Hybrid Cognitive-Affective Strategies for AI Safety
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Modelling and Control Methods with Applications to Mechanical Waves
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1174 Modelling and Control Methods with Applications to Mechanical Waves HANS NORLANDER ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-554-9023-2 UPPSALA urn:nbn:se:uu:diva-229793 2014 Dissertation presented at Uppsala University to be publicly examined in room 2446, ITC, Lägerhyddsvägen 2, Uppsala, Friday, 17 October 2014 at 10:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Prof. Jonas Sjöberg (Chalmers). Abstract Norlander, H. 2014. Modelling and Control Methods with Applications to Mechanical Waves. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1174. 72 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9023-2. Models, modelling and control design play important parts in automatic control. The contributions in this thesis concern topics in all three of these concepts. The poles are of fundamental importance when analyzing the behaviour of a system, and pole placement is an intuitive and natural approach for control design. A novel parameterization for state feedback gains for pole placement in the linear multiple input case is presented and analyzed. It is shown that when the open and closed loop poles are disjunct, every state feedback gain can be parameterized. Other properties are also investigated. Hammerstein models have a static non-linearity on the input. A method for exact compensation of such non-linearities, combined with introduction of integral action, is presented. Instead of inversion of the non-linearity the method utilizes differentiation, which in many cases is simpler. -
Design Analysis Method for Multidisciplinary Complex Product Using Sysml
MATEC Web of Conferences 139, 00014 (2017) DOI: 10.1051/matecconf/201713900014 ICMITE 2017 Design Analysis Method for Multidisciplinary Complex Product using SysML Jihong Liu1,*, Shude Wang1, and Chao Fu1 1 School of Mechanical Engineering and Automation, Beihang University, 100191 Beijing, China Abstract. In the design of multidisciplinary complex products, model-based systems engineering methods are widely used. However, the methodologies only contain only modeling order and simple analysis steps, and lack integrated design analysis methods supporting the whole process. In order to solve the problem, a conceptual design analysis method with integrating modern design methods has been proposed. First, based on the requirement analysis of the quantization matrix, the user’s needs are quantitatively evaluated and translated to system requirements. Then, by the function decomposition of the function knowledge base, the total function is semi-automatically decomposed into the predefined atomic function. The function is matched into predefined structure through the behaviour layer using function-structure mapping based on the interface matching. Finally based on design structure matrix (DSM), the structure reorganization is completed. The process of analysis is implemented with SysML, and illustrated through an aircraft air conditioning system for the system validation. 1 Introduction decomposition and function modeling, function structure mapping and evaluation, and structure reorganization. In the process of complex product design, system The whole process of the analysis method is aimed at engineering is a kind of development methods which providing designers with an effective analysis of ideas covers a wide range of applications across from system and theoretical support to reduce the bad design and requirements analysis, function decomposition to improve design efficiency. -
Understanding the Rational Function Model: Methods and Applications
UNDERSTANDING THE RATIONAL FUNCTION MODEL: METHODS AND APPLICATIONS Yong Hu, Vincent Tao, Arie Croitoru GeoICT Lab, York University, 4700 Keele Street, Toronto M3J 1P3 - {yhu, tao, ariec}@yorku.ca KEY WORDS: Photogrammetry, Remote Sensing, Sensor Model, High-resolution, Satellite Imagery ABSTRACT: The physical and generalized sensor models are two widely used imaging geometry models in the photogrammetry and remote sensing. Utilizing the rational function model (RFM) to replace physical sensor models in photogrammetric mapping is becoming a standard way for economical and fast mapping from high-resolution images. The RFM is accepted for imagery exploitation since high accuracies have been achieved in all stages of the photogrammetric process just as performed by rigorous sensor models. Thus it is likely to become a passkey in complex sensor modeling. Nowadays, commercial off-the-shelf (COTS) digital photogrammetric workstations have incorporated the RFM and related techniques. Following the increasing number of RFM related publications in recent years, this paper reviews the methods and key applications reported mainly over the past five years, and summarizes the essential progresses and address the future research directions in this field. These methods include the RFM solution, the terrain- independent and terrain-dependent computational scenarios, the direct and indirect RFM refinement methods, the photogrammetric exploitation techniques, and photogrammetric interoperability for cross sensor/platform imagery integration. Finally, several open questions regarding some aspects worth of further study are addressed. 1. INTRODUCTION commercial companies, such as Space Imaging (the first high- resolution satellite imagery vendor), to adopt the RFM scheme A sensor model describes the geometric relationship between in order to deliver the imaging geometry model has also the object space and the image space, or vice visa. -
