Math 2150: Higher Arithmetic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Smarandache Sequences, Stereograms and Series
CHARLES ASHBACHER Smarandache Sequences, Stereograms and Series 1111111111111111111111111111111111111111 1111111111111111111111111111111111111111 1111122222222222222222222222222222211111 1111122222222222222222222222222222211111 1111122222333333333333333333332222211111 1111122222333333333333333333332222211111 1111122222333334444444444333332222211111 1111122222333334444444444333332222211111 1111122222333334444444444333332222211111 1111122222333334444444444333332222211111 1111122222333333333333333333332222211111 1111122222333333333333333333332222211111 1111122222222222222222222222222222211111 1111122222222222222222222222222222211111 1111111111111111111111111111111111111111 1111111111111111111111111111111111111111 Smarandache Stereogram Hexis Phoenix 2005 Charles Ashbacher Mount Mercy College Smarandache Sequences, Stereograms and Series Hexis Phoenix 2005 This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N. Zeeb Road P.O. Box 1346, Ann Arbor MI 48106-1346, USA Tel.: 1-800-521-0600 (Customer Service) http://wwwlib.umi.com/bod/search/basic Peer Reviewers: Henry Ibstedt, Issy les Moulineaux, France Amarnath Murthy, Gujarat, India Lamarr Widmer, Messiah College, Grantham PA USA Copyright 2005 by Hexis and Charles Ashbacher Cover art © Kathleen Brogla and Charles Ashbacher Many books can be downloaded from the following E-Library of Science: http://www.gallup.unm.edu/~smarandache/eBooks-otherformats.htm ISBN: 1-931233-23-3 Standard Address Number: -
Math Wonders to Inspire Teachers and Students
to Inspire Teachers and Students Alfred S. Posamentier to Inspire Teachers and Students Alfred S. Posamentier Association for Supervision and Curriculum Development Alexandria, Virginia USA Association for Supervision and Curriculum Development 1703 N. Beauregard St. * Alexandria, VA 22311-1714 USA Telephone: 800-933-2723 or 703-578-9600 * Fax: 703-575-5400 Web site: http://www.ascd.org * E-mail: [email protected] Gene R. Carter, Executive Director; Nancy Modrak, Director of Publishing; Julie Houtz, Director of Book Editing & Production; Darcie Russell, Project Manager; Technical Typesetting, Inc., Typesetting; Tracey Smith, Production Copyright © 2003 by Alfred S. Posamentier. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission from ASCD. Readers who wish to duplicate material may do so for a small fee by contacting the Copyright Clearance Center (CCC), 222 Rosewood Dr., Danvers, MA 01923, USA (telephone: 978-750-8400; fax: 978-750-4470; Web: http://www.copyright.com). ASCD has authorized the CCC to collect such fees on its behalf. Requests to reprint rather than photocopy should be directed to ASCD’s permissions office at 703-578-9600. Cover art copyright © 2003 by ASCD. Cover design by Shelley Young. ASCD publications present a variety of viewpoints. The views expressed or implied in this book should not be interpreted as official positions of the Association. All Web links in this book are correct as of the publication date below but may have become inactive or otherwise modified since that time. -
A Passion for Mathematics : Numbers, Puzzles, Madness, Religion, and the Quest for Reality / Clifford A
ffirs.qxd 5/13/05 11:21 AM Page iii AA PassionPassion forfor MathematicsMathematics Numbers, Puzzles, Madness, Religion, and the Quest for Reality CLIFFORD A. PICKOVER John Wiley & Sons, Inc. ffirs.qxd 5/13/05 11:21 AM Page vi ffirs.qxd 5/13/05 11:21 AM Page i AA PassionPassion forfor MathematicsMathematics ffirs.qxd 5/13/05 11:21 AM Page ii Works by Clifford A. Pickover The Alien IQ Test Black Holes: A Traveler’s Guide Calculus and Pizza Chaos and Fractals Chaos in Wonderland Computers, Pattern, Chaos, and Beauty Computers and the Imagination Cryptorunes: Codes and Secret Writing Dreaming the Future Egg Drop Soup Future Health Fractal Horizons: The Future Use of Fractals Frontiers