A Passion for Mathematics : Numbers, Puzzles, Madness, Religion, and the Quest for Reality / Clifford A

Total Page:16

File Type:pdf, Size:1020Kb

A Passion for Mathematics : Numbers, Puzzles, Madness, Religion, and the Quest for Reality / Clifford A ffirs.qxd 5/13/05 11:21 AM Page iii AA PassionPassion forfor MathematicsMathematics Numbers, Puzzles, Madness, Religion, and the Quest for Reality CLIFFORD A. PICKOVER John Wiley & Sons, Inc. ffirs.qxd 5/13/05 11:21 AM Page vi ffirs.qxd 5/13/05 11:21 AM Page i AA PassionPassion forfor MathematicsMathematics ffirs.qxd 5/13/05 11:21 AM Page ii Works by Clifford A. Pickover The Alien IQ Test Black Holes: A Traveler’s Guide Calculus and Pizza Chaos and Fractals Chaos in Wonderland Computers, Pattern, Chaos, and Beauty Computers and the Imagination Cryptorunes: Codes and Secret Writing Dreaming the Future Egg Drop Soup Future Health Fractal Horizons: The Future Use of Fractals Frontiers of Scientific Visualization The Girl Who Gave Birth to Rabbits Keys to Infinity Liquid Earth The Lobotomy Club The Loom of God The Mathematics of Oz Mazes for the Mind: Computers and the Unexpected Mind-Bending Visual Puzzles (calendars and card sets) The Paradox of God and the Science of Omniscience The Pattern Book: Fractals, Art, and Nature The Science of Aliens Sex, Drugs, Einstein, and Elves Spider Legs (with Piers Anthony) Spiral Symmetry (with Istvan Hargittai) Strange Brains and Genius Sushi Never Sleeps The Stars of Heaven Surfing through Hyperspace Time: A Traveler’s Guide Visions of the Future Visualizing Biological Information Wonders of Numbers The Zen of Magic Squares, Circles, and Stars ffirs.qxd 5/13/05 11:21 AM Page iii AA PassionPassion forfor MathematicsMathematics Numbers, Puzzles, Madness, Religion, and the Quest for Reality CLIFFORD A. PICKOVER John Wiley & Sons, Inc. ffirs.qxd 5/13/05 11:21 AM Page iv Copyright © 2005 by Clifford A. Pickover. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada Illustration credits: pages 91, 116, 137, 140, 142, 149, 150, 151, 157, 158, 159, 160, 162, 164, 167, 168, 169, 179, 199, 214, 215, 224, 225, 230, 274, 302, 336, 338, 341, 343, 345, and 348 by Brian C. Mans- field; 113, 114, 115, 145, 146, 332, 333, and 334 by Sam Loyd; 139 courtesy of Peter Hamburger and Edit Hepp; 141 by Stewart Raphael, Audrey Raphael, and Richard King; 155 by Patrick Grimm and Paul St. Denis; 165 and 166 from Magic Squares and Cubes by W. S. Andrews; 177 and 352 by Henry Ernest Dudeney; 200 by Bruce Patterson; 204 by Bruce Rawles; 206 by Jürgen Schmidhuber; 253 by Abram Hindle; 254, 255, 256, and 257 by Chris Coyne; 258 and 259 by Jock Cooper; 260 by Linda Bucklin; 261 by Sally Hunter; 262 and 263 by Jos Leys; 264 by Robert A. Johnston; and 266 by Cory and Catska Ench. Design and composition by Navta Associates, Inc. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permit- ted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646- 8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions. Limit of Liability/Disclaimer of Warranty: While the publisher and the author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or com- pleteness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor the author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, inci- dental, consequential, or other damages. For general information about our other products and services, please contact our Customer Care Depart- ment within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. For more information about Wiley products, visit our web site at www.wiley.com. Library of Congress Cataloging-in-Publication Data: Pickover, Clifford A. A passion for mathematics : numbers, puzzles, madness, religion, and the quest for reality / Clifford A. Pickover. p. cm. Includes bibliographical references and index. ISBN-13 978-0-471-69098-6 (paper) ISBN-10 0-471-69098-8 (paper) 1. Mathematics. I. Title QA39.3.P53 2005 510—dc22 2004060622 Printed in the United States of America 10 9 8 7 6 5 4 3 2 1 ffirs.qxd 5/13/05 11:21 AM Page v Ramanujan said that he received his formulas from God. This book is dedicated to all those who find Ramanujan’s π formulas beautiful to look at: 1 ∞ ()()!!1103+−− 26390nn 2 1()!! 