Sensory Pathways & Somatic Nervous System

Total Page:16

File Type:pdf, Size:1020Kb

Sensory Pathways & Somatic Nervous System Sensory Pathways & Somatic Nervous System Chapter 15 How Does Brain Differentiate Sensations? Pain impulses make brain aware of injuries and infections. Impulses from eye, ear, nose and tongue make brain aware of what you saw, heard, smelled or tasted. Impulses from joints and ear make brain aware of body position and balance. How does brain differentiate between different impulses/sensations? Depends on which part of the brain these impulses reach. Examples: Occipital lobe translates impulses as light. Temporal lobe translates impulses as sound. Cerebellum translates impulses as equilibrium and balance. General Senses vs. Special Senses There are sensory receptors present all over the body to make brain aware of its environment…sensation! All body senses can be divided into two categories: General senses Special senses General Senses vs. Special Senses Epidermal cells of skin Epidermal cells of skin Dendrites Free nerve endings Sensory nerve fiber Primary sensory Tactile receptors on skin cortex General senses: Monitor simpler, general outside/inside environment. Examples: sense of touch, pressure, temperature, pain and body position. Receptors for general senses: Widely distributed throughout the body… simple receptors. Are dendrites of sensory neurons….which could be naked (free nerve endings) or encapsulated (Meissner’s corpuscle/ Tactile corpuscle). Integrated by primary sensory cortex in the parietal lobe of cerebrum. General Senses vs. Special Senses Special senses: Monitor more complex senses. Examples: sense of vision (sight), auditory (hearing), olfaction (smell), gustation (taste) and equilibrium (balance). Receptors for special senses: Are specialized cells (neurons or epithelial cells). Are found in clusters and localized only in certain parts of the body… complex receptors. Integrated by specific lobes of cerebrum and cerebellum. Characteristics of Receptors 1. When receptors are stimulated they generate impulses impulses are sent to the brain via sensory neurons. 2. Receptors can be nerve endings or specialized cells (neurons or epithelial cells). 3. Each receptor monitors a certain radial area called its receptive field. Larger the receptor field less sensitive (poor ability to localize a stimulus), e.g. on arm Smaller the receptor field more sensitive (precise localization of a stimulus), e.g. on fingertips, nose Receptors – More Characteristics 4. Each receptor specializes in one type of stimulus….receptor specificity. But it can be stimulated weakly by other types of stimuli. Classification of receptors based on the type of stimuli: 1) Mechanoreceptor – are stimulated by mechanical stimulus such as touch, pressure, vibrations: a) Tactile receptors – are stimulated by touch, pressure and vibrations as in skin, inner ear (cochlea). b) Baroreceptors – detect pressure changes in organs such as blood vessels, urinary, digestive and respiratory organs. c) Proprioceptors – sense changes in body positions as in skeletal muscle, joints, tendons, ligaments, ear. 2) Thermoreceptors – are stimulated by temperature changes as in skin and internal organs. 3) Chemoreceptors – detect chemical changes as in the nose, tongue and the wall of blood vessels (monitor pH, O2 and CO2 level). 4) Nociceptors – are pain receptors that are stimulated by injuries and infections…present everywhere in the body. Receptors – More Characteristics 5. Receptors can temporarily change their threshold value……sensory adaptation….to accommodate to a long-term stimulus. Adaptation: reduction in the sensitivity of the receptors in response to constant stimulus. Examples: Jump into the swimming pool initially feels cold after a few minutes, water no longer feels as cold! Cook something on the stove initially strong odor after a few minutes, not as strong anymore! Rapidly adapting/Phasic receptors: Normally inactive, but become active for a short time in response to a change in the conditions they monitor. Whose threshold changes very quickly. Examples: receptors for smell, taste, pressure and touch. Slowly adapting/Tonic receptors: Are always active. Whose threshold does not change easily. Examples: receptors for pain, body position, chemicals in blood. Receptors – More Characteristics 6. Receptors can be classified according to their location. Exteroceptors: That are present on the surface of the body. Detect changes in the external environment. Examples: receptors