of Scientific Visualization The Girl Who Gave Birth to Rabbits Keys to Infinity Liquid Earth The Lobotomy Club The Loom of God The Mathematics of Oz Mazes for the Mind: Computers and the Unexpected Mind-Bending Visual Puzzles (calendars and card sets) The Paradox of God and the Science of Omniscience The Pattern Book: Fractals, Art, and Nature The Science of Aliens Sex, Drugs, Einstein, and Elves Spider Legs (with Piers Anthony) Spiral Symmetry (with Istvan Hargittai) Strange Brains and Genius Sushi Never Sleeps The Stars of Heaven Surfing through Hyperspace Time: A Traveler’s Guide Visions of the Future Visualizing Biological Information Wonders of Numbers The Zen of Magic Squares, Circles, and Stars ffirs.qxd 5/13/05 11:21 AM Page iii AA PassionPassion forfor MathematicsMathematics Numbers, Puzzles, Madness, Religion, and the Quest for Reality CLIFFORD A. PICKOVER John Wiley & Sons, Inc. -
Package 'Zseq'
Package ‘Zseq’ February 3, 2018 Type Package Title Integer Sequence Generator Version 0.2.0 Description Generates well-known integer sequences. 'gmp' package is adopted for comput- ing with arbitrarily large numbers. Every function has hyperlink to its correspond- ing item in OEIS (The On-Line Encyclopedia of Integer Sequences) in the func- tion help page. For interested readers, see Sloane and Plouffe (1995, ISBN:978-0125586306). License GPL (>= 3) Encoding UTF-8 LazyData true Imports gmp RoxygenNote 6.0.1 NeedsCompilation no Author Kisung You [aut, cre] (<https://orcid.org/0000-0002-8584-459X>) Maintainer Kisung You <[email protected]> Repository CRAN Date/Publication 2018-02-02 23:07:14 UTC R topics documented: Zseq-package . .2 Abundant . .3 Achilles . .3 Bell .............................................4 Carmichael . .5 Catalan . .5 Composite . .6 Deficient . .7 Equidigital . .7 Evil .............................................8 Extravagant . .9 1 2 Zseq-package Factorial . .9 Factorial.Alternating . 10 Factorial.Double . 11 Fibonacci . 11 Frugal . 12 Happy............................................ 13 Juggler . 13 Juggler.Largest . 14 Juggler.Nsteps . 15 Lucas . 15 Motzkin . 16 Odious . 17 Padovan........................................... 17 Palindromic . 18 Palindromic.Squares . 19 Perfect . 19 Perrin . 20 Powerful . 21 Prime . 21 Regular . 22 Square . 23 Squarefree . 23 Telephone . 24 Thabit . 25 Triangular . 25 Unusual . 26 Index 27 Zseq-package Zseq : Integer Sequence Generator Description The world of integer sequence has long history, which has been accumulated in OEIS. Even though R is not a first pick for many number theorists, we introduce our package to enrich the R ecosystem as well as provide pedagogical toolset. We adopted gmp for flexible large number computations in that users can easily experience large number sequences on a non-exclusive generic computing platform. -
Reading, Discovering and Writing Proofs Version 1.0
Reading, Discovering and Writing Proofs Version 1.0 c Faculty of Mathematics, University of Waterloo Contents I Introduction to Proof Methods 9 1 In the beginning 10 1.1 What Makes a Mathematician a Mathematician? . 10 1.2 Why Do We Reason Formally? . 10 1.3 Structure of the Course . 12 2 A First Look At Proofs 14 2.1 Objectives . 14 2.2 The Language . 14 2.3 Propositions, Proofs and Axioms . 15 3 Truth Tables and Logical Operators 18 3.1 Objectives . 18 3.2 Compound Statements . 18 3.3 Truth Tables as Definitions . 19 3.3.1 Negating Statements . 19 3.3.2 Conjunctions and Disjunctions . 20 3.4 More Complicated Statements . 21 3.5 Equivalent Logical Expressions . 22 4 Implications and the Direct Proof 26 4.1 Objectives . 26 4.2 Implications: Hypothesis =) Conclusion . 26 4.3 Rules of Inference . 28 4.4 Proving Implications: The Direct Proof . 30 4.5 Negating an Implication . 31 5 Analysis of a Proof 33 5.1 Objectives . 33 5.2 Divisibility of Integers . 33 5.2.1 Understanding the Definition of Divisibility . 34 5.2.2 Transitivity of Divisibility . 34 5.3 Analyzing the Proof of Transitivity of Divisibility . 35 6 Discovering Proofs 37 6.1 Objectives . 37 6.2 Divisibility of Integer Combinations . 37 6.3 Discovering a Proof of Divisibility of Integer Combinations . 38 6.4 Proof of Bounds by Divisibility . 40 2 Section 0.0 CONTENTS 3 II Foundations: Sets and Quantifiers 43 7 Introduction to Sets 44 7.1 Objectives . 44 7.2 Describing a Set . -
