The Effect of Gonadotropin Withdrawal and Stimulation with Human Chorionic Gonadotropin on Intratesticular Androstenedione and DHEA in Normal Men

Total Page:16

File Type:pdf, Size:1020Kb

The Effect of Gonadotropin Withdrawal and Stimulation with Human Chorionic Gonadotropin on Intratesticular Androstenedione and DHEA in Normal Men ORIGINAL ARTICLE Endocrine Research The Effect of Gonadotropin Withdrawal and Stimulation with Human Chorionic Gonadotropin on Intratesticular Androstenedione and DHEA in Normal Men M. Y. Roth, S. T. Page, K. Lin, B. D. Anawalt, A. M. Matsumoto, B. Marck, W. J. Bremner, and J. K. Amory Downloaded from https://academic.oup.com/jcem/article/96/4/1175/2720870 by guest on 02 October 2021 Departments of Internal Medicine (M.Y.R., S.T.P., B.D.A., A.M.M., W.J.B., J.K.A.) and Obstetrics and Gynecology (K.L.) and Center for Research in Reproduction and Contraception (M.Y.R., S.T.P., B.D.A., A.M.M., W.J.B., J.K.A.), University of Washington, Seattle, Washington 91895; and Geriatric Research (B.M.), Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98105 Introduction: Concentrations of intratesticular (IT) testosterone (T) are known to be 100–200 times those of serum T; however, the IT concentrations of T’s precursors, their testicular to serum gra- dients, gonadotropin dependence, and response to stimulation with human chorionic gonado- tropin (hCG) have not been studied in detail. We hypothesized that serum and IT androstenedione (ADD) and IT dehydroepiandrosterone (DHEA) would be significantly suppressed by the adminis- tration of a GnRH antagonist and increased when stimulated by hCG, without a similar suppression of serum DHEA. Methods: We suppressed gonadotropins in 23 normal men with the GnRH antagonist acyline and randomly assigned them to one of four doses of hCG, 0, 15, 60, or 125 IU sc every other day for 10 d. Blood and IT fluid for the measurement of serum and IT hormones were obtained at baseline and after 10 d of treatment. Results: Baseline IT ADD [median (25th, 75th percentile)] was 629 (308, 860) nmol/liter, and IT DHEA was 564 (411, 879) nmol/liter, which were 175 and 27 times higher than their respective serum concentrations. IT ADD and IT DHEA were suppressed by 98 and 82%, respectively, by acyline and significantly increased with hCG administration. Likewise, serum ADD was suppressed by 50%, but serum DHEA was unchanged. Discussion: ADD and DHEA are highly concentrated within the human testes compared with serum. Serum and IT ADD and IT DHEA are markedly suppressed with GnRH administration and stimulated by hCG, but serum DHEA is not, suggesting that most circulating DHEA is not of testicular origin. (J Clin Endocrinol Metab 96: 1175–1181, 2011) ntratesticular (IT) testosterone (T) is required for sper- lower concentrations of IT T in both rats (7) and men (8). I matogenesis. In men with normal spermatogenesis, IT In the context of low IT T, such as with experimental male T concentrations are known to be 100–200 times greater hormonal contraception regimens, it is possible that other than those in the serum (1–6). However, these high con- IT androgens, such as androstenedione (ADD) and dehy- centrations of IT T are not essential for spermatogenesis droepiandrosterone (DHEA), may play a role in support- because spermatogenesis has been observed with much ing spermatogenesis. Previous work has suggested that ISSN Print 0021-972X ISSN Online 1945-7197 Abbreviations: ADD, Androstenedione; DHEA, dehydroepiandrosterone; DHT, dihydrotes- Printed in U.S.A. tosterone; hCG, human chorionic gonadotropin; IT, intratesticular; T, testosterone. Copyright © 2011 by The Endocrine Society doi: 10.1210/jc.2010-2518 Received October 25, 2010. Accepted January 10, 2011. First Published Online February 2, 2011 J Clin Endocrinol Metab, April 2011, 96(4):1175–1181 jcem.endojournals.org 1175 1176 Roth et al. hCG and Intratesticular Steroid Biosynthesis J Clin Endocrinol Metab, April 2011, 96(4):1175–1181 DHEA may support spermatogenesis in rats (9, 10), either similar suppression of serum DHEA. In addition, we hy- from an adrenal or testicular source, in which case it may pothesized that IT ADD and IT DHEA would be much function as a paracrine stimulatory signal. Nonetheless, lower than IT T at baseline, reflecting their rapid conver- the IT concentrations of these androgenic precursors of T sion to T in the testes. biosynthesis in man have not been studied in detail. Previous studies examining IT ADD and IT DHEA re- lied on testicular tissue obtained either at the time of or- Subjects and Methods chidectomy from prostate cancer patients or from testic- ular biopsies of infertile patients (11–15). Only two Subjects studies enrolled normal controls to further characterize The study design has been reported previously (19). Briefly, healthy men, 18–50 yr old, with normal serum gonadotro- the IT hormonal milieu (16, 17), but the testicular biopsies Downloaded from https://academic.oup.com/jcem/article/96/4/1175/2720870 by guest on 02 October 2021 pins, serum T concentrations, and