power series - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Formal_power_series Formal power series From Wikipedia, the free encyclopedia In mathematics, formal power series are a generalization of polynomials as formal objects, where the number of terms is allowed to be infinite; this implies giving up the possibility to substitute arbitrary values for indeterminates. This perspective contrasts with that of power series, whose variables designate numerical values, and which series therefore only have a definite value if convergence can be established. Formal power series are often used merely to represent the whole collection of their coefficients. In combinatorics, they provide representations of numerical sequences and of multisets, and for instance allow giving concise expressions for recursively defined sequences regardless of whether the recursion can be explicitly solved; this is known as the method of generating functions. Contents 1 Introduction 2 The ring of formal power series 2.1 Definition of the formal power series ring 2.1.1 Ring structure 2.1.2 Topological structure 2.1.3 Alternative topologies 2.2 Universal property 3 Operations on formal power series 3.1 Multiplying series 3.2 Power series raised to powers 3.3 Inverting series 3.4 Dividing series 3.5 Extracting coefficients 3.6 Composition of series 3.6.1 Example 3.7 Composition inverse 3.8 Formal differentiation of series 4 Properties 4.1 Algebraic properties of the formal power series ring 4.2 Topological properties of the formal power series -
Moufang Loops and Alternative Algebras
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 132, Number 2, Pages 313{316 S 0002-9939(03)07260-5 Article electronically published on August 28, 2003 MOUFANG LOOPS AND ALTERNATIVE ALGEBRAS IVAN P. SHESTAKOV (Communicated by Lance W. Small) Abstract. Let O be the algebra O of classical real octonions or the (split) algebra of octonions over the finite field GF (p2);p>2. Then the quotient loop O∗=Z ∗ of the Moufang loop O∗ of all invertible elements of the algebra O modulo its center Z∗ is not embedded into a loop of invertible elements of any alternative algebra. It is well known that for an alternative algebra A with the unit 1 the set U(A) of all invertible elements of A forms a Moufang loop with respect to multiplication [3]. But, as far as the author knows, the following question remains open (see, for example, [1]). Question 1. Is it true that any Moufang loop can be imbedded into a loop of type U(A) for a suitable unital alternative algebra A? A positive answer to this question was announced in [5]. Here we show that, in fact, the answer to this question is negative: the Moufang loop U(O)=R∗ for the algebra O of classical octonions over the real field R andthesimilarloopforthe algebra of octonions over the finite field GF (p2);p>2; are not imbeddable into the loops of type U(A). Below O denotes an algebra of octonions (or Cayley{Dickson algebra) over a field F of characteristic =2,6 O∗ = U(O) is the Moufang loop of all the invertible elements of O, L = O∗=F ∗. -
An Introduction to Operad Theory
AN INTRODUCTION TO OPERAD THEORY SAIMA SAMCHUCK-SCHNARCH Abstract. We give an introduction to category theory and operad theory aimed at the undergraduate level. We first explore operads in the category of sets, and then generalize to other familiar categories. Finally, we develop tools to construct operads via generators and relations, and provide several examples of operads in various categories. Throughout, we highlight the ways in which operads can be seen to encode the properties of algebraic structures across different categories. Contents 1. Introduction1 2. Preliminary Definitions2 2.1. Algebraic Structures2 2.2. Category Theory4 3. Operads in the Category of Sets 12 3.1. Basic Definitions 13 3.2. Tree Diagram Visualizations 14 3.3. Morphisms and Algebras over Operads of Sets 17 4. General Operads 22 4.1. Basic Definitions 22 4.2. Morphisms and Algebras over General Operads 27 5. Operads via Generators and Relations 33 5.1. Quotient Operads and Free Operads 33 5.2. More Examples of Operads 38 5.3. Coloured Operads 43 References 44 1. Introduction Sets equipped with operations are ubiquitous in mathematics, and many familiar operati- ons share key properties. For instance, the addition of real numbers, composition of functions, and concatenation of strings are all associative operations with an identity element. In other words, all three are examples of monoids. Rather than working with particular examples of sets and operations directly, it is often more convenient to abstract out their common pro- perties and work with algebraic structures instead. For instance, one can prove that in any monoid, arbitrarily long products x1x2 ··· xn have an unambiguous value, and thus brackets 2010 Mathematics Subject Classification. -
Malcev Algebras