in the skin for temperature, pressure and touch. Interoceptors/Visceroceptors: That are present in the wall of internal organs. Detect changes in the internal environment.. Examples: receptors in the wall of blood vessels (chemoreceptor & baroreceptor) and other internal organs. Proprioceptors: Are present in the joints, tendons, ligaments, muscles and ear. For maintaining body positions and balance. Pain Sensation Pain: refers to the discomfort or an alarm system to inform the brain of an injury or infection or changes that may endanger the body. Detected by receptor called nociceptors….which are nerve endings. Present in just about any tissue and organ of the body. Can be stimulated by any type of stimulus. Integrated by thalamus and limbic system of cerebrum. Acute pain: occurs rapidly after a stimulus is applied….as in injuries. Chronic pain: begins gradually and increases in intensity over time, e.g. osteoarthritis, migraine headaches, cancer etc. Somatic pain: arises from receptors present in the skin, skeletal muscles or joints, e.g. finger cut, overstretched muscle. Visceral pain: arises from receptors present in the visceral organs, e.g. renal colic, labor pain. Phantom pain: pain interpreted by the brain as coming from the nonexistent limb….as after amputations. Referred pain: a sense of pain in a region other than the site of origin, e.g. pain in hip/thigh because of herniated disc. Sensory and Motor Pathways When a change takes place in the external environment Receptors are stimulated Impulses are generated Impulses travel to the spinal cord Then to the brain….afferent sensory pathway Brain integrates the information Motor impulses travel to the spinal cord Impulses exit to go to the effector….efferent motor pathway Response takes place. How do afferent sensory and efferent motor pathways run???? Afferent Sensory Pathways Dorsal gray horn Cerebrum Going from the receptor to the brain….at least 3 Dorsal root neurons are involved….first order neuron, second Dorsal root ganglion order neuron, third order neuron. When a change takes place in the external environment Sensory receptors are stimulated. Impulses are generated. Impulses travel through the sensory neuron or the first order neuron that enters the spinal cord through the posterior gray horn. First order neuron synapses with interneuron or the second order neuron that originates in the spinal cord. Second order neuron cross to the opposite side of the spinal cord and pass upward through the brain stem to the thalamus. It then synapses with third order neuron that takes impulses to the somatosensory cortex of cerebrum for perception of sensation. Efferent Motor Pathways Dorsal gray horn Dorsal root Going from the brain to the voluntary effector Dorsal root ganglion (somatic)….at least 2 neurons are involved….upper motor neuron and lower motor neuron. Once the brain has integrated the sensory information Upper motor neurons from primary motor cortex of cerebrum take impulses down through descending tracts to brain stem or the spinal cord Upper motor neurons intercept with lower motor neurons in the spinal cord Lower motor neurons exit spinal cord through anterior gray horn Take motor impulses to skeletal muscles for the somatic (decussation of pyramids) response. Upper motor neuron lesions Plantar extension Babinski reflex (normal response in infants) Plantar flexion (normal response in adults) Positive Babinski sign in adults (abnormal response) Upper motor neuron (descending spinal tract) lesion occurs due to stroke, traumatic brain injury or multiple sclerosis…results in:- a) Muscle weakness. b) Decreased muscle tone. c) May exhibit positive Babinski reflex- extensor plantar reflex (big toe extends upward and the remaining toes fan out-normal in infants less than 2 years old due to incomplete myelination of the corticospinal tract). Positive Babinski's sign is always pathological in adults but normal in children less than 2 years. Disorders ALS / Amyotrophic Lateral Sclerosis / Lou Gehrig’s Disease Progressive degeneration of upper and lower motor neurons paralysis of muscles muscles atrophy. Later stages- affects respiratory muscles-leads to respiratory failure and death. Cerebral Palsy- Affects voluntary motor performance… not progressive. Appears during infancy or childhood and persist throughout life. Difficult birthing process, maternal exposure to alcohol and drugs, congenital defects CNS functions are permanently impaired…motor skill, posture and balance, memory, speech and learning..