normal seminal fluid anal- in these studies involved the use of general anesthesia, yses were enrolled. After enrollment, subjects were assigned to which can affect steroidogenesis by suppressing LH secre- one of the treatment groups by a random number sequence tion from the pituitary (18). Additionally, because of the and also randomized to the order of the unilateral testicular rarity of testicular biopsy in normal men, these studies fine-needle aspirations (right vs. left testis on d 1 vs. d 10). All involved small numbers of subjects, which may have ad- subjects had a baseline testicular fine-needle aspiration on d 1, which was performed using a scrotal block with 1% lidocaine versely affected the precision of their estimates for IT ADD buffered 1:10 with sodium bicarbonate injected into the sper- and IT DHEA. matic cord. Next, a blood sample was obtained for assessment To overcome this limitation, Jarow and colleagues (2) of serum hormones, and a unilateral testicular aspiration was developed a minimally invasive fine-needle aspiration performed as previously described (2, 6, 19, 20). After the technique that allows for sampling of IT fluid in normal testicular aspiration on d 1, all subjects received a sc injection of the GnRH antagonist acyline (NeoMPS, San Diego, CA) at men without the requirement for general anesthesia. This a dose of 300 ␮g/kg into the abdominal skin. Subjects then technique makes it possible to assess the IT hormone con- received the first dose of hCG (Pregnyl; Organon, Roseland, centrations in normal, healthy fertile men without under- NJ) based on treatment group randomization: group 1 re- lying medical problems such as prostate cancer or infer- ceived placebo hCG (normal saline) sc every other day for five tility. Several studies have since used fine-needle aspiration doses, group 2 received 15 IU hCG sc every other day for five doses, group 3 received 60 IU hCG sc every other day for to study IT hormones, but these studies have focused on IT five doses, and group 4 received 125 IU hCG sc every other day T and IT dihydrotestosterone (DHT) (2, 4, 6), and the for five doses. On d 10, subjects underwent a testicular fine- IT concentration of T precursors such as IT ADD and IT needle aspiration of the other testis, following the same pro- DHEA has not been studied using this technique. tocol outlined above for d 1. On d 40, subjects had a follow-up Knowledge regarding the concentrations of IT ADD visit to ensure their testicular examination, serum and semen parameters had all returned to normal. The University of and IT DHEA and their regulation by LH may provide Washington Institutional Review Board approved the study, insights into the role of these hormones in spermatogen- and all subjects provided written, informed consent before esis, particularly in the setting of low IT T, as may be study procedures. The study was registered in advance on observed in some men with infertility and/or during treat- www.clinicaltrials.gov as NCT 00839319. ment with experimental forms of male hormonal contra- ception. In addition, knowledge of IT ADD and IT DHEA Measurements may enhance our understanding of T biosynthesis in vivo Testicular fluid samples were immediately placed on ice ϫ and could aid in the development of novel inhibitors of T and centrifuged at 300 g to remove any aspirated cells; the supernatant fluid was decanted and stored at Ϫ70 C. Serum biosynthesis. Such inhibitors could be useful in the treat- was stored at Ϫ20 C. Testicular fluid and serum samples were ment of androgen-sensitive disease or improve the efficacy assayed simultaneously for T, ADD, and DHEA by liquid of male hormonal contraceptives. chromatography-tandem mass spectrometry on a Waters Therefore, to improve our understanding of testicular Aquity UPLC coupled with a Micromass Premiere-XE tandem steroidogenesis in normal men, we measured IT T, IT quadrupole mass spectrometer (Waters Corp., Milford, MA) using a modification of our previously described method (6, ADD, and IT DHEA by fine-needle aspiration in a large 19, 21). The midrange pooled intra- and interassay coeffi- group of healthy, fertile men. Measurements were per- cients of variation were 4.9 and 7.4% for T, 3.5 and 20.6% formed before and after suppression of gonadotropins for ADD, and 7.6 and 15.4% for DHEA. The assay sensitivity with the GnRH antagonist acyline and restimulation with was less than 0.1 pmol/liter for T, less than 0.03 nmol/liter for low doses of human chorionic gonadotropin (hCG). We ADD, and less than 0.07 nmol/liter for DHEA. Serum LH and FSH concentrations were quantified by im- hypothesized that serum and IT ADD and DHEA would munofluorometric assay (8). The sensitivity of the LH assay suppress with administration of a GnRH antagonist and was 0.019 IU/liter, and the intra- and interassay coefficients of increase when stimulated by low doses of hCG, without a variation for a midrange pooled value of 1.2 IU/liter was 3.2 J Clin Endocrinol Metab, April 2011, 96(4):1175–1181 jcem.endojournals.org 1177 TABLE 1.
