Potato Mop-Top Virus (PMTV)

Total Page:16

File Type:pdf, Size:1020Kb

Potato Mop-Top Virus (PMTV) Potato Facts Potato Mop-Top Virus (PMTV) Steven B. Johnson, Extension crops specialist Bulletin #2437 History Biology The disease, potato mop-top, is PMTV is vectored by the pathogen caused by the virus, potato mop-top that causes powdery scab disease in virus (PMTV). PMTV is in the viral potatoes, Spongospora subterranea f. sp. genus Pomovirus and is a Furovirus subterranea, which is present through- (fungus-transmitted, rod-shaped out the world. PMTV is not naturally virus). PMTV was first reported in transmissible by aphids or other Britain in 1966 and subsequently vectors, but it may be artificially discovered in cooler areas of Europe, in transmitted to some hosts by grafting. the Andes of South America, and in PMTV is retained in S. subterranea Asia. PMTV was reported in Canada in spore balls. The degree of transmission 1991-92 and in the U.S. in 2002. through seed tubers is variable, and in While PMTV has only been known the absence of powdery scab, it is since 1966, it is transmitted by thought that PMTV may be “self- powdery scab, a disease with a longer, curing” after three generations. That is, world-wide history. Powdery scab was in the absence of the vector, plants may first discovered in Germany in 1841, become free of the virus after three was found throughout Europe by 1855, generations. Movement of the virus and is believed to have spread from within host plants appears to be local PMTV is transmitted by the pathogen that causes South America, where it was eventually or through the xylem but requires powdery scab disease found in 1891. It was first discovered in in potatoes New Brunswick in 1913, and later that year in Maine. Powdery scab was traced to potatoes imported from Ireland in 1912. During that time, USDA researchers presumed that Maine’s outbreaks were fairly recent and derived from New Brunswick. As a result of the presence of the disease, Maine was quarantined, but the quarantine was lifted when powdery scab was recognized in a number of states. movement factor proteins for cell-to- increases spore germination. Under cell movement. In host plants, PMTV favorable conditions, multiple cycles has been found in leaves and in occur. In tubers and sometimes root cytoplasm. galls, resting spores are produced in Powdery scab disease spore balls, which persist for long periods of time. No maximum survival Powdery scab Powdery scab develops from S. time has been determined for powdery subterranea only if conditions are scab spores. and PMTV are favorable. S. subterranea prefers poorly Powdery scab and PMTV generally drained soil and can be infectious across a pH range from 4.7 to 7.6. Soil can be infested with S. associated with While it flourishes in soil temperatures subterranea without powdery scab less than 68 degrees F, the range for occurring if the environmental cool and wet infection is between 52 and 75 degrees, conditions required for disease soils, regions, with an optimal infection temperature development are not met. Powdery of 60. Powdery scab is most severe scab can occur without PMTV being and seasons. when there is more than 15 percent transmitted. The mop-top virus can moisture. High soil moisture early in survive in this pathogen from 10 to 18 the season with a gradual drying out is years after previous potato crops. The thought to encourage the development distribution of infested soil or infected of powdery scab. tubers can serve to disseminate the In potato, when favorable PMTV vector. environmental conditions occur, S. Powdery scab and PMTV are subterranea resting spores germinate to generally associated with cool and wet become motile zoospores that infect soils, regions, and seasons. Wet soil root hairs, roots, stems, stolons or conditions are particularly favorable to tubers. In root hairs, cells produce disease development during early additional zoospores that may infect tuber initiation, when potatoes are tubers or reinfect roots. Wet—but not most susceptible to powdery scab. oxygen-limiting—soils allow movement Precipitation at this stage is a good of the zoospores to roots and tubers. predictor of PMTV incidence. However, periodic soil drying PMTV, being associated with powdery scab, seldom occurs in areas Tuber symptoms are called “spraing” with less than 30 inches of rain per year, increasing thereafter to a high likelihood of occurrence in areas above 45 inches of rain per year. Powdery scab, and therefore PMTV, may occur in warmer, drier areas that are irrigated. Higher soil organic matter may increase infection if it improves moisture retention, or decrease infection if it improves soil structure and drainage. Soil compaction generally increases infection by impeding drainage. Varietal susceptibility to powdery scab varies considerably. No varieties are immune to powdery scab or PMTV. Initial results indicate that resistance to powdery scab and to PMTV development are independent. 