Recommended publications
  • Nervous Tissue
    Nervous Tissue Prof.Prof. ZhouZhou LiLi Dept.Dept. ofof HistologyHistology andand EmbryologyEmbryology Organization:Organization: neuronsneurons (nerve(nerve cells)cells) neuroglialneuroglial cellscells Function:Function: Ⅰ Neurons 1.1. structurestructure ofof neuronneuron somasoma neuriteneurite a.a. dendritedendrite b.b. axonaxon 1.11.1 somasoma (1)(1) nucleusnucleus LocatedLocated inin thethe centercenter ofof soma,soma, largelarge andand palepale--stainingstaining nucleusnucleus ProminentProminent nucleolusnucleolus (2)(2) cytoplasmcytoplasm (perikaryon)(perikaryon) a.a. NisslNissl bodybody b.b. neurofibrilneurofibril NisslNissl’’ss bodiesbodies LM:LM: basophilicbasophilic massmass oror granulesgranules Nissl’s Body (TEM) EMEM:: RERRER,, freefree RbRb FunctionFunction:: producingproducing thethe proteinprotein ofof neuronneuron structurestructure andand enzymeenzyme producingproducing thethe neurotransmitterneurotransmitter NeurofibrilNeurofibril thethe structurestructure LM:LM: EM:EM: NeurofilamentNeurofilament micmicrotubulerotubule FunctionFunction cytoskeleton,cytoskeleton, toto participateparticipate inin substancesubstance transporttransport LipofuscinLipofuscin (3)(3) CellCell membranemembrane excitableexcitable membranemembrane ,, receivingreceiving stimutation,stimutation, fromingfroming andand conductingconducting nervenerve impulesimpules neurite: 1.2 Dendrite dendritic spine spine apparatus Function: 1.3 Axon axon hillock, axon terminal, axolemma Axoplasm: microfilament, microtubules, neurofilament, mitochondria,
    [Show full text]
  • Retained Neonatal Reflexes | the Chiropractic Office of Dr
    Retained Neonatal Reflexes | The Chiropractic Office of Dr. Bob Apol 12/24/16, 1:56 PM Temper tantrums Hypersensitive to touch, sound, change in visual field Moro Reflex The Moro Reflex is present at 9-12 weeks after conception and is normally fully developed at birth. It is the baby’s “danger signal”. The baby is ill-equipped to determine whether a signal is threatening or not, and will undergo instantaneous arousal. This may be due to sudden unexpected occurrences such as change in head position, noise, sudden movement or change of light or even pain or temperature change. This activates the stress response system of “fight or flight”. If the Moro Reflex is present after 6 months of age, the following signs may be present: Reaction to foods Poor regulation of blood sugar Fatigues easily, if adrenalin stores have been depleted Anxiety Mood swings, tense muscles and tone, inability to accept criticism Hyperactivity Low self-esteem and insecurity Juvenile Suck Reflex This is active together with the “Rooting Reflex” which allows the baby to feed and suck. If this reflex is not sufficiently integrated, the baby will continue to thrust their tongue forward, pushing on the upper jaw and causing an overbite. This by nature affects the jaw and bite position. This may affect: Chewing Difficulties with solid foods Dribbling Rooting Reflex Light touch around the mouth and cheek causes the baby’s head to turn to the stimulation, the mouth to open and tongue extended in preparation for feeding. It is present from birth usually to 4 months.
    [Show full text]
  • The Corneomandibular Reflex1
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.34.3.236 on 1 June 1971. Downloaded from J. Neurol. Neurosurg. Psychiat., 1971, 34, 236-242 The corneomandibular reflex1 ROBERT M. GORDON2 AND MORRIS B. BENDER From the Department of Neurology, the Mount Sinai Hospital, New York, U.S.A. SUMMARY Seven patients are presented in whom a prominent corneomandibular reflex was observed. These patients all had severe cerebral and/or brain-stem disease with altered states of consciousness. Two additional patients with less prominent and inconstant corneomandibular reflexes were seen; one had bulbar amyotrophic lateral sclerosis and one had no evidence of brain disease. The corneomandibular reflex, when found to be prominent, reflects an exaggeration of the normal. Therefore one may consider the corneomandibular hyper-reflexia as possibly due to disease of the corticobulbar system. The corneomandibular reflex consists of an involun- weak bilateral response on a few occasions. This tary contralateral deviation and protrusion of the was a woman with bulbar and spinal amyotrophic lower jaw during corneal stimulation. It is not a lateral sclerosis. The other seven patients hadProtected by copyright. common phenomenon and has been rediscovered prominent and consistently elicited corneo- several times since its initial description by Von mandibular reflexes. The clinical features common to Solder in 1902. It is found mostly in patients with these patients were (1) the presence of bilateral brain-stem or bilateral cerebral lesions who are in corneomandibular reflexes, in some cases more coma or semicomatose. prominent on one side; (2) a depressed state of con- There have been differing opinions as to the sciousness, usually coma; and (3) the presence of incidence, anatomical basis, and clinical significance severe neurological abnormalities, usually motor, of this reflex.