4 n 1 = 8 ∑ π 42nn+ 3 n =0 99 32 (!)n n 0 () −1 1 1 5 ∞ ()11n + 1 ( ) ( ) ( ) n 55 2 Poch() n6 Poch () n6 Poch () n 4 π = ∑ 3 23 n =0 (!)n 125 (where Poch(n) refers to the Pochhammer notation described in chapter 2) ffirs.qxd 5/13/05 11:21 AM Page vi ffirs.qxd 5/13/05 11:21 AM Page vii “Truly the gods have not from the beginning revealed all things to mortals, but by long seeking, mortals make progress in discovery.” —Xenophanes of Colophon (c. 500 B.C.) “Every blade of grass has its angel that bends over it and whispers, ‘grow, grow.’” —Talmudic commentary Midrash Bereishis Rabbah, 10:6 ffirs.qxd 5/13/05 11:21 AM Page viii ftoc.qxd 5/17/05 9:37 AM Page ix Answers ContentsContents Acknowledgments Introduction Acknowledgments xiii Introduction 1 1. Numbers, History, Society, and People 11 In which we encounter religious mathematicians, mad mathematicians, famous mathematicians, mathematical savants, quirky questions, fun trivia, brief biographies, mathematical gods, historical oddities, numbers and society, gossip, the history of mathematical notation, the genesis of numbers, and “What if?” questions. 2. Cool Numbers 45 In which we encounter fascinating numbers and strange number sequences. We’ll explore transcendental numbers, octonions, surreal numbers, obstinate numbers, cyclic numbers, Vibonacci numbers, perfect numbers, automorphic numbers, prime numbers, Wilson primes, palindromic primes, Fibonacci primes, Sophie Germain primes, Baxter-Hickerson primes, star-congruent primes, narcissistic numbers, amenable numbers, amicable numbers, p-adic numbers, large palindromes, factorions, hyperfactorials, primorials, ix ftoc.qxd 5/17/05 9:37 AM Page x palindions and hyperpalindions, exotic-looking formulas for π, the Golay- Rudin-Shapiro sequence, the wonderful Pochhammer notation, and famous and curious math constants (such as Liouville’s constant, the Copeland- Erdös constant, Brun’s constant, Champernowne’s number, Euler’s gamma, Chaitin’s constant, the Landau-Ramanujan constant, Mills’s constant, the golden ratio, Apéry’s constant, and constants even more bizarre). 3. Algebra, Percentages, Weird Puzzles, and Marvelous Mathematical Manipulations 111 In which we encounter treasure chests of zany and educational math problems that involve algebra, fractions, percentages, classic recreational puzzles, and various types of mathematical manipulation. Some are based on problems that are more than a thousand years old. Others are brand new. Get ready to sharpen your pencils and stretch your brains! 4. Geometry, Games, and Beyond 135 In which we explore tiles, patterns, position problems, arrays, Venn dia- grams, tic-tac-toe, other games played on boards, Königsberg bridges, catenaries, Loyd’s and Dudeney’s puzzles, Sherck’s surface, magic squares, lituuses, inside-out Mandelbrot sets, the Quadratrix of Hippias, hyper- spheres, fractal geese, Schmidhuber circles, Pappus’s Arbelos, Escher patterns, and chess knights. 5. Probability: Take Your Chances 209 In which we explore casinos, logic, guessing, decisions, combinations, permutations, competition, possibilities, games involving choice, monkeys typing Hamlet, Benford’s law, combinatorics, alien gambits, Rubik’s Cubes, card shuffles, marble mazes, nontransitive dice, dangerous movements of air molecules, the board game of the gods, and the tunnels of death and despair. x Contents ftoc.qxd 5/17/05 9:37 AM Page xi 6. Big Numbers and Infinity 233 In which we explore very large numbers, the edges of comprehension, infin- ity, the Funnel of Zeus, the infinite gift, the omega crystal, the Skewes num- ber, the Monster group, Göbel’s number, the awesome quattuordecillion, the Erdös-Moser number, Archimedes’ famous “Cattle Problem,” classic para- doxes, Gauss’s “measurable infinity,” and Knuth’s arrow notation. 