2 POTATO MOP-TOP VIRUS, BULLETIN #2437 PMTV Symptoms Tuber symptoms are called “spraing.” Spraing describes the rust- brown discoloration, in the form of arcs or rings and flecks, that appears with internal rust-colored spots on tubers. There may be single or multiple concentric arcs, which extend to the skin surface in some cases. This type of symptom is also shared with tobacco rattle virus (TRV), which causes corky ringspot of potatoes, a nematode- vectored disease. TRV is frequently grouped with PMTV in European countries for regulatory efforts, as the tuber symptoms appear similar. The infection normally remains concealed in the flesh of the tuber, but sometimes There may be single or multiple concentric arcs, reveals its presence on the surface. which extend to the skin surface in some cases Spraing, which in reality is an attempt weeks, followed by storage at 41 to 55 to repel a virus infection, can on degrees, induces symptoms. Tuber occasion develop to the stage where symptoms tend not to develop with the infected site falls out like a plug. In constant 72 to 77 degree or 41 to 55 some cases, tubers may be deformed degree temperatures. Symptom (constricted and bent). Tubers grown development after a storage regime of from PMTV-infected seed may not be one week at 64 degrees and two weeks infected with PMTV, and tubers at 46 degrees is considered to be a infected with PMTV may not show reasonable indication of the final symptoms. Not all stems produced by amount of spraing. Repeated cycles a PMTV-infected tuber may become increase symptom development and infected. are used as a screening technique. The Emergence from infected seed can degree of tuber infection is not a direct be delayed and uneven. Spraing indication of infection and spore appearance and severity differs with production in the root system. Yield variety, hill position and environmental may or may not be affected. The conditions. Symptoms at harvest are primary source of loss is a decrease in more common in tubers closer to the potato quality because of internal soil surface, presumably because symptoms. temperatures there are more variable. Foliar and stem symptoms only Symptoms are seldom centered on a appear if infected seed is planted. powdery scab lesion. Usually, few Symptoms are variable, differing with symptoms are present at and just after variety, weather and season. For these harvest, but expression increases with reasons, disease may be reduced, but further storage. Cutting tubers at not eliminated, by roguing plants with harvest may stimulate spraing symptoms. If the disease develops development. Storage temperature and from infected seed, one or more of the fluctuation are important in symptom stems may show symptoms of various expression. More symptoms occur at types. Symptoms are favored by cool storage temperatures of 46 to 57 weather, particularly cold snaps, and degrees F than at 37 to 39 degrees F. may fade as the season becomes hotter. Initial storage at 64 degrees for two Some varieties show a bright yellow POTATO MOP-TOP VIRUS, BULLETIN #2437 3 blotch pattern (aucuba pattern) in the Control lower leaves, some varieties show V- shaped yellow patterns (chevron There is no good control for this patterns), some varieties show disease. Apart from varietal selection internode shortening (mop-top), some and certification programs designed to varieties show “thistle leaf” patterns detect or flush out viruses, control of Disease may be around the veins, and some varieties PMTV is generally directed at its show deformed leaves and a pale vector, Spongospora subterranea f. sp. — reduced, but not blotchy area. Most potato varieties subterranea the organism that causes eliminated, by grown in North America have not been powdery scab. Using clean seed and evaluated