Recommended publications
  • Kisspeptin and Testicular Function—Is It Necessary?
    International Journal of Molecular Sciences Review Kisspeptin and Testicular Function—Is It Necessary? Aditi Sharma 1 , Thilipan Thaventhiran 1, Suks Minhas 2, Waljit S. Dhillo 1 and Channa N. Jayasena 1,* 1 Section of Investigative Medicine, Imperial College, 6th Floor, Commonwealth Building, Hammersmith Hospital, 150 Du Cane Road, London W12 0NN, UK; [email protected] (A.S.); [email protected] (T.T.); [email protected] (W.S.D.) 2 Department of Urology, Imperial College Healthcare NHS Trust, Charing Cross Hospital, Fulham Palace Road, Hammersmith, London W6 8RF, UK; [email protected] * Correspondence: [email protected] Received: 12 March 2020; Accepted: 21 April 2020; Published: 22 April 2020 Abstract: The role of kisspeptin in stimulating hypothalamic GnRH is undisputed. However, the role of kisspeptin signaling in testicular function is less clear. The testes are essential for male reproduction through their functions of spermatogenesis and steroidogenesis. Our review focused on the current literature investigating the distribution, regulation and effects of kisspeptin and its receptor (KISS1/KISS1R) within the testes of species studied to date. There is substantial evidence of localised KISS1/KISS1R expression and peptide distribution in the testes. However, variability is observed in the testicular cell types expressing KISS1/KISS1R. Evidence is presented for modulation of steroidogenesis and sperm function by kisspeptin signaling. However, the physiological importance of such effects, and whether these are paracrine or endocrine manifestations, remain unclear. Keywords: kisspeptin; kisspeptin receptor; spermatozoa; Leydig cells; Sertoli cells; testes; testosterone; LH; FSH; spermatogenesis 1. Introduction Kisspeptin is an established regulator of puberty onset [1,2], sexual maturation and adult reproductive activity [3].
    [Show full text]
  • Human Chorionic Gonadotropin (HCG), a Polypeptide Hormone Produced by the Human
    45792G/Revised: April 2011 CHORIONIC GONADOTROPIN FOR INJECTION, USP DESCRIPTION: Human chorionic gonadotropin (HCG), a polypeptide hormone produced by the human placenta, is composed of an alpha and a beta sub-unit. The alpha sub-unit is essentially identical to the alpha sub-units of the human pituitary gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), as well as to the alpha sub-unit of human thyroid-stimulating hormone (TSH). The beta sub-units of these hormones differ in amino acid sequence. Chorionic gonadotropin is obtained from the human pregnancy urine. It is standardized by a biological assay procedure. Chorionic Gonadotropin for Injection, USP is available in multiple dose vials containing 10,000 USP Units with accompanying Bacteriostatic Water for Injection for reconstitution. When reconstituted with 10 mL of the accompanying diluent each vial contains: Chorionic gonadotropin 10,000 Units Mannitol 100 mg Benzyl alcohol 0.9% Water for Injection q.s. Buffered with dibasic sodium phosphate and monobasic sodium phosphate. Hydrochloric acid and/or sodium hydroxide may have been used for pH adjustment (6.0­ Reference ID: 2933198 8.0). Nitrogen gas is used in the freeze drying process. CLINICAL PHARMACOLOGY: The action of HCG is virtually identical to that of pituitary LH, although HCG appears to have a small degree of FSH activity as well. It stimulates production of gonadal steroid hormones by stimulating the interstitial cells (Leydig cells) of the testis to produce androgens and the corpus luteum of the ovary to produce progesterone. Androgen stimulation in the male leads to the development of secondary sex characteristics and may stimulate testicular descent when no anatomical impediment to descent is present.