7. Mathematics and Beauty 251 In which we explore artistic forms generated from mathematics—delicate fungi, twenty-second-century cityscapes, fractal necklaces and seed pods, alien devices, and a rich panoply of patterns that exhibit a cascade of detail with increasing magnifications. Answers 267 References 383 Index 387 Contents xi ftoc.qxd 5/17/05 9:37 AM Page xii Answers flast.qxd 5/13/05 11:00 AM Page xiii Contents AcknowledgmentsAcknowledgments Introduction I thank Brian Mansfield for his wonderful cartoon diagrams that appear throughout the book. Over the years, Brian has been helpful beyond compare. Numerous people have provided useful feedback and information relating to the solutions to my puzzles; these individuals include Dennis Gordon, Robert Stong, Paul Moskowitz, Joseph Pe, Daniel Dockery, Mark Nandor, Mark Ganson, Nick Hobson, Chuck Gaydos, Graham Cleverley, Jeffrey Carr, Jon Anderson, “Jaymz” James Salter, Chris Meyers, Pete Barnes, Steve Brazzell, Steve Blattnig, Edith Rudy, Eric Baise, Martie Saxenmeyer, Bob Ewell, Teja Krasek, and many more.
Recommended publications
  • 4 VI June 2016
    4 VI June 2016 www.ijraset.com Volume 4 Issue VI, June 2016 IC Value: 13.98 ISSN: 2321-9653 International Journal for Research in Applied Science & Engineering Technology (IJRASET) Special Rectangles and Narcissistic Numbers of Order 3 And 4 G.Janaki1, P.Saranya2 1,2Department of Mathematics, Cauvery College for women, Trichy-620018 Abstract— We search for infinitely many rectangles such that x2 y2 3A S 2 k2 SK Narcissistic numbers of order 3 and 4 respectively, in which x, y represents the length and breadth of the rectangle. Also the total number of rectangles satisfying the relation under consideration as well as primitive and non-primitive rectangles are also present. Keywords—Rectangle, Narcissistic numbers of order 3 and 4, primitive,non-primitive. I. INTRODUCTION The older term for number theory is arithmetic, which was superseded as number theory by early twentieth century. The first historical find of an arithmetical nature is a fragment of a table, the broken clay tablet containing a list of Pythagorean triples. Since then the finding continues. For more ideas and interesting facts one can refer [1].In [2] one can get ideas on pairs of rectangles dealing with non-zero integral pairs representing the length and breadth of rectangle. [3,4] has been studied for knowledge on rectangles in connection with perfect squares , Niven numbers and kepriker triples.[5-10] was referred for connections between Special rectangles and polygonal numbers, jarasandha numbers and dhuruva numbers Recently in [11,12] special pythagorean triangles in connections with Narcissistic numbers are obtained. In this communication, we search for infinitely many rectangles such that x2 y2 3A S 2 k2 SK Narcissistic numbers of order 3 and 4 respectively, in which x,y represents the length and breadth of the rectangle.
    [Show full text]
  • Input for Carnival of Math: Number 115, October 2014
    Input for Carnival of Math: Number 115, October 2014 I visited Singapore in 1996 and the people were very kind to me. So I though this might be a little payback for their kindness. Good Luck. David Brooks The “Mathematical Association of America” (http://maanumberaday.blogspot.com/2009/11/115.html ) notes that: 115 = 5 x 23. 115 = 23 x (2 + 3). 115 has a unique representation as a sum of three squares: 3 2 + 5 2 + 9 2 = 115. 115 is the smallest three-digit integer, abc , such that ( abc )/( a*b*c) is prime : 115/5 = 23. STS-115 was a space shuttle mission to the International Space Station flown by the space shuttle Atlantis on Sept. 9, 2006. The “Online Encyclopedia of Integer Sequences” (http://www.oeis.org) notes that 115 is a tridecagonal (or 13-gonal) number. Also, 115 is the number of rooted trees with 8 vertices (or nodes). If you do a search for 115 on the OEIS website you will find out that there are 7,041 integer sequences that contain the number 115. The website “Positive Integers” (http://www.positiveintegers.org/115) notes that 115 is a palindromic and repdigit number when written in base 22 (5522). The website “Number Gossip” (http://www.numbergossip.com) notes that: 115 is the smallest three-digit integer, abc, such that (abc)/(a*b*c) is prime. It also notes that 115 is a composite, deficient, lucky, odd odious and square-free number. The website “Numbers Aplenty” (http://www.numbersaplenty.com/115) notes that: It has 4 divisors, whose sum is σ = 144.