for foliar symptom minimizing the spread of soil and other roguing plants expression. forms of contamination restricts spread with symptoms. A number of plant families are of the pathogen. Infection may be susceptible to infection by powdery reduced, in some cases, by improving scab, although only potato and black drainage, reducing irrigation during nightshade (Solanum nigrum) are early tuber development, and delaying known to produce long-lived resting planting until soils are warmer or spores. The pathogen can infect a drier. Seed treatments may help reduce limited number of other plant species the spread of the pathogen from but does not form spore balls on these infected seed. Soil treatments may other plant species. reduce numbers of viable spores. No maximum survival time has been determined for powdery scab spores. Some reductions in powdery
Recommended publications
  • Potato Tuber Viruses: Mop-Top Management A1777
    NDSU EXTENSION NDSU EXTENSION EXTENDING KNOWLEDGEEXTENDING CHANGING KNOWLEDGE LIVES CHANGINGNDSU EXTENSION LIVES EXTENDING KNOWLEDGE CHANGING LIVES A1777 (Revised September 2018) Potato Tuber Viruses: Mop-top Management Andy Robinson Potato Extension Agronomist NDSU/University of Minnesota Department of Plant Sciences, NDSU Shashi K.R. Yellareddygari Research Scientist Department of Plant Pathology, NDSU Owusu Domfeh Student (former) Department of Plant Pathology, NDSU Neil Gudmestad University Distinguished Professor and Endowed Chair of Potato Pathology Department of Plant Pathology, NDSU The potato mop-top virus (PMTV) is spreading throughout the potato-growing regions in the U.S. This viral disease was con- firmed in Maine (2003), North Dakota (2010), Washington (2011), Idaho (2013), New Mexico (2015) and Colorado (2015). It also is found in production areas of Europe, South America and Asia. Figure 1. Tuber flesh exhibiting arcs, streaks and/or flecks Potato mop-top virus is seed- and soil-borne, and vectored when infected with mop-top virus. Flesh also may become by Spongospora subterranea f. sp. subterranea. It is the rust-colored or tinged with brown. (Owusu Domfeh) causal agent of powdery scab on potato. Once established in fields, powdery scab can survive for up to 18 years in the absence of a potato crop. Potato mop-top virus is of economic importance to potato growers throughout the U.S. because it may affect tuber quality and may be transferred from seed to daughter tubers. The potato mop-top virus is restricted primarily to the Solanaceae and Chenopodiaceae families. In addition to infested fields, PMTV has many other potential hosts, such as eastern black nightshade (Solanum ptycanthum), hairy nightshade (Solanum physalifolium), common lambsquarters (Chenpodium album) and sugar beets (Beta vulgaris).
    [Show full text]
  • Spongospora Subterranea on Potato
    STUDIES ON THE DEVELOPMENT AND MANAGEMENT OF POWDERY SCAB AND ROOT GALL FORMATION CAUSED BY SPONGOSPORA SUBTERRANEA ON POTATO (SOLANUM TUBEROSUM L.) A Dissertation Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Francisco Gabriel Bittara Molina In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Department: Plant Pathology November 2015 Fargo, North Dakota North Dakota State University Graduate School Title Studies on the development and management of powdery scab and root gall formation caused by Spongospora subterranea on potato (Solanum tuberosum L.) By Francisco Gabriel Bittara Molina The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of DOCTOR OF PHILOSOPHY SUPERVISORY COMMITTEE: Dr. Gary A. Secor Co-Chair Dr. Neil C. Gudmestad Co-Chair Dr. Asunta L. Thompson Dr. Luis E. del Rio Mendoza Approved: 11/02/2015 Dr. Jack B. Rasmussen Date Department Chair ABSTRACT The biotroph protozoan Spongospora subterranea causes root gall formation and powdery scab on potato. Symptoms on tubers affect directly the quality and marketability of the harvested product while infection in roots are associated with yield reductions. Moreover, S. subterranea is the vector of the Potato mop-top virus. The management of the disease is difficult due to the limited number of current control options and requires the integration of control measures among which host resistance represents the most economically and long-term approach. This dissertation focuses on the evaluation of management strategies for the control of powdery scab and root gall formation.