    [Show full text]
  • Gonadotropin and Testosterone Measurements After
    Pediat. Res. 10: 46-51 (1976) Estradiol puberty estrogen sexual differentiation gonadotropins testosterone maturation Gonadotropin and Testosterone Measurements after Estrogen Administration to Adult Men, Prepubertal and Pubertal Boys, and Men with Hypogonadotropism: Evidence for Maturation of Positive Feedback in the Male HOWARD E. KULIN"" AND EDWARD 0. REITER Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA Extract MATERIALS AND METHODS Nineteen male subjects were given five daily injections of SUBJECTS 17~-estradiol and circulating levels of estradiol (E 2 ), testosterone (T), and gonadotropins were determined by radioimmunoassay Seven normal, adult men (ages 20-22) and one male (age 21) before, during, and after the steroid course. Peak levels of E 2 with the syndrome of vanishing testes (I) were hospitalized for attained during the 5 days of treatment ranged from 173-577 pg/ml. study at the Clinical Center of the National Institutes of Health. Four of seven normal adult men and one castrate man demonstrated Each patient was given five daily intramuscular injections of IO or suppression of follicle-stimulating hormone ( FSH) and luteinizing 15 ,ug/kg body weight of 17~-estradiol (E2 ) (20) and blood samples hormone ( LH) with a subsequent rise in LH ( positive feedback) were obtained every 12-24 hr before, during, and after the estrogen while E 2 levels remained elevated. A rise in T was associated with course (see Table I). the LH increment in the four normal men. Nine pre-, early, or Nine endocrinologically normal boys between the ages of 7 and midpubertal boys and two men with hypogonadotropic hypogo­ 18 were studied in the course of evaluation for short stature, nadism displayed only gonadotropin suppression after E 2 adminis­ precocious puberty, or delayed adolescence.
    [Show full text]
  • Chorionic Gonadotropin Human (C0684)
    Chorionic gonadotropin human Product Number C 0684 Storage Temperature -0 °C Product Description When hCG was used in combination with recombinant CAS Number: 9002-61-3 interferon-γ, there was a significant cooperative pI = 2.951 induction of nitric oxide synthesis (iNOS) in a dose- Extinction Coefficient: E1% = 3.88 (278nm)2 dependent manner in mouse peritoneal macrophages Synonym: Choriogonin, hCG suggesting that hCG may provide a second signal for synergistic induction of NO synthesis.9 The molecular weight is approximately 37.9 kDa (with approximately 31% carbohydrate by weight). The Precautions and Disclaimer theoretical molecular weight is 37.9 kDa based on the For Laboratory Use Only. Not for drug, household or native form, which contains 2 subunits. The α subunit other uses. has a molecular weight of 14.9 kDa of which approximately 10.2 kDa is for the polypeptide and Preparation Instructions approximately 4.7 kDa for the carbohydrate. The hCG is soluble in water and aqueous buffers such β subunit has a molecular weight of 23 kDa of which phosphate buffer. hCG is also soluble in aqueous approximately 16.0 kDa is for the polypeptide and glycerol and glycols and is insoluble in ethanol.1 approximately 7.0 kDa is for the carbohydrate.3,4,5 Solutions should be sterile filtered and not autoclaved. Product Number C 0684 is sterile filtered and contains Storage/Stability approximately 1,000 I.U. per vial. Dilute aqueous solutions undergo rapid loss of activity when stored frozen, or heated, or if excess acid or hCG is a glycoprotein hormone produced by the base is added.