    [Show full text]
  • Maths Secrets of Simpsons Revealed in New Book
    MONDAY 7 OCTOBER 2013 WWW.THEDAY.CO.UK Maths secrets of Simpsons revealed in new book The most successful TV show of all time is written by a team of brilliant ‘mathletes’, says writer Simon Singh, and full of obscure mathematical jokes. Can numbers really be all that funny? MATHEMATICS Nerd hero: The smartest girl in Springfield was created by a team of maths wizards. he world’s most popular cartoon a perfect number, a narcissistic number insist that their love of maths contrib- family has a secret: their lines are and a Mersenne Prime. utes directly to the more obvious humour written by a team of expert mathema- Another of these maths jokes – a black- that has made the show such a hit. Turn- Tticians – former ‘mathletes’ who are board showing 398712 + 436512 = 447212 ing intuitions about comedy into concrete as happy solving differential equa- – sent shivers down Simon Singh’s spine. jokes is like wrestling mathematical tions as crafting jokes. ‘I was so shocked,’ he writes, ‘I almost hunches into proofs and formulas. Comedy Now, science writer Simon Singh has snapped my slide rule.’ The numbers are and maths, says Cohen, are both explora- revealed The Simpsons’ secret math- a fake exception to a famous mathemati- tions into the unknown. ematical formula in a new book*. He cal rule known as Fermat’s Last Theorem. combed through hundreds of episodes One episode from 1990 features a Mathletes and trawled obscure internet forums to teacher making a maths joke to a class of Can maths really be funny? There are many discover that behind the show’s comic brilliant students in which Bart Simpson who will think comparing jokes to equa- exterior lies a hidden core of advanced has been accidentally included.
    [Show full text]
  • Mathematical Circus & 'Martin Gardner
    MARTIN GARDNE MATHEMATICAL ;MATH EMATICAL ASSOCIATION J OF AMERICA MATHEMATICAL CIRCUS & 'MARTIN GARDNER THE MATHEMATICAL ASSOCIATION OF AMERICA Washington, DC 1992 MATHEMATICAL More Puzzles, Games, Paradoxes, and Other Mathematical Entertainments from Scientific American with a Preface by Donald Knuth, A Postscript, from the Author, and a new Bibliography by Mr. Gardner, Thoughts from Readers, and 105 Drawings and Published in the United States of America by The Mathematical Association of America Copyright O 1968,1969,1970,1971,1979,1981,1992by Martin Gardner. All riglhts reserved under International and Pan-American Copyright Conventions. An MAA Spectrum book This book was updated and revised from the 1981 edition published by Vantage Books, New York. Most of this book originally appeared in slightly different form in Scientific American. Library of Congress Catalog Card Number 92-060996 ISBN 0-88385-506-2 Manufactured in the United States of America For Donald E. Knuth, extraordinary mathematician, computer scientist, writer, musician, humorist, recreational math buff, and much more SPECTRUM SERIES Published by THE MATHEMATICAL ASSOCIATION OF AMERICA Committee on Publications ANDREW STERRETT, JR.,Chairman Spectrum Editorial Board ROGER HORN, Chairman SABRA ANDERSON BART BRADEN UNDERWOOD DUDLEY HUGH M. EDGAR JEANNE LADUKE LESTER H. LANGE MARY PARKER MPP.a (@ SPECTRUM Also by Martin Gardner from The Mathematical Association of America 1529 Eighteenth Street, N.W. Washington, D. C. 20036 (202) 387- 5200 Riddles of the Sphinx and Other Mathematical Puzzle Tales Mathematical Carnival Mathematical Magic Show Contents Preface xi .. Introduction Xlll 1. Optical Illusions 3 Answers on page 14 2. Matches 16 Answers on page 27 3.
