Project Number: P18751

Total Page:16

File Type:pdf, Size:1020Kb

Project Number: P18751 Multidisciplinary Senior Design Conference Kate Gleason College of Engineering Rochester Institute of Technology Rochester, New York 14623 Project Number: P18751 RESIDENCY ROTATIONAL SCHEDULING GRAPHICAL USER INTERFACE Taylor Blackwell Daniel Fox Liam Kalir Rochester Institute of Technology Rochester Institute of Technology Rochester Institute of Technology Rochester, NY, USA Rochester, NY, USA Rochester, NY, USA ABSTRACT Chief Residents spend weeks manually creating block schedules for the coming year. Operations research may be used to develop an integer programming model algorithm to solve for these schedules while optimizing some objective(s). Existing forms of this algorithm require commercial software licenses and coding knowledge to use. This paper describes the tools and methodology used to develop a graphical user interface and recode the algorithm using free and open source software. NOMENCLATURE AMPL Algebraic modeling language to describe and solve high-complexity problems for large-scale mathematical computing CPLEX Optimization solver software package from IBM Daemon A background, long-term process that performs some service for other processes Django Python framework for developing web applications GUI User interface that allows users to interact with software through graphical icons and visual indicators Pandas Software library written for Python for data manipulation and analysis Python High level programming language for general purpose computing Pyomo Collection of Python software packages for formulating optimization models Open Source Software for which the original source code is made freely available and may be redistributed and modified Optimization model A type of mathematical model that attempts to optimize (maximize or minimize) an objective function without violating resource constraints Residency Stage of graduate medical training Copyright © 2018 Rochester Institute of Technology Proceedings of the Multidisciplinary Senior Design Conference Page 2 INTRODUCTION Before being able to practice medicine as a doctor, medical students must participate in a medical rotational program for three years. Throughout the program, the students will rotate between the various medical units of a hospital to acquire hands-on experience with the various types of medicine and procedures involved in the field of medicine. This would be incredibly disorganized without some form of schedule to guide the whole process. The scheduling of where each of the residents are in a rotational program is currently done manually with Excel by a group of Chief Residents; this can take them upwards of six months to generate a schedule for the program. In 2016, Dr. Ruben Proaño and Akshit Agarwal wrote a paper detailing an algorithm to reduce the work [1] involved in generating the weekly (block) schedules for the residents in the program .​ An issue with their system ​ was that the developed linear model was written using AMPL and solved using CPLEX which are expensive to license and not user friendly to interact with. Because of this, Dr. Proaño wants to create a system that Chief Residents actually want to use to reduce their scheduling workload for the year. This means that the system needs to be easy and not cost anything to use. The goals of this MSD project were to demonstrate that it is possible to translate the model to a free alternative, create an easy-to-use data entry method, and develop an interface that allows users to just press a few buttons to generate a schedule and then display the results. PROCESS After reviewing the information in the project readiness proposal, the team met with Dr. Proaño to discuss some of the fundamental expectations of the project and his vision for the system. The main takeaways from this meeting were that the system should be capable of handling unique user input rather than the specific set of data that the team was provided and there were concerns raised over whether or not the open source alternatives for CPLEX and AMPL, GLPK and Pyomo respectively, could actually handle the complexity of the problem in a reasonable amount of time. Dr. Proaño also pointed the team to resources the team could reach out to for assistance with the model and connecting with potential end users. The team had developed a list of five people to contact including Dan Ornt M.D. from RIT’s Institute of Health Sciences and Technology, and staff at the Strong Memorial Hospital and Rochester Regional Health. The team proceeded to reach out to these people and using their insights, the team was able to further develop customer requirements. These requirements are shown in Tables 1 and 2. Table 1. Engineering Requirements Engineering Requirement Metric Target Probability of Achieving Target Time to solve time (days) < 2 months High concurrent scheduling tasks boolean Capable of > 1 concurrent task High # of possible alternative schedules quantity 24 High list of supported Linux, MacOS, Windows, Cross platform interface systems Web?, Mobile? Unknown # of user errors while creating schedule quantity 1-2 High Server Uptime percent > 95% Unknown Capable of storing generated Store schedules boolean schedules High Time for user input Time (hours) < 2 months Unknown Cost $$$ $0 High Project P18751 Proceedings of the Multi-Disciplinary Senior Design Conference Page 3 Table 2. Customer requirements Customer Requirement Importance Interview Requirements 9 Open source 9 Easy to use with little training 9 Cross Platform 9 Easy to understand the meaning of inputs 9 Provides schedule(s) 9 Schedules are human readable 9 Collect data for research 3 Schedules are in common format 3 Improve model performance 3 Shift trading for unexpected changes 3 Interface with MedHub 3 Interface with amion/iCal/qgenda 3 Flexible enough to work with many residency programs 3 Ability to give schedule preference to certain