Safety of Artificial Superintelligence
Environment. Technology. Resources. Rezekne, Latvia Proceedings of the 12th International Scientific and Practical Conference. Volume II, 180-183 Safety of Artificial Superintelligence Aleksejs Zorins Peter Grabusts Faculty of Engineering Faculty of Engineering Rezekne Academy of Technologies Rezekne Academy of Technologies Rezekne, Latvia Rezekne, Latvia [email protected] [email protected] Abstract—The paper analyses an important problem of to make a man happy it will do it with the fastest and cyber security from human safety perspective which is usu- cheapest (in terms of computational resources) without ally described as data and/or computer safety itself with- using a common sense (for example killing of all people out mentioning the human. There are numerous scientific will lead to the situation that no one is unhappy or the predictions of creation of artificial superintelligence, which decision to treat human with drugs will also make him could arise in the near future. That is why the strong neces- sity for protection of such a system from causing any farm happy etc.). Another issue is that we want computer to arises. This paper reviews approaches and methods already that we want, but due to bugs in the code computer will presented for solving this problem in a single article, analy- do what the code says, and in the case of superintelligent ses its results and provides future research directions. system, this may be a disaster. Keywords—Artificial Superintelligence, Cyber Security, The next sections of the paper will show the possible Singularity, Safety of Artificial Intelligence. solutions of making superintelligence safe to humanity. -
Reliability Block Diagram (Rbd)
RELIABILITY BLOCK DIAGRAM (RBD) 1. System performance 2. RBD definition 3. Structure function Master ISMP Master ISMP - Castanier 4. Reliability function of a non repairable complex system 5. Reliability metrics for a repairable complex system 59 System performance Problem: Individual definition of the failure modes and components What about the global performance of the « system »? Master ISMP Master ISMP - Castanier 60 Reliability Block Diagram definition Definition A Reliability Block Diagram is a success-oriented graph which illustrates from a logical perspective how the different functional blocks ensure the global mission/function of the system. The structure of the reliability block diagram is mathematically described through structure functions which allow to assess some reliability measures of the (complex) Master ISMP Master ISMP - Castanier system. Function model EThe valve can be closed S and stop the flow SDV1 61 Reliability Block Diagram definition Decomposition of a complex system in functional blocks Component 1 8 9 4 4 2 7 8 10 Master ISMP Master ISMP - Castanier 5 6 3 9 10 Functional block 1 62 Reliability Block Diagram definition The classical architectures « Serie » structure A system which is operating if and only of all of its components are operating is called a serie structure/system. « Parallel » structure A system which is operating if at least one of its components is Master ISMP Master ISMP - Castanier operating is called a parallel structure/system. « oo » structure A system which is operating if at least of its component are operating is called a over structure/system 63 Reliability Block Diagram definition Example Let consider 2 independent safety-related valves V1 and V2 which are physically installed in series. -
A Model-Driven Data-Analysis Architecture Enabling Reuse and Insight in Open Data
A model-driven data-analysis architecture enabling reuse and insight in open data Robin Hoogervorst July 2018 Master's Thesis Master of Computer Science Specialization Software Technology University of Twente Faculty of Electrical Engineering, Mathematics and Computer Science Supervising committee: dr. Luis Ferreira Pires dr.ir. Maurice van Keulen prof.dr.ir. Arend Rensink Abstract The last years have shown an increase in publicly available data, named open data. Organisations can use open data to enhance data analysis, but tradi- tional data solutions are not suitable for data sources not controlled by the organisation. Hence, each external source needs a specific solution to solve accessing its data, interpreting it and provide possibilities verification. Lack of proper standards and tooling prohibits generalization of these solutions. Structuring metadata allows structure and semantics of these datasets to be described. When this structure is properly designed, these metadata can be used to specify queries in an abstract manner, and translated these to dataset its storage platform. This work uses Model-Driven Engineering to design a metamodel able to represent the structure different open data sets as metadata. In addition, a function metamodel is designed and used to define operations in terms of these metadata. Transformations are defined using these functions to generate executable code, able to execute the required data operations. Other transformations apply the same operations to the metadata model, allowing parallel transformation of metadata and data, keeping them synchronized. The definition of these metamodels, as well as their transformations are used to develop a prototype application framework able to load external datasets and apply operations to the data and metadata simultaneously. -