    [Show full text]
  • Normal Plantar Response: Integration of Flexor and Extensor Reflex Components
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.26.1.39 on 1 February 1963. Downloaded from J. Neurol. Neurosurg. Psychiat., 1963, 26, 39 Normal plantar response: integration of flexor and extensor reflex components LENNART GRIMBY From the Department of Neurology, Karolinska Institute, Serafimerlasarettet, Stockholm, Sweden The reflexes elicited by painful stimulation of the the suprasegmental control of the reflex centres, the plantar surface of the foot have been studied receptive field of the reflex is limited to the skin area extensively for a long time and the relation between where it is adequate for protective purposes, viz., the reflexes obtained in normal and in pathological the ball of the great toe. cases has been the subject of considerable debate. An Previous investigations (Eklund et al., 1959; excellent survey of previous investigations is to be Kugelberg et al., 1960) have shown that the main found in the review by Walshe (1956). As in most difference between the electromyographic pattern of studies of human reflexes, the technique commonly a flexor plantar response and that of an extensor used has, however, not permitted an exact deter- plantar response is that the reflex plantar flexion of mination of the latency values of the reflexes, and the great toe is associated with activity in the short it has thus not been possible to judge with certainty hallux flexor and reciprocal inhibition of the guest. Protected by copyright. to what extent the movements studied have been voluntary activity in the short hallux extensor, purely spinal and to what extent of cerebral origin. whereas, conversely, reflex dorsiflexion of the great By means of brief electric stimuli and an electro- toe is accompanied by activity in the short hallux myographic recording technique these latency values extensor and reciprocal inhibition of the voluntary can, however, be exactly determined, and in this way activity in the short hallux flexor.
    [Show full text]
  • Neurologic Assessment Skills for the Acute Medical Surgical Nurse
    on230103.qxd 1/20/2004 12:01 PM Page 3 Neurologic Assessment Skills for the Acute Medical Surgical Nurse Janet T. Crimlisk ▼ Margaret M. Grande Practical and efficient neurologic assessment skills are vital for when neurologic conditions are changing and what acute care nurses. During an acute neurologic event, the should be the nurse’s immediate response? nurse needs a focused assessment of the pertinent history and symptom analysis and an immediate head-to-toe survey, Review of Central Nervous System eliciting any abnormal signs to identify and correctly report the medical problem. When a patient requires routine moni- To identify appropriate assessment information and toring of neurologic signs, the nurse’s role includes a neuro- apply these skills, a brief overview of the central nervous system (CNS) is presented. The CNS consists of the brain, logic assessment, collecting and assimilating that data, inter- which comprises the cerebrum, cerebellum, and brain- preting the patient problem, notifying the physician when stem (see Figure 1). The brain consists of two central appropriate, and documenting that data. This article presents hemispheres, right and left, which form the largest part of an overview of a staff nurse’s neurologic assessment, explains the brain. There are four main lobes: frontal (Broca’s common neurologic tests performed at the bedside, identifies area, judgment, insight, problem solving, and emotion), an efficient way to perform the assessment, and indicates temporal (auditory, comprehension, speech, and taste), what to include and document when “neuro signs” are parietal (sensory and proprioception), and occipital ordered. (vision). In the central part of the cerebrum is the dien- KEY WORDS: Neurologic assessment, Education, Medical surgi- cephalon, which surrounds the third ventricle and forms cal nurse the central core and contains the thalamus and the hypo- thalamus (the autonomic nervous system regulator).