    [Show full text]
  • The Entropy Conundrum: a Solution Proposal
    OPEN ACCESS www.sciforum.net/conference/ecea-1 Conference Proceedings Paper – Entropy The Entropy Conundrum: A Solution Proposal Rodolfo A. Fiorini 1,* 1 Politecnico di Milano, Department of Electronics, Information and Bioengineering, Milano, Italy; E- Mail: [email protected] * E-Mail: [email protected]; Tel.: +039-02-2399-3350; Fax: +039-02-2399-3360. Received: 11 September 2014 / Accepted: 11 October 2014 / Published: 3 November 2014 Abstract: In 2004, physicist Mark Newman, along with biologist Michael Lachmann and computer scientist Cristopher Moore, showed that if electromagnetic radiation is used as a transmission medium, the most information-efficient format for a given 1-D signal is indistinguishable from blackbody radiation. Since many natural processes maximize the Gibbs- Boltzmann entropy, they should give rise to spectra indistinguishable from optimally efficient transmission. In 2008, computer scientist C.S. Calude and physicist K. Svozil proved that "Quantum Randomness" is not Turing computable. In 2013, academic scientist R.A. Fiorini confirmed Newman, Lachmann and Moore's result, creating analogous example for 2-D signal (image), as an application of CICT in pattern recognition and image analysis. Paradoxically if you don’t know the code used for the message you can’t tell the difference between an information-rich message and a random jumble of letters. This is an entropy conundrum to solve. Even the most sophisticated instrumentation system is completely unable to reliably discriminate so called "random noise" from any combinatorially optimized encoded message, which CICT called "deterministic noise". Entropy fundamental concept crosses so many scientific and research areas, but, unfortunately, even across so many different disciplines, scientists have not yet worked out a definitive solution to the fundamental problem of the logical relationship between human experience and knowledge extraction.
    [Show full text]
  • On Hardy's Apology Numbers
    ON HARDY’S APOLOGY NUMBERS HENK KOPPELAAR AND PEYMAN NASEHPOUR Abstract. Twelve well known ‘Recreational’ numbers are generalized and classified in three generalized types Hardy, Dudeney, and Wells. A novel proof method to limit the search for the numbers is exemplified for each of the types. Combinatorial operators are defined to ease programming the search. 0. Introduction “Recreational Mathematics” is a broad term that covers many different areas including games, puzzles, magic, art, and more [31]. Some may have the impres- sion that topics discussed in recreational mathematics in general and recreational number theory, in particular, are only for entertainment and may not have an ap- plication in mathematics, engineering, or science. As for the mathematics, even the simplest operation in this paper, i.e. the sum of digits function, has application outside number theory in the domain of combinatorics [13, 26, 27, 28, 34] and in a seemingly unrelated mathematical knowledge domain: topology [21, 23, 15]. Pa- pers about generalizations of the sum of digits function are discussed by Stolarsky [38]. It also is a surprise to see that another topic of this paper, i.e. Armstrong numbers, has applications in “data security” [16]. In number theory, functions are usually non-continuous. This inhibits solving equations, for instance, by application of the contraction mapping principle because the latter is normally for continuous functions. Based on this argument, questions about solving number-theoretic equations ramify to the following: (1) Are there any solutions to an equation? (2) If there are any solutions to an equation, then are finitely many solutions? (3) Can all solutions be found in theory? (4) Can one in practice compute a full list of solutions? arXiv:2008.08187v1 [math.NT] 18 Aug 2020 The main purpose of this paper is to investigate these constructive (or algorith- mic) problems by the fixed points of some special functions of the form f : N N.