    [Show full text]
  • Powdery Scab of Potatoes
    PT303 Epidemiology and control of powdery scab of potatoes Rudolf de Boer and Megan Theodore Agriculture Victoria PT303 This report is published by the Horticultural Research and Development Corporation to pass on information concerning horticultural research and development undertaken for the potato industry. The research contained in this report was funded by the Horticultural Research and Development Corporation with the financial support of the potato industry. All expressions of opinion are not to be regarded as expressing the opinion of the Horticultural Research and Development Corporation or any authority of the Australian Government. The Corporation and the Australian Government accept no responsibility for any of the opinions or the accuracy of the information contained in this report and readers should rely upon their own enquiries in making decisions concerning their own interests. Cover price: $20.00 HRDC ISBN 1 86423 682 5 Published and distributed by: Horticultural Research & Development Corporation Level 6 7 Merriwa Street Gordon NSW 2072 Telephone: (02)9418 2200 Fax: (02)9418 1352 E-Mail: [email protected] © Copyright 1997 HORTICULTURAL RESEARCH & DEVELOPMENT CORPORATION HRDVC Partnership in horticulture The epidemiology and control of powdery scab of potatoes Contents 1. INDUSTRY SUMMARY 2 2. TECHNICAL SUMMARY 3 3. RECOMMENDATIONS 4 4. EXTENSION AND PUBLICATIONS 6 5. ACKNOWLEDGMENTS 7 6. TECHNICAL REPORT 8 6.1 Introduction 8 6.2 Studies on alternative hosts and on the influence of rotation on powdery scab 13 6.2.1 Alternative hosts and their role in the life-cycle of S. subterranea 13 6.2.2 Towards a method of quantifying populations of S.
    [Show full text]
  • Research Collection
    Research Collection Doctoral Thesis Global population genetics of Spongospora subterranea F. SP. subterranea, the plasmodiophorid pathogen causing powdery scab of potato and its impact on disease management Author(s): Gau, Rebecca D. Publication Date: 2012 Permanent Link: https://doi.org/10.3929/ethz-a-007593856 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH No. 20653 GLOBAL POPULATION GENETICS OF SPONGOSPORA SUBTERRANEA F. SP. SUBTERRANEA, THE PLASMODIOPHORID PATHOGEN CAUSING POWDERY SCAB OF POTATO AND ITS IMPACT ON DISEASE MANAGEMENT REBECCA DOROTHEA GAU Zürich, 2012 Diss. ETH No. 20653 GLOBAL POPULATION GENETICS OF SPONGOSPORA SUBTERRANEA F. SP. SUBTERRANEA, THE PLASMODIOPHORID PATHOGEN CAUSING POWDERY SCAB OF POTATO AND ITS IMPACT ON DISEASE MANAGEMENT A dissertation submitted to the ETH ZURICH for the degree of DOCTOR OF SCIENCES presented by REBECCA DOROTHEA GAU MSc in Genome Based Systems Biology, Bielefeld University, Germany Born on December 28th, 1982 Citizen of Germany Accepted on the recommendation of Prof. Dr Bruce A. McDonald, examiner Dr Ueli Merz, co-examiner Prof. Dr Richard E. Falloon, co-examiner Dr Patrick C. Brunner, co-examiner Zürich, 2012 TABLE OF CONTENTS ABSTRACT ................................................................................................................................................ 9 ZUSAMMENFASSUNG...........................................................................................................................
    [Show full text]
  • STUDIES on POWDERY SCAB on POTATO in SOUTH AFRICA By
    STUDIES ON POWDERY SCAB ON POTATO IN SOUTH AFRICA by JESSICA WRIGHT Submitted in partial fulfilment of the requirements for the degree of Magister Scientiae (Agriculture) Plant Pathology In the Faculty of Natural and Agricultural Sciences Department of Microbiology and Plant Pathology University of Pretoria Pretoria November 2012 © University of Pretoria DECLARATION I, Jessica Wright, declare that the thesis, which I hereby submit for the degree Magister Scientiae (Agriculture) Plant Pathology at the University of Pretoria, is my own work and has not previously been submitted by me for a degree at this or any other tertiary institution. Signed: ______________________ Date: ______________________ i ACKNOWLEDGEMENTS The author would like to acknowledge and thank the following: The National Research Foundation and Potatoes South Africa for financial assistance throughout the project Jacquie van der Waals for all her advice, support and motivation throughout my Master’s degree Alison Lees for her guidance in preparing this thesis Charles Wairuri for his knowledge, patience and encouragement regarding the molecular aspects of this thesis Friends and colleagues at Plant Pathology for providing a working atmosphere that was supportive and enjoyable Family, my Mom and Dad for their on going support, understanding, encouragement and love throughout my academic years. To Jaco Liebenberg for his love and understanding when I needed it the most ii Studies on powdery scab on potatoes in South Africa By Jessica Wright Supervisor: Dr. J. E. van der Waals Co-Supervisor: Dr. A.K. Lees Department: Microbiology and Plant Pathology University of Pretoria Degree: Magister Scientiae (Agriculture) Abstract Spongospora subterranea (Wallroth) Lagerheim f.