    [Show full text]
  • Sensory Pathways and the Somatic Nervous System
    15 Neural Integration I: Sensory Pathways and the Somatic Nervous System PowerPoint® Lecture Presentations prepared by Jason LaPres Lone Star College—North Harris © 2012 Pearson Education, Inc. 15-1 Sensory Information • Afferent Division of the Nervous System • Receptors • Sensory neurons • Sensory pathways • Efferent Division of the Nervous System • Nuclei • Motor tracts • Motor neurons © 2012 Pearson Education, Inc. Figure 15-1 An Overview of Neural Integration OVERVIEW OF NEURAL INTEGRATION CHAPTER 15 CHAPTER 16 Sensory Higher-Order Functions processing Conscious and Memory, learning, and centers in subconscious intelligence may brain motor centers in brain influence interpretation of sensory information and nature of motor activities Sensory Motor pathways pathways Somatic Autonomic Nervous Nervous System (SNS) System (ANS) General Skeletal Visceral effectors sensory muscles (examples: smooth receptors muscles, glands, cardiac muscle, adipocytes) © 2012 Pearson Education, Inc. 15-1 Sensory Information • Sensory Receptors • Specialized cells that monitor specific conditions • In the body or external environment • When stimulated, a receptor passes information to the CNS • In the form of action potentials along the axon of a sensory neuron © 2012 Pearson Education, Inc. 15-1 Sensory Information • Sensory Pathways • Deliver somatic and visceral sensory information to their final destinations inside the CNS using: • Nerves • Nuclei • Tracts © 2012 Pearson Education, Inc. 15-1 Sensory Information • Somatic Motor Portion of the Efferent Division • Controls peripheral effectors • Somatic Motor Commands • Travel from motor centers in the brain along somatic motor pathways of: • Motor nuclei • Tracts • Nerves © 2012 Pearson Education, Inc. 15-1 Sensory Information • Somatic Nervous System (SNS) • Motor neurons and pathways that control skeletal muscles © 2012 Pearson Education, Inc.
    [Show full text]
  • Sensory Dysfunction in Children with Tourette Syndrome
    Sensory Dysfunction in Children with Tourette Syndrome by Nasrin Shahana, MBBS A Dissertation Submitted inPartial Fulfillment of theRequirements for the Degree ofDoctor of Philosophyin Neuroscience University of Cincinnati Cincinnati Children’s Hospital 12th August 2015 Committee Members James Eliassen, PhD (Chair) Matthew R. Skelton, PhD Michael P. Jankowski, PhD Jennifer J. Vannest, PhD Donald L. Gilbert, MS, MD (Advisor) 1 ABSTRACT Sensory Dysfunction in Children with Tourette Syndrome By Nasrin Shahana, MBBS The University of Cincinnati, 2015 Under the Supervision of Donald L. Gilbert, MS, MD Prime symptoms of Tourette Syndrome (TS) constitute motor and vocal tics but observation from clinical standpoints as well as parents or individual patient’s observation has provided evidence for sensory abnormalities associated with TS. One of the well-known phenomenon is tic related premonitory urges (PU’s), described as recurring, intrusive sensory feelings such as discomfort, pressure etc. that precede and in some cases compel performance of tics. Sensory sensitivity or intolerance is often reported to be related to being sensitive to the external sensory information such as intolerance to clothing tags. Some report urges to have subconsciously copying movements (echopraxia) or speech (echolalia) of others. Patients often complain about their tics being enhanced by certain sensory stimuli like sounds or lights. With the exception of Premonitory Urges (PU’s), most of the sensory symptoms have not been addressed by standard clinical practice. PU’s can be evaluated with a standard clinical rating scale called Premonitory Urges in Tourette Syndrome (PUTS) which tends to be well correlated with tics. PU’s seem to be a critical distinguishing factor between TS and other movement disorders.