    [Show full text]
  • Single Digits
    ...................................single digits ...................................single digits In Praise of Small Numbers MARC CHAMBERLAND Princeton University Press Princeton & Oxford Copyright c 2015 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW press.princeton.edu All Rights Reserved The second epigraph by Paul McCartney on page 111 is taken from The Beatles and is reproduced with permission of Curtis Brown Group Ltd., London on behalf of The Beneficiaries of the Estate of Hunter Davies. Copyright c Hunter Davies 2009. The epigraph on page 170 is taken from Harry Potter and the Half Blood Prince:Copyrightc J.K. Rowling 2005 The epigraphs on page 205 are reprinted wiht the permission of the Free Press, a Division of Simon & Schuster, Inc., from Born on a Blue Day: Inside the Extraordinary Mind of an Austistic Savant by Daniel Tammet. Copyright c 2006 by Daniel Tammet. Originally published in Great Britain in 2006 by Hodder & Stoughton. All rights reserved. Library of Congress Cataloging-in-Publication Data Chamberland, Marc, 1964– Single digits : in praise of small numbers / Marc Chamberland. pages cm Includes bibliographical references and index. ISBN 978-0-691-16114-3 (hardcover : alk. paper) 1. Mathematical analysis. 2. Sequences (Mathematics) 3. Combinatorial analysis. 4. Mathematics–Miscellanea. I. Title. QA300.C4412 2015 510—dc23 2014047680 British Library
    [Show full text]
  • Math 2150: Higher Arithmetic
    MATH 2150: HIGHER ARITHMETIC Pamini Thangarajah Mount Royal University MATH 2150: Higher Arithmetic By Pamini Thangarajah, PhD. This text is disseminated via the Open Education Resource (OER) LibreTexts Project (https://LibreTexts.org) and like the hundreds of other texts available within this powerful platform, it freely available for reading, printing and "consuming." Most, but not all, pages in the library have licenses that may allow individuals to make changes, save, and print this book. Carefully consult the applicable license(s) before pursuing such effects. Instructors can adopt existing LibreTexts texts or Remix them to quickly build course-specific resources to meet the needs of their students. Unlike traditional textbooks, LibreTexts’ web based origins allow powerful integration of advanced features and new technologies to support learning. The LibreTexts mission is to unite students, faculty and scholars in a cooperative effort to develop an easy-to-use online platform for the construction, customization, and dissemination of OER content to reduce the burdens of unreasonable textbook costs to our students and society. The LibreTexts project is a multi-institutional collaborative venture to develop the next generation of open-access texts to improve postsecondary education at all levels of higher learning by developing an Open Access Resource environment. The project currently consists of 13 independently operating and interconnected libraries that are constantly being optimized by students, faculty, and outside experts to supplant conventional paper-based books. These free textbook alternatives are organized within a central environment that is both vertically (from advance to basic level) and horizontally (across different fields) integrated. The LibreTexts libraries are Powered by MindTouch® and are supported by the Department of Education Open Textbook Pilot Project, the UC Davis Office of the Provost, the UC Davis Library, the California State University Affordable Learning Solutions Program, and Merlot.
    [Show full text]
  • Integer Sequences
    UHX6PF65ITVK Book > Integer sequences Integer sequences Filesize: 5.04 MB Reviews A very wonderful book with lucid and perfect answers. It is probably the most incredible book i have study. Its been designed in an exceptionally simple way and is particularly just after i finished reading through this publication by which in fact transformed me, alter the way in my opinion. (Macey Schneider) DISCLAIMER | DMCA 4VUBA9SJ1UP6 PDF > Integer sequences INTEGER SEQUENCES Reference Series Books LLC Dez 2011, 2011. Taschenbuch. Book Condition: Neu. 247x192x7 mm. This item is printed on demand - Print on Demand Neuware - Source: Wikipedia. Pages: 141. Chapters: Prime number, Factorial, Binomial coeicient, Perfect number, Carmichael number, Integer sequence, Mersenne prime, Bernoulli number, Euler numbers, Fermat number, Square-free integer, Amicable number, Stirling number, Partition, Lah number, Super-Poulet number, Arithmetic progression, Derangement, Composite number, On-Line Encyclopedia of Integer Sequences, Catalan number, Pell number, Power of two, Sylvester's sequence, Regular number, Polite number, Ménage problem, Greedy algorithm for Egyptian fractions, Practical number, Bell number, Dedekind number, Hofstadter sequence, Beatty sequence, Hyperperfect number, Elliptic divisibility sequence, Powerful number, Znám's problem, Eulerian number, Singly and doubly even, Highly composite number, Strict weak ordering, Calkin Wilf tree, Lucas sequence, Padovan sequence, Triangular number, Squared triangular number, Figurate number, Cube, Square triangular
    [Show full text]
  • The Entropy Conundrum: a Solution Proposal
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Archivio istituzionale della ricerca - Politecnico di Milano OPEN ACCESS www.sciforum.net/conference/ecea-1 Conference Proceedings Paper – Entropy The Entropy Conundrum: A Solution Proposal Rodolfo A. Fiorini 1,* 1 Politecnico di Milano, Department of Electronics, Information and Bioengineering, Milano, Italy; E- Mail: [email protected] * E-Mail: [email protected]; Tel.: +039-02-2399-3350; Fax: +039-02-2399-3360. Received: 11 September 2014 / Accepted: 11 October 2014 / Published: 3 November 2014 Abstract: In 2004, physicist Mark Newman, along with biologist Michael Lachmann and computer scientist Cristopher Moore, showed that if electromagnetic radiation is used as a transmission medium, the most information-efficient format for a given 1-D signal is indistinguishable from blackbody radiation. Since many natural processes maximize the Gibbs- Boltzmann entropy, they should give rise to spectra indistinguishable from optimally efficient transmission. In 2008, computer scientist C.S. Calude and physicist K. Svozil proved that "Quantum Randomness" is not Turing computable. In 2013, academic scientist R.A. Fiorini confirmed Newman, Lachmann and Moore's result, creating analogous example for 2-D signal (image), as an application of CICT in pattern recognition and image analysis. Paradoxically if you don’t know the code used for the message you can’t tell the difference between an information-rich message and a random jumble of letters. This is an entropy conundrum to solve. Even the most sophisticated instrumentation system is completely unable to reliably discriminate so called "random noise" from any combinatorially optimized encoded message, which CICT called "deterministic noise".