    [Show full text]
  • Seedborne Transmission of Clubroot
    SeedborneSeedborne TransmissionTransmission ofof ClubrootClubroot ofof CrucifersCrucifers ResearchResearch Team:Team: S.E.S.E. StrelkovStrelkov,, R.J.R.J. HowardHoward andand S.F.S.F. HwangHwang GraduateGraduate Student:Student: D.C.D.C. RennieRennie OutlineOutline ofof PresentationPresentation •• IntroductionIntroduction andand backgroundbackground •• StudyStudy objectivesobjectives •• DetectionDetection ofof seedseed infestationinfestation levels,levels, naturalnatural infestationinfestation ofof seedsseeds andand tuberstubers •• EffectsEffects ofof seedseed cleaningcleaning •• EvaluationEvaluation ofof seedseed treatmentstreatments •• ConclusionsConclusions ClubrootClubroot SpreadSpread •• SoilborneSoilborne pathogenpathogen 7 8 •• MovementMovement ofof infestedinfested 0.169 0.155 soilsoil 6 9 0.296 0.225 – Machinery 150 m 150 m – Soil erosion and water 3 4 2 5 run-off 0.324 0.310 •• PossibilityPossibility forfor 0.394 0.479 transmissiontransmission ofof restingresting 150 m 150 m sporesspores asas seedborneseedborne 1 Field Entrance contaminants?contaminants? 0.901 Frequency of infection SeedborneSeedborne ClubrootClubroot TransmissionTransmission •• ManyMany nonnon--refereedrefereed factfact--sheetssheets && websiteswebsites mentionmention thisthis possibilitypossibility butbut provideprovide nono datadata •• LittleLittle informationinformation availableavailable inin refereedrefereed literatureliterature –– WarneWarne (1943):(1943): introductionintroduction ofof clubrootclubroot toto aa gardengarden onon infestedinfested seedsseeds
    [Show full text]
  • Bacterial and Fungal Diseases of Potato and Their Management
    BACTERIAL AND FUNGAL DISEASES OF POTATO AND THEIR MANAGEMENT Jessica Rupp, Extension Plant Pathology Specialist, Department of Plant Sciences and Plant Pathology Barry Jacobsen, Associate Director and Head, Montana Ag Experiment Stations, Department of Research Centers EB 0225 new January 2017 BACTERIAL DISEASES THE SEED POTATO INDUSTRY IN MONTANA Blackleg 1 Seed potatoes are an important crop in Montana and Aeiral Stem Rot 1 are a crucial quality seed source for potato production Soft Rot 2 across the United States. The cooperation of commercial producers and home gardeners to control diseases of great Ring Rot 2 concern, such as late blight, is essential. Brown Rot 5 Dickeya Blackleg 5 Montana is one of the top five seed-potato producing states. According to the Montana Department of Common Scab 6 Agriculture, the state’s seed potatoes are prized because FUNGAL DISEASES growing areas are somewhat isolated from airborne spores of diseases such as late blight. To protect this industry, Alternaria Brown Spot 6 Montana only allows potatoes that originate in Montana to Early Blight 7 be grown as certified seed, and requires all seed potatoes Late Blight 8 to be inspected at their shipping point. Businesses can Powdery Mildew 9 sell garden seed potatoes from outside Montana, but need to be inspected at the point of shipping and have an Glossary 9 accompanying health certificate. © 2017 The U.S. Department of Agriculture (USDA), Montana State University and Montana State University Extension prohibit discrimination in all of their programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital and family status.