Liability Law for Present and Future Robotics Technology Trevor N
Liability Law for Present and Future Robotics Technology Trevor N. White and Seth D. Baum Global Catastrophic Risk Institute http://gcrinstitute.org * http://sethbaum.com Published in Robot Ethics 2.0, edited by Patrick Lin, George Bekey, Keith Abney, and Ryan Jenkins, Oxford University Press, 2017, pages 66-79. This version 10 October 2017 Abstract Advances in robotics technology are causing major changes in manufacturing, transportation, medicine, and a number of other sectors. While many of these changes are beneficial, there will inevitably be some harms. Who or what is liable when a robot causes harm? This paper addresses how liability law can and should account for robots, including robots that exist today and robots that potentially could be built at some point in the near or distant future. Already, robots have been implicated in a variety of harms. However, current and near-future robots pose no significant challenge for liability law: they can be readily handled with existing liability law or minor variations thereof. We show this through examples from medical technology, drones, and consumer robotics. A greater challenge will arise if it becomes possible to build robots that merit legal personhood and thus can be held liable. Liability law for robot persons could draw on certain precedents, such as animal liability. However, legal innovations will be needed, in particular for determining which robots merit legal personhood. Finally, a major challenge comes from the possibility of future robots that could cause major global catastrophe. As with other global catastrophic risks, liability law could not apply, because there would be no post- catastrophe legal system to impose liability. -
Integration Definition for Function Modeling (IDEF0)
NIST U.S. DEPARTMENT OF COMMERCE PUBLICATIONS £ Technology Administration National Institute of Standards and Technology FIPS PUB 183 FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION INTEGRATION DEFINITION FOR FUNCTION MODELING (IDEFO) » Category: Software Standard SUBCATEGORY: MODELING TECHNIQUES 1993 December 21 183 PUB FIPS JK- 45C .AS A3 //I S3 IS 93 FIPS PUB 183 FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION INTEGRATION DEFINITION FOR FUNCTION MODELING (IDEFO) Category: Software Standard Subcategory: Modeling Techniques Computer Systems Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 Issued December 21, 1993 U.S. Department of Commerce Ronald H. Brown, Secretary Technology Administration Mary L. Good, Under Secretary for Technology National Institute of Standards and Technology Arati Prabhakar, Director Foreword The Federal Information Processing Standards Publication Series of the National Institute of Standards and Technology (NIST) is the official publication relating to standards and guidelines adopted and promulgated under the provisions of Section 111 (d) of the Federal Property and Administrative Services Act of 1949 as amended by the Computer Security Act of 1987, Public Law 100-235. These mandates have given the Secretary of Commerce and NIST important responsibilities for improving the utilization and management of computer and related telecommunications systems in the Federal Government. The NIST, through its Computer Systems Laboratory, provides leadership, technical guidance, -
Classification Schemas for Artificial Intelligence Failures
Journal XX (XXXX) XXXXXX https://doi.org/XXXX/XXXX Classification Schemas for Artificial Intelligence Failures Peter J. Scott1 and Roman V. Yampolskiy2 1 Next Wave Institute, USA 2 University of Louisville, Kentucky, USA [email protected], [email protected] Abstract In this paper we examine historical failures of artificial intelligence (AI) and propose a classification scheme for categorizing future failures. By doing so we hope that (a) the responses to future failures can be improved through applying a systematic classification that can be used to simplify the choice of response and (b) future failures can be reduced through augmenting development lifecycles with targeted risk assessments. Keywords: artificial intelligence, failure, AI safety, classification 1. Introduction Artificial intelligence (AI) is estimated to have a $4-6 trillion market value [1] and employ 22,000 PhD researchers [2]. It is estimated to create 133 million new roles by 2022 but to displace 75 million jobs in the same period [6]. Projections for the eventual impact of AI on humanity range from utopia (Kurzweil, 2005) (p.487) to extinction (Bostrom, 2005). In many respects AI development outpaces the efforts of prognosticators to predict its progress and is inherently unpredictable (Yampolskiy, 2019). Yet all AI development is (so far) undertaken by humans, and the field of software development is noteworthy for unreliability of delivering on promises: over two-thirds of companies are more likely than not to fail in their IT projects [4]. As much effort as has been put into the discipline of software safety, it still has far to go. Against this background of rampant failures we must evaluate the future of a technology that could evolve to human-like capabilities, usually known as artificial general intelligence (AGI). -