Notices of the American Mathematical Society
Calendar NOTE: This Calendar lists all of the meetings which have been approved by the Council up to the date at which this issue of the cJfo!aW was sent to press. The summer and annual meetings are joint meetings of the Mathematical Association of America and the American Mathematical Society. The meeting dates which tall rather far in the future are subject to change. This is particularly true of the meetings to which no numbers have yet been assigned. Meeting Deadline for Abstracts* Number Date Place and News I terns 702 April 14, 1973 Stanford, California Feb. 26, 1973 703 April 18-21, 1973 New York, New York Feb. 26, 1973 704 April 27-28, 1973 Evanston, Illinois Feb. 26, 1973 705 June 16, 1973 Bellingham, Washington May 3, 1973 706 August 20-24, 1973 Missoula, Montana June 28, 1973 (78th Summer Meeting) 707 October 27, 1973 Cambridge, Massachusetts Sept. 6, 1973 708 November 3, 1973 Minneapolis, Minnesota Sept. 6, 1973 709 November 16-17, 1973 Atlanta, Georgia Oct. 1, 1973 710 November 24, 1973 Tucson, Arizona Oct. 1, 1973 711 January 15-19, 1974 San Francisco, California (80th Annual Meeting) January 23-27, 1975 Washington, D. C. (81st Annual Meeting) January 22-26, 1976 San Antonio, Texas (82nd Annual Meeting) *Deadline for abstracts not presented at a meeting (by title). June 1973 issue: April 26 August 1973 issue: June 21 OTHER EVENTS June 30, 1973 Symposium on Some Mathematical Questions in Biology Mexico City, Mexico September 3-15, 1973 International Meeting on Combinatorial Theory Rome, Italy August 21-29, 1974 International Congress of Mathematicians Vancouver, B. -
Package 'Zseq'
Package ‘Zseq’ October 27, 2017 Type Package Title Integer Sequence Generator Version 0.1.1 Author Kisung You Maintainer Kisung You <[email protected]> Description Generates well-known integer sequences. 'Rmpfr' package is adopted for computing with arbitrarily large numbers with user- specified bit precision. Every function has hyperlink to its corresponding item in OEIS (The On- Line Encyclopedia of Integer Sequences) in the function help page. For interested readers, see Sloane and Plouffe (1995, ISBN:978- 0125586306). License GPL (>= 3) Encoding UTF-8 LazyData true Imports Rmpfr RoxygenNote 6.0.1 NeedsCompilation no Repository CRAN Date/Publication 2017-10-27 16:18:07 UTC R topics documented: Zseq-package . .2 Abundant . .3 Achilles . .3 Bell .............................................4 Carmichael . .5 Catalan . .5 Composite . .6 Deficient . .7 1 2 Zseq-package Equidigital . .8 Evil .............................................8 Extravagant . .9 Factorial . 10 Factorial.Alternating . 11 Factorial.Double . 11 Fibonacci . 12 Frugal . 13 Happy............................................ 14 Juggler . 14 Juggler.Largest . 15 Juggler.Nsteps . 16 Lucas . 17 Motzkin . 18 Odious . 18 Padovan........................................... 19 Palindromic . 20 Palindromic.Squares . 21 Perfect . 21 Perrin . 22 Polite . 23 Powerful . 24 Prime . 24 Regular . 25 Square . 26 Squarefree . 26 Telephone . 27 Thabit . 28 Triangular . 29 Unusual . 29 Index 31 Zseq-package Zseq : Integer Sequence Generator Description The world of integer sequence has long history, which has been accumulated in OEIS. Even though R is not a first pick for many number theorists, we introduce our package to enrich the R ecosystem as well as provide pedagogical toolset. We adopted Rmpfr for flexible large number computations in that users can easily experience large number sequences on a non-exclusive generic computing platform.