residents 3 Ability to update schedule throughout the year 3 Capability to keep the schedule "skeleton" from year to year 1 Data analysis 1 Capability to rank electives 1 Identify where slack is built in the schedule for changes 1 The largest takeaways for the team were that our system needs to be open source and easy to use. DESIGN The majority of the design process was focused on determining which libraries and tools had the capabilities necessary to develop a prototype. There were three main types of libraries to focus on. The first was a web framework that could integrate with Python. The team decided to use Django since the team had the most experience with it, it is Python based and well documented. The Celery library was also included to expand Django’s functionality. Celery is a Python-based asynchronous tasking library that integrates with Django. This allows the website to perform the scheduling calculations without blocking normal operation of the website. For the linear programming language, the team used Pyomo because there were multiple resources for Pyomo help from students and faculty. One of the most influential areas of support was the expansive user guide written by Hart et al.[2] which the team used extensively throughout the development of the prototype. An ​ optimization software package also needed to be selected. The optimization package differs from the programming language in that the programming language just describes the equations while the optimization package actually solves the linear program. Even being restricted to free and open-source solutions, there were several options considered. Ultimately, the team decided on GLPK (Gnu Linear Programming Kit), which is an industry standard library for linear and mixed-integer programming. The final area of focus was what library would be used to import the excel files and use them with Pyomo. The options that were available included: Pyomo’s built-in excel compatibility, SciPy, and Pandas. The team decided to use the Pandas library since it was based off of the R programming language that the team was familiar with. Copyright © 2018 Rochester Institute of Technology Proceedings of the Multidisciplinary Senior Design Conference Page 4 To maintain the code for the project, the team needed to use a version control software. A public Git repository was established on GitHub to host the project’s source code. GitHub is the most popular Git repository host in the world for free and open-source projects, and this project certainly fits the culture of the site. The final prototype consisted of three components: an algorithm model, a software library to manipulate and extract data from the model, and a Django website to serve as an interface between users, the library, and model. Each component interacts with and transfers data with the others. Figure 1 shows a simplified version of how the components interact with each other. Figure 1: High Level System Architecture The model contains the mathematics for the objectives and constraints that define the problem (scheduling a residency block schedule). In Pyomo, this is represented via an abstract model, which means that the mathematics are the same but the numbers that are fed in to the math are flexible, like substituting 1 in for X in Y = 2X2 + 3X + 4. All Pyomo models are constructed by adding objective functions, decision variables, sets, parameters, and constraints to a Python object that represents the model as a whole. Ultimately, the model has a binary decision variable for every combination of person, time, and location. Then the model decides which decision variables are turned “on” or “off.” These equations were based on the algorithm constructed by Dr. Proaño and Agarwal in their research paper. Asynchronous tasking was required to allow schedules to be developed without halting the website’s operation. Meaning that users will be incapable of performing actions while anyone else is currently using the system. While Python supports threading and multitasking natively, using a custom-made solution did not seem worth the effort. Celery is an Python-based asynchronous tasking library that also, conveniently, integrates with Django. Celery operates by creating a daemon process that interacts with a master program via a backend service called a “broker”.
Recommended publications
  • Release 4.2.0 Ask Solem Contributors
    Celery Documentation Release 4.2.0 Ask Solem contributors Jun 10, 2018 Contents 1 Getting Started 3 2 Contents 5 3 Indices and tables 683 Bibliography 685 Python Module Index 687 i ii Celery Documentation, Release 4.2.0 Celery is a simple, flexible, and reliable distributed system to process vast amounts of messages, while providing operations with the tools required to maintain such a system. It’s a task queue with focus on real-time processing, while also supporting task scheduling. Celery has a large and diverse community of users and contributors, you should come join us on IRC or our mailing- list. Celery is Open Source and licensed under the BSD License. Contents 1 Celery Documentation, Release 4.2.0 2 Contents CHAPTER 1 Getting Started • If you’re new to Celery you can get started by following the First Steps with Celery tutorial. • You can also check out the FAQ. 3 Celery Documentation, Release 4.2.0 4 Chapter 1. Getting Started CHAPTER 2 Contents 2.1 Copyright Celery User Manual by Ask Solem Copyright © 2009-2016, Ask Solem. All rights reserved. This material may be copied or distributed only subject to the terms and conditions set forth in the Creative Commons Attribution-ShareAlike 4.0 International <https://creativecommons.org/licenses/by-sa/4.0/ legalcode>‘_ license. You may share and adapt the material, even for commercial purposes, but you must give the original author credit. If you alter, transform, or build upon this work, you may distribute the resulting work only under the same license or a license compatible to this one.