    [Show full text]
  • Advanced Prostate Cancer: Developing Gonadotropin- Releasing Hormone Analogues Guidance for Industry
    Advanced Prostate Cancer: Developing Gonadotropin- Releasing Hormone Analogues Guidance for Industry DRAFT GUIDANCE This guidance document is being distributed for comment purposes only. Comments and suggestions regarding this draft document should be submitted within 90 days of publication in the Federal Register of the notice announcing the availability of the draft guidance. Submit electronic comments to https://www.regulations.gov. Submit written comments to the Dockets Management Staff (HFA-305), Food and Drug Administration, 5630 Fishers Lane, Rm. 1061, Rockville, MD 20852. All comments should be identified with the docket number listed in the notice of availability that publishes in the Federal Register. For questions regarding this draft document, contact Elaine Chang at 240-402-2628. U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) July 2019 Clinical/Medical Advanced Prostate Cancer: Developing Gonadotropin- Releasing Hormone Analogues Guidance for Industry Additional copies are available from: Office of Communications, Division of Drug Information Center for Drug Evaluation and Research Food and Drug Administration 10001 New Hampshire Ave., Hillandale Bldg., 4th Floor Silver Spring, MD 20993-0002 Phone: 855-543-3784 or 301-796-3400; Fax: 301-431-6353; Email: [email protected] https://www.fda.gov/drugs/guidance-compliance-regulatory-information/guidances-drugs U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation
    [Show full text]
  • Mouse Model of Male Germ Cell Apoptosis in Response to a Lack of Hormonal Stimulation
    Indian Journal of Experimental Biology Vol. 43, November 2005, pp. 1048-1057 Mouse model of male germ cell apoptosis in response to a lack of hormonal stimulation Ami ya P Sinha Hikim*, Yanira Vera, Rashid I Elhag, Yanhe Lue, Yu-Gui Cui , Vanisha Pope, Andrew Leun g, Vince Atienza, Christina Wan g & Ron ald S Swerdloff Di vision of Endocrinology, Department of Medicine, Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA and Los Angeles Biomedical Research Institute, Torrance. Californi a. USA Received 5 August 2005 As a prerequisite for studies using mutant mi ce, we established a mouse model for induction of male germ ce ll apoptosis after depri vation of gonadotropins and intratesti c ul ar testosterone (T). We employed a potent long acting gonadotropin-releasing hormone antagoni st (GnRH-A), acyline, al one or in combinati on with an anti and rogen, flutamide for effective inducti on of germ cell apoptosis in mice. Combined treatment with continuous release of acyline (3 mg/kg BW/day) with flutamide (in the form of sc pellets of 25 mg) resul ted in almost th e same level of suppression of spermatogenesis, as judged by testi s weight and by germ cell apoptotic index, in 2 weeks as th at re ported for rats after treatment with 1.25 mg/kg BW Nai-Giu GnRH-A for the same time peri od. Within the study paradi gm, the maximum suppression of spermatogenesis occurred after a single sc injecti on of hi gh (20 mg/kg BW) dose of acyli ne with flutamide.
    [Show full text]
  • WSAVA List of Essential Medicines for Cats and Dogs
    The World Small Animal Veterinary Association (WSAVA) List of Essential Medicines for Cats and Dogs Version 1; January 20th, 2020 Members of the WSAVA Therapeutic Guidelines Group (TGG) Steagall PV, Pelligand L, Page SW, Bourgeois M, Weese S, Manigot G, Dublin D, Ferreira JP, Guardabassi L © 2020 WSAVA All Rights Reserved Contents Background ................................................................................................................................... 2 Definition ...................................................................................................................................... 2 Using the List of Essential Medicines ............................................................................................ 2 Criteria for selection of essential medicines ................................................................................. 3 Anaesthetic, analgesic, sedative and emergency drugs ............................................................... 4 Antimicrobial drugs ....................................................................................................................... 7 Antibacterial and antiprotozoal drugs ....................................................................................... 7 Systemic administration ........................................................................................................ 7 Topical administration ........................................................................................................... 9 Antifungal drugs .....................................................................................................................