    [Show full text]
  • Sensory Receptors A17 (1)
    SENSORY RECEPTORS A17 (1) Sensory Receptors Last updated: April 20, 2019 Sensory receptors - transducers that convert various forms of energy in environment into action potentials in neurons. sensory receptors may be: a) neurons (distal tip of peripheral axon of sensory neuron) – e.g. in skin receptors. b) specialized cells (that release neurotransmitter and generate action potentials in neurons) – e.g. in complex sense organs (vision, hearing, equilibrium, taste). sensory receptor is often associated with nonneural cells that surround it, forming SENSE ORGAN. to stimulate receptor, stimulus must first pass through intervening tissues (stimulus accession). each receptor is adapted to respond to one particular form of energy at much lower threshold than other receptors respond to this form of energy. adequate (s. appropriate) stimulus - form of energy to which receptor is most sensitive; receptors also can respond to other energy forms, but at much higher thresholds (e.g. adequate stimulus for eye is light; eyeball rubbing will stimulate rods and cones to produce light sensation, but threshold is much higher than in skin pressure receptors). when information about stimulus reaches CNS, it produces: a) reflex response b) conscious sensation c) behavior alteration SENSORY MODALITIES Sensory Modality Receptor Sense Organ CONSCIOUS SENSATIONS Vision Rods & cones Eye Hearing Hair cells Ear (organ of Corti) Smell Olfactory neurons Olfactory mucous membrane Taste Taste receptor cells Taste bud Rotational acceleration Hair cells Ear (semicircular
    [Show full text]
  • Overshunting-Associated Myelopathy: Report of 2 Cases
    NEUROSURGICAL FOCUS Neurosurg Focus 41 (3):E16, 2016 Overshunting-associated myelopathy: report of 2 cases Jason Man-kit Ho, MBChB, Hing-Yuen Law, FRCS(SN), Shing-Chau Yuen, FRCS, and Kwong-Yui Yam, FRCS Department of Neurosurgery, Tuen Mun Hospital, Tuen Mun, Hong Kong Special Administrative Region, China The authors present 2 cases of cervical myelopathy produced by engorged vertebral veins due to overshunting. Over­ shunting­associated myelopathy is a rare complication of CSF shunting. Coexisting cervical degenerative disc disease may further increase the difficulty of diagnosing the condition. Neurosurgeons and others who routinely evaluate patients with intracranial shunts should be familiar with this rare but possible diagnosis. http://thejns.org/doi/abs/10.3171/2016.7.FOCUS16179 KEY WOrdS overshunting; myelopathy; hydrocephalus; ventriculoperitoneal shunt VERSHUNTING-ASSOCIATED myelopathy is a rare com- temperature sensation were impaired on the right palm. plication of CSF shunting.4 Few case reports have The patient had an upgoing plantar reflex and ankle clonus been published over the years. Here we add 2 cas- bilaterally. Tandem walking could barely be performed. esO to the literature. T1-weighted Gd-enhanced MRI of the brain and cervi- cal spine revealed diffuse pachymeningeal enhancement Case Reports (Fig. 1 upper) and engorgement of vertebral veins from Case 1 the C-1 to the C-3 level causing cord compression at the History and Presentation corresponding levels (Fig. 2A and B). T2-weighted imag- ing showed signal hyperintensity in the spinal cord (Fig. 3 This 64-year-old woman had undergone ventriculoperi- left) at the C-1 level. Degenerative changes (marginal os- toneal (VP) shunt placement for treatment of hydrocepha- teophytes and disc bulging) were noted at the C5–6 and lus after clipping of a ruptured posterior communicating C6–7 levels, with indentation of the anterior thecal sac.