Functions As Models Chapter Outline
www.ck12.org CHAPTER 7 Functions as Models Chapter Outline 7.1 REVIEW OF FUNCTIONS 7.2 CHOOSING A FUNCTION MODEL 136 www.ck12.org Chapter 7. Functions as Models 7.1 Review of Functions Learning Objectives • Review the definition and notation for a function. • Understand how functions are a special class of relations. • Recognize that a function can be represented as an ordered pair, an equation or a graph. • Review function families that we will use to model relationships in our data. Definition We start with remembering the definition of a function. A function is a set of ordered pairs in which the first coordinate, usually x, matches with exactly one second coordinate, y. Equations that follow this definition can be written in function notation. The y coordinate represents the dependent variable, meaning the values of this variable depend upon what is substituted for the other variable. A function can be expressed as an equation, as shown below. In the equation, f represents the function name and (x) represents the variable. In this case the parentheses do not mean multiplication; rather, they separate the function name from the independent variable. input # f (x) = y out put |{z} f unction box You may have seen functions represented by a function machine. These emphasize the fact that functions are rules that explain how the input and output are related. For example, the function below triples the value of the input (x) and subtracts 1 from it. If 3 is fed into the machine, 3(3) − 1 = 8 comes out. 137 7.1. -
Engineering Tools for Robust Creep Modeling
VTT CREATES BUSINESS FROM TECHNOLOGY Technologyandmarketforesight•Strategicresearch•Productandservicedevelopment•IPRandlicensing Dissertation VTT PUBLICATIONS 728 •Assessments,testing,inspection,certification•Technologyandinnovationmanagement•Technologypartnership • • • VTT PUBLICATIONS 728 ENGINEERING Creep models are needed for design and life management of structural components operating at high temperatures. The determination of creep properties require long- term testing often limiting the amount of data. It is of considerable interest to be able to reliably predict and extrapolate long term creep behavior from relatively small sets of creep data. In this thesis tools have been developed to improve the TOOLS reliability of creep rupture, creep strain and weld strength predictions. Much of the resulting improvements and benefits are related to the reduced requirements for FOR supporting creep data. The simplicity and robustness of the new tools also make them easy to implement in analytical and numerical solutions. Creep models for ROBUST selected high temperature steels and OFP copper are presented. CREEP MODELING Stefan Holmström Engineering Tools for Robust Creep Modeling ISBN 978-951-38-7378-3 (soft back ed.) ISBN 978-951-38-7379-0 (URL: http://www.vtt.fi/publications/index.jsp) ISSN 1235-0621 (soft back ed.) ISSN 1455-0849 (URL: http://www.vtt.fi/publications/index.jsp) VTT PUBLICATIONS 728 Engineering Tools for Robust Creep Modeling Stefan Holmström Dissertation for the degree of Doctor of Science in Technology to be pre- sented with due permission of the Faculty of Engineering and Architecture, The Aalto University School of Science and Technology, for public exami- nation and debate in K216 at Aalto University (Otakaari 4, Espoo, Finland) on the 5th of February, 2010, at 12 noon. -
Software Engineering Session 7 – Main Theme Business Model
Software Engineering Session 7 – Main Theme Business Model Engineering Dr. Jean-Claude Franchitti New York University Computer Science Department Courant Institute of Mathematical Sciences 1 Agenda 11 IntroductionIntroduction 22 BusinessBusiness ModelModel RepresentationRepresentation 33 BusinessBusiness ProcessProcess ModelingModeling 44 CapturingCapturing thethe OrganizationOrganization andand LocationLocation AspectsAspects 55 DevelopingDeveloping aa ProcessProcess ModelModel 66 BPMN,BPMN, BPML,BPML, andand BPEL4WSBPEL4WS 77 BusinessBusiness ProcessProcess InteroperabilityInteroperability 88 SummarySummary andand ConclusionConclusion 2 What is the class about? Course description and syllabus: » http://www.nyu.edu/classes/jcf/g22.2440-001/ » http://www.cs.nyu.edu/courses/spring10/G22.2440-001/ Textbooks: » Software Engineering: A Practitioner’s Approach Roger S. Pressman McGraw-Hill Higher International ISBN-10: 0-0712-6782-4, ISBN-13: 978-00711267823, 7th Edition (04/09) » http://highered.mcgraw-hill.com/sites/0073375977/information_center_view0/ » http://highered.mcgraw- hill.com/sites/0073375977/information_center_view0/table_of_contents.html 3 Icons / Metaphors Information Common Realization Knowledge/Competency Pattern Governance Alignment Solution Approach 44 Agenda 11 IntroductionIntroduction 22 BusinessBusiness ModelModel RepresentationRepresentation 33 BusinessBusiness ProcessProcess ModelingModeling 44 CapturingCapturing thethe OrganizationOrganization andand LocationLocation AspectsAspects 55 DevelopingDeveloping aa ProcessProcess