MALCEVALGEBRAS BY ARTHUR A. SAGLEO) 1. Introduction. This paper is an investigation of a class of nonassociative algebras which generalizes the class of Lie algebras. These algebras satisfy certain identities that were suggested to Malcev [7] when he used the com- mutator of two elements as a new multiplicative operation for an alternative algebra. As a means of establishing some notation for the present paper, a brief sketch of this development will be given here. If ^4 is any algebra (associative or not) over a field P, the original product of two elements will be denoted by juxtaposition, xy, and the following nota- tion will be adopted for elements x, y, z of A : (1.1) Commutator, xoy = (x, y) = xy — yx; (1.2) Associator, (x, y, z) = (xy)z — x(yz) ; (1.3) Jacobian, J(x, y, z) = (xy)z + (yz)x + (zx)y. An alternative algebra A is a nonassociative algebra such that for any elements xi, x2, x3 oí A, the associator (¡Ci,x2, x3) "alternates" ; that is, (xi, x2, xs) = t(xiv xh, xh) for any permutation i%,i2, i%of 1, 2, 3 where « is 1 in case the permutation is even, — 1 in case the permutation is odd. If we introduce a new product into an alternative algebra A by means of a commutator x o y, we obtain for any x, y, z of A J(x, y, z)o = (x o y) o z + (y o z) o x + (z o y) o x = 6(x, y, z). The new algebra thus obtained will be denoted by A(~K Using the preceding identity with the known identities of an alternative algebra [2] and the fact that the Jacobian is a skew-symmetric function in /l(-), we see that /1(_) satis- fies the identities (1.4) ïoï = 0, (1.5) (x o y) o (x o z) = ((x o y) o z) o x + ((y o z) o x) o x + ((z o x) o x) o y Presented to the Society, August 31, 1960; received by the editors March 14, 1961. -
Algebraic Number Theory
Algebraic Number Theory William B. Hart Warwick Mathematics Institute Abstract. We give a short introduction to algebraic number theory. Algebraic number theory is the study of extension fields Q(α1; α2; : : : ; αn) of the rational numbers, known as algebraic number fields (sometimes number fields for short), in which each of the adjoined complex numbers αi is algebraic, i.e. the root of a polynomial with rational coefficients. Throughout this set of notes we use the notation Z[α1; α2; : : : ; αn] to denote the ring generated by the values αi. It is the smallest ring containing the integers Z and each of the αi. It can be described as the ring of all polynomial expressions in the αi with integer coefficients, i.e. the ring of all expressions built up from elements of Z and the complex numbers αi by finitely many applications of the arithmetic operations of addition and multiplication. The notation Q(α1; α2; : : : ; αn) denotes the field of all quotients of elements of Z[α1; α2; : : : ; αn] with nonzero denominator, i.e. the field of rational functions in the αi, with rational coefficients. It is the smallest field containing the rational numbers Q and all of the αi. It can be thought of as the field of all expressions built up from elements of Z and the numbers αi by finitely many applications of the arithmetic operations of addition, multiplication and division (excepting of course, divide by zero). 1 Algebraic numbers and integers A number α 2 C is called algebraic if it is the root of a monic polynomial n n−1 n−2 f(x) = x + an−1x + an−2x + ::: + a1x + a0 = 0 with rational coefficients ai. -
Abstract Algebra: Monoids, Groups, Rings
Notes on Abstract Algebra John Perry University of Southern Mississippi [email protected] http://www.math.usm.edu/perry/ Copyright 2009 John Perry www.math.usm.edu/perry/ Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States You are free: to Share—to copy, distribute and transmit the work • to Remix—to adapt the work Under• the following conditions: Attribution—You must attribute the work in the manner specified by the author or licen- • sor (but not in any way that suggests that they endorse you or your use of the work). Noncommercial—You may not use this work for commercial purposes. • Share Alike—If you alter, transform, or build upon this work, you may distribute the • resulting work only under the same or similar license to this one. With the understanding that: Waiver—Any of the above conditions can be waived if you get permission from the copy- • right holder. Other Rights—In no way are any of the following rights affected by the license: • Your fair dealing or fair use rights; ◦ Apart from the remix rights granted under this license, the author’s moral rights; ◦ Rights other persons may have either in the work itself or in how the work is used, ◦ such as publicity or privacy rights. Notice—For any reuse or distribution, you must make clear to others the license terms of • this work. The best way to do this is with a link to this web page: http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode Table of Contents Reference sheet for notation...........................................................iv A few acknowledgements..............................................................vi Preface ...............................................................................vii Overview ...........................................................................vii Three interesting problems ............................................................1 Part . -
Split Octonions