    [Show full text]
  • Sensory Pathways and the Somatic Nervous System
    Fundamentals of Anatomy & Physiology Eleventh Edition Chapter 15 Sensory Pathways and the Somatic Nervous System Lecture Presentation by Lori Garrett, Parkland College © 2018 Pearson Education, Inc. Learning Outcomes 15-1 Specify the components of the afferent and efferent divisions of the nervous system, and explain what is meant by the somatic nervous system. 15-2 Explain why receptors respond to specific stimuli, and how the organization of a receptor affects its sensitivity. 15-3 Identify the receptors for the general senses, and describe how they function. 15-4 Identify the major sensory pathways, and explain how it is possible to distinguish among sensations that originate in different areas of the body. 15-5 Describe the components, processes, and functions of the somatic motor pathways, and the levels of information processing involved in motor control. 2 © 2018 Pearson Education, Inc. Sensory Pathways and Somatic Nervous System ▪ Focus for this chapter – Sensory pathways • General senses – Motor pathways • Somatic nervous system (SNS) – Controls contractions of skeletal muscles 3 © 2018 Pearson Education, Inc. 15-1 Sensory and Motor Pathways ▪ Sensory pathways – Series of neurons that relays sensory information from receptors to CNS ▪ Sensory receptors – Specialized cells or cell processes that monitor specific conditions • In the body or external environment – When stimulated, a receptor generates action potentials that are sent along sensory pathways 4 © 2018 Pearson Education, Inc. 15-1 Sensory and Motor Pathways ▪ Afferent division of nervous system – Somatic and visceral sensory pathways ▪ Efferent division of nervous system – Somatic motor portion • Carries out somatic motor commands that control peripheral effectors • Commands travel from motor centers in brain along somatic motor pathways 5 © 2018 Pearson Education, Inc.
    [Show full text]
  • THE BABINSKI REFLEX.1 by C
    THE BABINSKI REFLEX.1 By C. Van Epps, M.D. I owe the opportunity to make the following study to my chiefs at the Philadelphia Hospital, Drs. Mills, Dercum, Lloyd and Burr, and to the chief resident physician, Dr. Daniel E. Hughes. The purpose of my investigation was to determine the conditions in which the Babinski reflex is present. The data consisted of one thousand persons classi¬ fied as follows:— Babies and children. ioo Patients in medical wards presenting no ner¬ vous symptoms. 165 Insane patients presenting no organic cerebro¬ spinal disease. 335 Patients suffering from nervous disease but pre¬ senting no symptoms of involvement of the lateral tracts . 213 Hemiplegics and diplegics . 125 Patients having disease of the spinal cord with manifest involvement of the lateral tracts. 62 In health on stroking the sole there follows flexion of the toes with or without movement of the ankle and leg. This reflex is not present in every one, some normal persons hav¬ ing no plantar reflex at all. Babinski discovered that in certain diseases the plantar reflex is altered and claimed that this alteration is constantly present whenever there is “perturbation” of the lateral tracts. He described the alteration as follows: There is extension of the great toe with or without extension and separation of the other toes, the movement being slower than the normal reflex and more readily produced by stroking the outer than the inner side of the sole. In testing for the reflex I used, as a rule, an ordinary blunt tooth-pick; if the sole was very sensitive I used my ‘Read before the Philadelphia Neurological Society, October 22, 1900.
    [Show full text]
  • The Nervous System: General and Special Senses
    18 The Nervous System: General and Special Senses PowerPoint® Lecture Presentations prepared by Steven Bassett Southeast Community College Lincoln, Nebraska © 2012 Pearson Education, Inc. Introduction • Sensory information arrives at the CNS • Information is “picked up” by sensory receptors • Sensory receptors are the interface between the nervous system and the internal and external environment • General senses • Refers to temperature, pain, touch, pressure, vibration, and proprioception • Special senses • Refers to smell, taste, balance, hearing, and vision © 2012 Pearson Education, Inc. Receptors • Receptors and Receptive Fields • Free nerve endings are the simplest receptors • These respond to a variety of stimuli • Receptors of the retina (for example) are very specific and only respond to light • Receptive fields • Large receptive fields have receptors spread far apart, which makes it difficult to localize a stimulus • Small receptive fields have receptors close together, which makes it easy to localize a stimulus. © 2012 Pearson Education, Inc. Figure 18.1 Receptors and Receptive Fields Receptive Receptive field 1 field 2 Receptive fields © 2012 Pearson Education, Inc. Receptors • Interpretation of Sensory Information • Information is relayed from the receptor to a specific neuron in the CNS • The connection between a receptor and a neuron is called a labeled line • Each labeled line transmits its own specific sensation © 2012 Pearson Education, Inc. Interpretation of Sensory Information • Classification of Receptors • Tonic receptors
    [Show full text]