    [Show full text]
  • Powdery Scab and PMTV
    2/23/2021 Management of Powdery Scab and Potato Mop Top Virus Jeff Miller, James Woodhall, and Nora Olsen S pongosporasubterraneasubsp. subterranea(Protozoa) Photo from Ueli Merz Photo from Ueli Merz Photo from Ueli Merz Photo from Ueli Merz 1 2/23/2021 2 2/23/2021 3 2/23/2021 PMTV • Foliar symptoms not associated with primary infection. • Foliar = similar to calico. • Symptoms favored by cool weather. • Tuber = necrotic arcs (may require alternating storage temperatures to develop). – Can look like TRV, PVYntn, internal brown spot • Symptoms increase with time in storage • Can cause external symptoms TRV PMTV Photos courtesy of Jonathan Whitworth Which one is PMTV? TRV? 4 2/23/2021 Photo courtesy of Jonathan Whitworth PMTV Positive 5 2/23/2021 Powdery Scab Disease Cycle • Environmental conditions which favor disease: – Cool, wet soil – 52-65°F – Alternating wet/dry conditions – Excessive soil moisture (especially 3-4 weeks after TI) • Sandy soils and poor drainage more conducive for disease. • Tuber infection typically occurs at tuber initiation. • Very little inoculum required to cause disease. Powdery Scab Management • Longer crop rotation - > 5 years (12 year survival). • Avoid planting in contaminated, poorly drained soils. • Plant disease-free seed in disease-free areas. • Avoid using manure if animals ingested infected tubers. • Plant resistant cultivars. • Carefully manage irrigation water. • Use of fertility, pesticides? Compendium of Potato Diseases, 2nd Ed. Falloon, AJPR (2008) 85:253-260 6 2/23/2021 Effect of Seed on Powdery Scab 25 20 15 10 5 0 Diseased Visually disease free Mini-tubers Trial 1 Trial 2 Tegg et al., 2016, AJPR 93:231-238 Effect of Seed/Soil Inoculum on Powdery Scab Dr.
    [Show full text]
  • Biology and Chemical Ecology of Spongospora Subterranea During Resting Spore Germination
    Biology and Chemical Ecology of Spongospora subterranea During Resting Spore Germination Towards a germinate/exterminate control approach for Spongospora diseases of potato by Mark Angelo O. Balendres BSc in Agriculture, Major in Plant Pathology Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy University of Tasmania, May 5, 2017 Statements and Declarations Statement of Originality This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis. To the best of my knowledge and belief, no material previously published or written by another person, except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. Authority of Access The publishers of the papers (as indicated in next section) hold the copyright for that content, and access to the material should be sought from the respective journals. The remaining non-published content of the thesis is not to be made available for loan or copying for two years following the date this statement was signed. Following that time, the remaining non-published content of the thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968. Mark Angelo O. Balendres University of Tasmania May 5, 2017 i Statement of Co-Authorship and Contribution The following people and institutions contributed to the publication of work undertaken as part of this thesis: Mark Angelo Balendres Tasmanian Institute of Agriculture, UTAS, Australia Calum Rae Wilson Tasmanian Institute of Agriculture, UTAS, Australia Robert Steven Tegg Tasmanian Institute of Agriculture, UTAS, Australia David Scott Nichols Central Science Laboratory, UTAS, Australia Paper 1: Balendres MA, Tegg RS and Wilson CR.
    [Show full text]
  • Metabolic Profiling for Identification of Potential Biomarkers in Potato Tuber Extracts Associated with Tolerance to Spongospora Subterranea F
    Metabolic profiling for identification of potential biomarkers in potato tuber extracts associated with tolerance to Spongospora subterranea f. sp. subterranea infection. By Gontse Kehumile Joyce Modisane Submitted in partial fulfilment of the requirements for the degree Magister Scientiae (M.Sc.) (Specialisation in Biochemistry) In the Faculty of Natural and Agricultural Sciences Department of Biochemistry, Genetics and Microbiology University of Pretoria South Africa Supervisor: Prof Z. Apostolides Co-supervisor: Prof J. van der Waals June 2019 SUBMISSION DECLARATION I, Gontse Kehumile Joyce Modisane declare that the thesis/dissertation, which I hereby submit for the degree at Magister Scientiae (Specialisation in Biochemistry) the University of Pretoria, is my work and has not previously been submitted by me for the degree at this or any other tertiary institution. Signature: Date: i PLAGIARISM DECLARATION Full name: Gontse Kehumile Joyce Modisane Student number: 15056237 Title of the work: Metabolic profiling for identification of potential biomarkers in potato tuber extracts associated with tolerance to Spongospora subterranea f. sp. subterranea infection. Declaration 1. I understand what plagiarism entails and am aware of the University’s policy in this regard. 2. I declare that this Dissertation is my own original work. Where someone else’s work was used (either from a printed source, internet or any other source), due acknowledgement was given, and reference was made according to departmental requirements. 3. I did not make use of another student’s previous work and submit it as my own. 4. I did not allow and will not allow anyone to copy my work with the intention of presenting it as his or her own work.