    [Show full text]
  • Ethan Chiu [email protected] | ​ ​ ​ EDUCATION University of California, Berkeley Graduating May 2022 B.A
    Ethan Chiu [email protected] | https://ethanchiu.xyz/ ​ ​ ​ EDUCATION University of California, Berkeley Graduating May 2022 B.A. Computer Science Activities: The Berkeley Group ​ Diablo Valley College June 2017 - May 2018 Dual Enrollment with Wellesley High School GPA: 3.739/4.0 ​ Relevant Coursework: Analytic Geometry/Calculus I, Intro to Programming, Adv Programming with C++, Analytic Geometry/Calculus II, Mech. & ​ Wave Motion, Assembly Lang Prog., Linear Algebra, Analytic Geometry & Calculus III Awards 3rd Place State Award, 2nd Place State Award, & Top 5% of National Teams for CyberPatriot (February 2017, 2016, 2015) ​ Silver Tier for United States Academic Computing Olympiad (December 2016) ​ ​ WORK EXPERIENCE Alpaca | San Mateo, CA June 2018 - Present ​ ​ ​ Software Engineering Intern ● Built CryptoScan which analyzes over 19 cryptocurrencies and identifies bullish and bearish signals over 100 technical analysis rules ​ ​ ● Created a Go plugin that backfills & actively collects cryptocurrency price data for the open-source financial database library MarketStore ​ ​ ​ ● Optimized their algo trading platform by converting Java encryption libraries to Go, improving the performance by 40% ​ ​ Wellesley College | Wellesley, MA September 2015 - May 2018 ​ ​ ​ ​ Researcher under the guidance of Eni Mustafaraj ● Modelled anonymous platforms like the Discord platform using ML & AI techniques w/ Gephi, scikit-learn, and NTLK ​ ● Collected & analyzed millions of Discord messages using Python and its’ libraries such as Pandas, Selenium,
    [Show full text]
  • Absolutely Not Recommended Worker Celery
    Absolutely Not Recommended Worker Celery Pithecoid Cyrille quotes her Kirkcudbright so uproariously that Bryce scandals very legibly. Chocolaty and commissural Tre trephine some wakens so mumblingly! Clair infuriate submissively. With generating income in case you! The celery worker connection timeout among the! However change the celery import uploaded data processing. It absolutely no celery is not with plugin configuration. Greenlets do not worker instance type is recommended if you recommend you have a must try to workers then please let me breakfast as our local. Possess you absolutely love the worker with some emails and also, o possuidor possui potencial de o possuidor possui muito relevante. Web site administrators to celery worker browse the absolute best! Searching through writing due to other writers to be gotten in the continuum is recommended if all of thc cope with the quieter, the bowl of! Saved as not worker is recommended if you are buffeted by the workers may raise how to have! Migrating their absolute right here in celery workers were absolutely start the network connection timeout among the things. If not have absolutely worth comment on top alternatives in? The celery for not their material that much. This celery worker pool and absolutely anything essential for my opinion the absolute best part of a great methods to. You absolutely begin. There an amount of. How to not worker nodes during these suggestions for containers should i recommend in the absolute best. Numerous folks will definitely be running shop on a project from the best places from a robust immune systems. This celery worker should absolutely implement celery.
    [Show full text]
  • Sebastian Witowski
    Python @ CERN Sebastian Witowski CERN – home of the Large Hadron Collider that can spit up to 1 petabyte of collision data per second, impossible for the computing systems to record. The experiments, however, need only a small fraction of “interesting” events. The first-level trigger of ATLAS, for example, selects only 1 in 400 events (making decisions in ~2.5 millionths of a second). These are sent at 160 GB/second to the tens of thousands of processor cores which select 1% of the remaining events for analysis. Even after such drastic data reduction, there are still around 50 petabytes of data produced at CERN per year. How does Python fit in this ecosystem? It might not be fast enough to be used for filtering this amount of data, but nevertheless, there are many great projects created with Python at CERN. + Thousands of scientists every day analyse data produced by the experiments at CERN. SWAN (Service for Web based Analysis) allows scientists to analyse their data in the They need a tool that is based on a flexible and expressive language (like Python), but CERN cloud. It uses Jupyter notebooks as the interface. The users' sessions are also works fast with large amount of data. And this is exactly what PyROOT is – a encapsulated in containers, synchronized and stored via CERNBox (file synchronization Python module that allows users to interact with ROOT (a data analysis framework and sharing service build on top of Owncloud). Large datasets can be accessed on EOS written in C++, that is very popular in High Energy Physics community).