Split Octonions Benjamin Prather Florida State University Department of Mathematics November 15, 2017 Group Algebras Split Octonions Let R be a ring (with unity). Prather Let G be a group. Loop Algebras Octonions Denition Moufang Loops An element of group algebra R[G] is the formal sum: Split-Octonions Analysis X Malcev Algebras rngn Summary gn2G Addition is component wise (as a free module). Multiplication follows from the products in R and G, distributivity and commutativity between R and G. Note: If G is innite only nitely many ri are non-zero. Group Algebras Split Octonions Prather Loop Algebras A group algebra is itself a ring. Octonions In particular, a group under multiplication. Moufang Loops Split-Octonions Analysis A set M with a binary operation is called a magma. Malcev Algebras Summary This process can be generalized to magmas. The resulting algebra often inherit the properties of M. Divisibility is a notable exception. Magmas Split Octonions Prather Loop Algebras Octonions Moufang Loops Split-Octonions Analysis Malcev Algebras Summary Loops Split Octonions Prather Loop Algebras In particular, loops are not associative. Octonions It is useful to dene some weaker properties. Moufang Loops power associative: the sub-algebra generated by Split-Octonions Analysis any one element is associative. Malcev Algebras diassociative: the sub-algebra generated by any Summary two elements is associative. associative: the sub-algebra generated by any three elements is associative. Loops Split Octonions Prather Loop Algebras Octonions Power associativity gives us (xx)x = x(xx). Moufang Loops This allows x n to be well dened. Split-Octonions Analysis −1 Malcev Algebras Diassociative loops have two sided inverses, x . -
A Guide to Self-Distributive Quasigroups, Or Latin Quandles
A GUIDE TO SELF-DISTRIBUTIVE QUASIGROUPS, OR LATIN QUANDLES DAVID STANOVSKY´ Abstract. We present an overview of the theory of self-distributive quasigroups, both in the two- sided and one-sided cases, and relate the older results to the modern theory of quandles, to which self-distributive quasigroups are a special case. Most attention is paid to the representation results (loop isotopy, linear representation, homogeneous representation), as the main tool to investigate self-distributive quasigroups. 1. Introduction 1.1. The origins of self-distributivity. Self-distributivity is such a natural concept: given a binary operation on a set A, fix one parameter, say the left one, and consider the mappings ∗ La(x) = a x, called left translations. If all such mappings are endomorphisms of the algebraic structure (A,∗ ), the operation is called left self-distributive (the prefix self- is usually omitted). Equationally,∗ the property says a (x y) = (a x) (a y) ∗ ∗ ∗ ∗ ∗ for every a, x, y A, and we see that distributes over itself. Self-distributivity∈ was pinpointed already∗ in the late 19th century works of logicians Peirce and Schr¨oder [69, 76], and ever since, it keeps appearing in a natural way throughout mathematics, perhaps most notably in low dimensional topology (knot and braid invariants) [12, 15, 63], in the theory of symmetric spaces [57] and in set theory (Laver’s groupoids of elementary embeddings) [15]. Recently, Moskovich expressed an interesting statement on his blog [60] that while associativity caters to the classical world of space and time, distributivity is, perhaps, the setting for the emerging world of information. -
Ring (Mathematics) 1 Ring (Mathematics)
Ring (mathematics) 1 Ring (mathematics) In mathematics, a ring is an algebraic structure consisting of a set together with two binary operations usually called addition and multiplication, where the set is an abelian group under addition (called the additive group of the ring) and a monoid under multiplication such that multiplication distributes over addition.a[›] In other words the ring axioms require that addition is commutative, addition and multiplication are associative, multiplication distributes over addition, each element in the set has an additive inverse, and there exists an additive identity. One of the most common examples of a ring is the set of integers endowed with its natural operations of addition and multiplication. Certain variations of the definition of a ring are sometimes employed, and these are outlined later in the article. Polynomials, represented here by curves, form a ring under addition The branch of mathematics that studies rings is known and multiplication. as ring theory. Ring theorists study properties common to both familiar mathematical structures such as integers and polynomials, and to the many less well-known mathematical structures that also satisfy the axioms of ring theory. The ubiquity of rings makes them a central organizing principle of contemporary mathematics.[1] Ring theory may be used to understand fundamental physical laws, such as those underlying special relativity and symmetry phenomena in molecular chemistry. The concept of a ring first arose from attempts to prove Fermat's last theorem, starting with Richard Dedekind in the 1880s. After contributions from other fields, mainly number theory, the ring notion was generalized and firmly established during the 1920s by Emmy Noether and Wolfgang Krull.[2] Modern ring theory—a very active mathematical discipline—studies rings in their own right.