    [Show full text]
  • Gonadotropins Regulate Rat Testicular Tight Junctions in Vivo
    REPRODUCTION-DEVELOPMENT Gonadotropins Regulate Rat Testicular Tight Junctions in Vivo Mark J. McCabe, Gerard A. Tarulli, Sarah J. Meachem, David M. Robertson, Peter M. Smooker, and Peter G. Stanton Prince Henry’s Institute (M.J.M., G.A.T., S.J.M., D.M.R., P.G.S.), Monash Medical Centre, Clayton, Victoria 3168, Australia; School of Applied Sciences (M.J.M., P.M.S.), Royal Melbourne Institute of Technology University, Bundoora, Victoria 3083, Australia; and Department of Biochemistry and Molecular Biology (P.G.S.), Monash University, Clayton, Victoria 3800, Australia Sertoli cell tight junctions (TJs) are an essential component of the blood-testis barrier required for spermatogenesis; however, the role of gonadotropins in their maintenance is unknown. This study aimed to investigate the effect of gonadotropin suppression and short-term replacement on TJ function and TJ protein (occludin and claudin-11) expression and localization, in an adult rat model in vivo. Rats (n ϭ 10/group) received the GnRH antagonist, acyline, for 7 wk to suppress gonado- tropins. Three groups then received for 7 d: 1) human recombinant FSH, 2) human chorionic gonadotropin (hCG) and rat FSH antibody (to study testicular androgen stimulation alone), and 3) hCG alone (to study testicular androgen and pituitary FSH production). TJ proteins were assessed by real-time PCR, Western blot analysis, and immunohistochemistry, whereas TJ function was assessed with a biotin permeation tracer. Acyline treatment significantly reduced testis weights, serum androgens, LH and FSH, and adluminal germ cells (pachytene spermatocyte, round and elongating spermatids). In contrast to controls, acyline induced seminiferous tubule permeability to biotin, loss of tubule lumens, and loss of occludin, but redistribution of claudin-11, immuno- staining.
    [Show full text]
  • Suppression of Kisspeptin Expression and Gonadotropic Axis Sensitivity Following Exposure to Inhibitory Day Lengths in Female Siberian Hamsters
    Hormones and Behavior 52 (2007) 492–498 www.elsevier.com/locate/yhbeh Suppression of kisspeptin expression and gonadotropic axis sensitivity following exposure to inhibitory day lengths in female Siberian hamsters Alex O. Mason a, Timothy J. Greives b, Melissa-Ann L. Scotti b, Jacob Levine a, Stefanie Frommeyer b, Ellen D. Ketterson b, ⁎ Gregory E. Demas b, Lance J. Kriegsfeld a, a Department of Psychology and Helen Wills Neuroscience Institute, 3210 Tolman Hall, MC 1650, University of California, Berkeley, Berkeley, CA 94720-1650, USA b Department of Biology, Center for the Integrative Study of Animal Behavior and Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA Received 10 May 2007; revised 7 July 2007; accepted 10 July 2007 Available online 21 July 2007 Abstract To avoid breeding during unsuitable environmental or physiological circumstances, the reproductive axis adjusts its output in response to fluctuating internal and external conditions. The ability of the reproductive system to alter its activity appropriately in response to these cues has been well established. However, the means by which reproductively relevant cues are interpreted, integrated and relayed to the reproductive axis remain less well specified. The neuropeptide kisspeptin has been shown to be a potent positive stimulator of the hypothalamo–pituitary–gonadal (HPG) axis, suggesting a possible neural locus for the interpretation/integration of these cues. Because a failure to inhibit reproduction during winter would be maladaptive for short-lived female rodents, female Siberian hamsters (Phodopus sungorus) housed in long and short days were examined. In long “summer” photoperiods, kisspeptin is highly expressed in the anteroventral periventricular nucleus (AVPV), with low expression in the arcuate nucleus (Arc).
    [Show full text]
  • Gonadotropin Releasing Hormone Test
    Paediatric & Adolescent Endocrinology Yorkshire Regional Centre Leeds Children’s Hospital Gonadotrophin Releasing Hormone (GnRH) test http://www.pathology.leedsth.nhs.uk/dnn_bilm/Investigationprotocols/Pituitaryprotocols/GnRHTest.aspx Indication To diagnose hypothalamic-pituitary disease in precocious and delayed puberty in both sexes in those children with low basal gonadotrophins. Contra-indications This test may be performed simultaneously with TRH or glucagon as part of triple pituitary test. Principle GnRH (gonadotrophin releasing hormone) is a decapeptide secreted by the hypothalamus which stimulates the production and secretion of LH and FSH by the anterior pituitary. Side effects GnRH may rarely cause nausea, headache and abdominal pain. Preparation No specific patient preparation is required. Requirements 3 plain tubes Drug administration: GnRH (Gonadorelin) 2.5 microgram/kg to a maximum of 100 microgram Procedure take 2 mL blood for LH & FSH and testosterone (males) and oestradiol time 0 min (females) immediately give GnRH IV as a bolus (dose as above) time 20 min take 2 mL blood for LH & FSH time 60 min take 2 mL blood for LH & FSH Interpretation 1. Normal basal reference values in prepubertal children are: LH < 2.0 IU/L FSH < 2.0 IU/L 2. Following GnRH, the response may be considered normal if the basal values are in the reference range and there is at least a doubling at 20 min for LH and FSH. The response varies throughout the menstrual cycle: early (D4) < late follicular (D11) = "luteal" (D21), max response occurs at the mid- cycle (D14). 3. An exaggerated response is seen in primary & secondary gonadal failure. 4.