    [Show full text]
  • Invenio-Indexer Documentation Release 1.1.2
    invenio-indexer Documentation Release 1.1.2 CERN Apr 28, 2020 Contents 1 User’s Guide 3 1.1 Installation................................................3 1.2 Configuration...............................................3 1.3 Usage...................................................4 2 API Reference 9 2.1 API Docs.................................................9 3 Additional Notes 15 3.1 Contributing............................................... 15 3.2 Changes................................................. 17 3.3 License.................................................. 17 3.4 Contributors............................................... 18 Python Module Index 19 i ii invenio-indexer Documentation, Release 1.1.2 Record indexer for Invenio. Further documentation is available on https://invenio-indexer.readthedocs.io/ Contents 1 invenio-indexer Documentation, Release 1.1.2 2 Contents CHAPTER 1 User’s Guide This part of the documentation will show you how to get started in using Invenio-Indexer. 1.1 Installation Invenio-Indexer is on PyPI so all you need is: $ pip install invenio-indexer Invenio-Indexer depends on Invenio-Search, Invenio-Records and Celery/Kombu. Requirements Invenio-Indexer requires a message queue in addition to Elasticsearch (Invenio-Search) and a database (Invenio- Records). See Kombu documentation for list of supported message queues (e.g. RabbitMQ): http://kombu. readthedocs.io/en/latest/introduction.html#transport-comparison 1.2 Configuration Record indexer for Invenio. invenio_indexer.config.INDEXER_BEFORE_INDEX_HOOKS
    [Show full text]
  • HPC-ABDS High Performance Computing Enhanced Apache Big Data Stack
    HPC-ABDS High Performance Computing Enhanced Apache Big Data Stack Geoffrey C. Fox, Judy Qiu, Supun Kamburugamuve Shantenu Jha, Andre Luckow School of Informatics and Computing RADICAL Indiana University Rutgers University Bloomington, IN 47408, USA Piscataway, NJ 08854, USA fgcf, xqiu, [email protected] [email protected], [email protected] Abstract—We review the High Performance Computing En- systems as they illustrate key capabilities and often motivate hanced Apache Big Data Stack HPC-ABDS and summarize open source equivalents. the capabilities in 21 identified architecture layers. These The software is broken up into layers so that one can dis- cover Message and Data Protocols, Distributed Coordination, Security & Privacy, Monitoring, Infrastructure Management, cuss software systems in smaller groups. The layers where DevOps, Interoperability, File Systems, Cluster & Resource there is especial opportunity to integrate HPC are colored management, Data Transport, File management, NoSQL, SQL green in figure. We note that data systems that we construct (NewSQL), Extraction Tools, Object-relational mapping, In- from this software can run interoperably on virtualized or memory caching and databases, Inter-process Communication, non-virtualized environments aimed at key scientific data Batch Programming model and Runtime, Stream Processing, High-level Programming, Application Hosting and PaaS, Li- analysis problems. Most of ABDS emphasizes scalability braries and Applications, Workflow and Orchestration. We but not performance and one of our goals is to produce summarize status of these layers focusing on issues of impor- high performance environments. Here there is clear need tance for data analytics. We highlight areas where HPC and for better node performance and support of accelerators like ABDS have good opportunities for integration.