    [Show full text]
  • Resistance to Powdery Scab in Potato
    Resistance to Powdery Scab in Potato C. R. Brown1, G. Vandemark1, D. Johnson2, Tom Cummings2, Dallas Batchelor3, Jeff Miller4 , Chris Olsen5 D. 1USDA/ARS, Prosser, WA, 2WSU, Pullman, WA, 3Weather Or Not, Pasco, WA, 4Universty of Idaho, Aberdeen, ID, 5Othello, WA. Introduction Powdery scab is a serious disease of potato that is among the most damaging emerging potato pathogens throughout the world. Twenty years ago it was rarity in the Columbia Basin but today it is widespread, damaging and a threat to the profitability of the industry. Flagellated zoospores which swim in soil water constitute a part of the lifecycle. The resting spore, the cystosorus, is very durable, meaning that fields maintain inoculum for up to six years and survive passage through animal digestive tracts. Given good conditions, abundant soil moisture and temperatures at 11-18° C, zoospores from multiple cycles continue the infection process (van de Graaf et al., 2005) throughout the growing season. Unfortunately no soil or plant treatment has an economically beneficial effect on the level of damage. Although the fungus causes damage on the skin of certain varieties, (i.e., Shepody). the tubers of russeted skin varieties are seldom damaged.. Damage is caused, however, by means of root suppression and yield loss in total tonnage and tonnage of large sized tubers. The fungus is also the vector for Potato Mop-Top Virus, a quarantine virus in the United States. Resistance to the fungus could raise the profitability of the potato crop. 1 Figure1. Skin lesions caused by Spongospora subterranea on potato tubers. (Photo credit: Dr. Ueli Merz, Insitute of Plant Sciences, Zurich, Switzerland) Genetic Resistance Relatively little is known about resistance of potato to powdery scab.
    [Show full text]
  • Portable Test Kits for Diagnosing Potato Diseases
    BUL 883 Portable test kits for diagnosing potato diseases by LYNN WOODELL, NORA OLSEN, ALEX KARASEV, JEFF MILLER, MIKE THORNTON, PHILLIP WHARTON and PHILLIP NOLTE INTRODUCTION Overall, the test kits accurately identified the pathogen causing the problem and in some Misdiagnosing a potato disease can be very cases ruled out other potential pathogens. The costly if unnecessary fungicide applications or test kits were relatively easy to use and typically other control measures are implemented. There provided a result within 3 to 5 minutes. are many real-life examples in which proper identification of a disease came only after avoid - These kits will provide an additional tool for able inputs were applied or management prac - greater accuracy, efficiency, and sustainability in tices changed. potato disease management. Due to the poten - tial for false negatives and/or false positives, Identification of samples submitted to a labora - however, it is imperative to have samples subse - tory can take several days to complete. It would quently verified by university personnel or an in - be beneficial for growers, crop consultants, and dependent laboratory. These experts may also extension personnel to have rapid and simple provide management suggestions or input on the disease identification test kits for verifying their situation. initial disease diagnoses in the field. These test kits could also be helpful in eliminating disease misdiagnoses and determining whether the prob - lem is caused by physiological or chemical fac - TEST KIT AVAILABILITY AND SOURCES tors rather than by a pathogen. Sources of kits used in the study were Agdia, Inc., Bioreba AG, and Pocket Diagnostic.
    [Show full text]