    [Show full text]
  • Estrogen Dependence of a Gonadotropin-Induced Steroidogenic Lesion in Rat Testicular Leydig Cells
    Estrogen Dependence of a Gonadotropin-induced Steroidogenic Lesion in Rat Testicular Leydig Cells S. B. Cicorraga, … , K. J. Catt, M. L. Dufau J Clin Invest. 1980;65(3):699-705. https://doi.org/10.1172/JCI109716. Research Article Leydig cells isolated from the testes of rats treated with intravenous exogenous gonadotropin (hCG) or subcutaneous gonadotropin-releasing hormone (GnRH) show markedly decreased luteinizing hormone (LH) receptors and a partial block in testicular 17,20 desmolase activity. In contrast, Leydig cells from animals with equivalent degrees of LH receptor loss induced by subcutaneous hCG treatment show no change in 17,20 desmolase activity. These findings indicated that the acuteness of gonadotrophic stimulation, rather than the extent of LH receptor loss, was responsible for the steroidogenic lesion. A role of estradiol in the enzymatic block produced in vivo by acute elevation of circulating gonadotropin (intravenous hCG or GnRH-stimulated endogenous LH) was suggested by rapid elevations of testicular 17β- estradiol within 30 min after intravenous hCG, whereas more gradual increases in estradiol occurred 4-8 h after subcutaneous hCG. The inhibitory effect of endogenous estrogen on testicular steroidogenesis was confirmed by the ability of an estrogen antagonist (Tamoxifen) to prevent the reduction of testosterone responses caused by intravenous hCG and subcutaneous GnRH. In addition, Tamoxifen significantly increased the number of LH receptors in Leydig cells from both control and gonadotropin-desensitized animals. These findings indicate that the acute elevations of intratesticular estrogen produced by treatment with hCG or GnRH are responsible for the steroidogenic lesion seen in gonadotropin-desensitized Leydig cells. These results also suggest that locally produced estrogens […] Find the latest version: https://jci.me/109716/pdf Estrogen Dependence of a Gonadotropin-induced Steroidogenic Lesion in Rat Testicular Leydig Cells S.
    [Show full text]
  • Basal Serum Luteinizing Hormone Value As the Screening Biomarker in Female Central Precocious Puberty
    Original article https://doi.org/10.6065/apem.2019.24.3.164 Ann Pediatr Endocrinol Metab 2019;24:164-171 Basal serum luteinizing hormone value as the screening biomarker in female central precocious puberty Seung Heo, MD1, Purpose: Precocious puberty refers to the development of secondary sex Young Seok Lee, MD, PhD2, characteristics before ages 8 and 9 years in girls and boys, respectively. Central Jeesuk Yu, MD, PhD1 precocious puberty (CPP) is caused by premature activation of the hypothalamus- pituitary-gonadal (HPG) axis and causes thelarche in girls before the age of 8. A 1Department of Pediatrics, Dankook gonadotropin-releasing hormone (GnRH) stimulation test is the standard diagnostic University Hospital, Dankook University modality for diagnosing CPP. However, the test cannot always be used for screening College of Medicine, Cheonan, Korea because it is expensive and time-consuming. This study aimed to find alternative 2 Department of Diagnostic Radiology, reliable screening parameters to identify HPG axis activation in girls <8 years old Dankook University Hospital, Dankook (CPP) and for girls 8–9 years old (early puberty, EP). University College of Medicine, Methods: From January 2013 to June 2015, medical records from 196 girls younger Cheonan, Korea than 9 years old with onset of breast development were reviewed, including 126 girls who had a bone age (BA) 1 year above their chronological age. All patients underwent a GnRH stimulation test, and 117 underwent pelvic sonography. The girls were divided into 4 groups based on age and whether the GnRH stimulation test showed evidence of central puberty. Subanalyses were also conducted within each group based on peak luteinizing hormone (LH) level quartiles.
    [Show full text]