    [Show full text]
  • Techsparx Java Tuitions
    TechSparxJavaTuitionsTechSparxJavaJava Question Bank TuitionsTechSparxJavaTuitionsTechSp arxJavaTuitionsTechSparxJavaTuitions TechSparxJavaTuitionsTechSparxJavaTechSparx Java Tuitions “Better than a thousand days of diligent study is one day with a Great Teacher” TuitionsTechSparxJavaTuitionsTechSp Java Question Bank (version 5.3) arxJavaTuitionsTechSparxJavaTuitionshttp://techsparx.webs.com/ Saravanan.G TechSparxJavaTuitionsTechSparxJava TuitionsTech SparxJavaTuitionsTechSp arxJavaTuitionsTechSparxJavaTuitions TechSparxJavaTuitionsTechSparxJava TuitionsTechSparxJavaTuitionsTechSp arxJavaTuitionsTechSparxJavaTuitions TechSparxJavaTuitionsTechSparxJava TuitionsTechSparxJavaTuitionsTechSp arxJavaTuitionsTechSparxJavaTuitions TechSparxJavaTuitionsTechSparxJava TuitionsTechSparxJavaTuitionsTechSp Contents Modularization ........................................................................................................................................ 3 Most Simplest ......................................................................................................................................... 4 Decision Making Statements ................................................................................................................... 5 Switch Statement .................................................................................................................................... 6 Looping Constructs .................................................................................................................................
    [Show full text]
  • The Smallest Inert Prime in a Cyclic Number Field of Prime Degree
    Math: Res: Lett: 18 (2011), no: 00, 10001{10017 c International Press 2011 THE SMALLEST INERT PRIME IN A CYCLIC NUMBER FIELD OF PRIME DEGREE Paul Pollack Abstract. Fix an odd prime `. For each cyclic extension K=Q of degree `, let nK denote the least rational prime which is inert in K, and let rK be the least rational prime which splits completely in K. We show that nK possesses a finite mean value, where the average is taken over all such K ordered by conductor. As an example (` = 3), the average least inert prime in a cyclic cubic field is approximately 2:870. We conjecture that rK also has a finite mean value, and we prove this assuming the Generalized Riemann Hypothesis. For the case ` = 3, we give an unconditional proof that the average of rK exists and is about 6:862. 1. Introduction For each odd prime p, let n2(p) denote the least quadratic nonresidue modulo p. In 1961, Erd}os[9] showed that n2(p) possesses a finite mean value. More precisely, with pk denoting the kth prime in the usual increasing order, Erd}osproved that 1 1 X X pk n (p) ! ; as x ! 1: π(x) 2 2k 2<p≤x k=1 The infinite series on the right-hand side converges rapidly to about 3:675. Erd}os's result was generalized by Elliott: For each prime p ≡ 1 (mod k), let nk(p) denote the least kth power nonresidue modulo p; for p 6≡ 1 (mod k), set nk(p) = 0. Answering a question of Erd}os,Elliott showed [6] that nk(p) possesses a finite mean value for every k.
    [Show full text]