    [Show full text]
  • Final Report Git OSS-Um
    Final Report Git OSS-um Gary Baker Van Steinbrenner Stephen White May 8th, 2019 Project Sponsor: Dr Igor Steinmacher, Assistant professor, SICCS, Northern Arizona University Faculty Mentor: Ana Paula Chaves Steinmacher Version 1.0 Table of Contents Introduction……………………………………………………………………………....2 ​ ​ Process Overview……………………………………………………………………….4 ​ ​ Requirements…………………………………………………………………………....7 ​ ​ 1. Functional…………………………………………………………………………..7 ​ 2. Non-Functional…………………………………………………………………….9 ​ Architecture and Implementation…………………………………………………....10 ​ ​ 1. Submitting a Mining Request…………………………………….………..13 ​ 2. Viewing a Repository…………………………………………………...….14 ​ 3. Comparing Repositories…………………………………………………...16 ​ 4. Filtering Repositories……………………………………………………….17 ​ 5. Celery and RabbitMQ for Asynchronous Collection…………………….19 ​ 6. Storing Information in MongoDB………………………………………….21 ​ 7. Data Pre-Processing & Visualization………………………….…...…….24 ​ 8. Data Pre-Processing…………………………………………….…………24 ​ 9. Visualization………………………………………………………………...24 ​ 10.Scheduling Tasks…………………………………………………………..25 ​ Testing……………………………………………………………………………...…….27 ​ ​ 1. Unit Testing………………………………………………………………...28 ​ 2. Integration Testing………………………………………………………...29 ​ 3. Usability Testing…………………………………………………………...30 ​ Project Timeline…………………………………………………………......................31 ​ ​ Future Work……………………………………………………………………………...33 ​ ​ Conclusion……………………………………………………………………………….34 ​ ​ Glossary………………………………………………………………………………….35 ​ ​ Appendix………………………………………………………………………….……...40 ​ ​ 1 Introduction
    [Show full text]
  • Python Celery
    Python Celery The Distributed Task Queue Mahendra M @mahendra http://creativecommons.org/licenses/by-sa/3.0/ About me ● Solutions Architect at Infosys, Product Incubation Group ● Worked on FOSS for 10 years ● BLUG, FOSS.in (ex) member ● Linux, NetBSD embedded developer ● Mostly Python programmer ● Mostly sticks to server side stuff ● Loves CouchDB and Twisted Job Queues – the need ● More complex systems on the web ● Asynchronous processing is required ● Flickr ± Image resizing ● User profiles ± synchronization ● Asynchronous database updates ● Click counters ● Likes, favourites, recommend How it works Worker 1 2 User 3 Web service Job Queue Worker Placing a request How it works Worker 4 2 User Web service Job Queue 5 6 Worker The job is executed How it works Worker 4 2 User 7 Web service Job Queue 5 8 6 Worker Client fetches the result AMQP ● Advanced Message Queuing Protocol ● Self explanatory :-) ● Open, language agnostic, implementation agnostic ● Transmits messages from producers to consumers ● Immensely popular ● Open source implementations available. AMQP AMQP Queues are bound to exchanges to determine message delivery ● Direct - From Exchange to Queue ● Topic - Queue is selected based on a topic ● Fanout ± All queues are selected ● Headers ± based on message headers AMQP as a job queue ● AMQP structure is similar to our job queue design ● Jobs are sent as messages ● Job results are sent back as messages ● Celery Framework simplifies this for us Python Celery ● Python based distributed task queue built on top of message queues ● Very robust, good error handling, guaranteed ... ● Distributed (across machines) ● Concurrent within a box ● Supports job scheduling (eta, cron, date, ¼) ● Synchronous and asynchronous operations ● Retries and task grouping Python Celery ..
    [Show full text]
  • Keoni Murray Software Engineer
    KEONI MURRAY SOFTWARE ENGINEER SUMMARY EMPLOYMENT Data Engineer with Fullstack Experience Tonik Ads San Francisco Data Engineer Contract · Sept. 2019 to Current CONTACT Architected Data pipeline infrastructure to support ingesting real time social media data for social media ad targeting Built a distributed web scraper using Selenium, Docker Swarm, & Kafka Develop model for Keyword extraction, and to find the frequency of words [email protected] linkedin.com/in/keonimurray99/ Worked with ML engineer on development on a ML model to generate interest for ad targeting 8048734089 San Francisco, CA Lazy Lantern Remote EDUCATION Data Engineer · Nov. 2019 to Feb. 2020 Rearchitected Data pipeline infrastructure to scale with new customers by moving Dominican University Of California · Aug. 2017 to Current from batch jobs in airflow to Kafka streams BS Computer Science 2020 Migrated data warehouse from a cluster Postgresql servers to Google Big Query Built a realtime analytics dashboard for customers using react-vis and Node.js & Y-Combinator(Startup school) · June 2019 to Sept. 2019 socket.io Participated in Startup School with my project AnimeXp. After completing the program we were able to increase our user growth and retention by 5x Spontit Remote Backend/DataEngineer · Sept. 2020 to Dec. 2020 SKILLS Built Backend Server using Node.js and socket.io to support real time geolocation data LANGUAGES: Python, Javascript, Golang Managed cluster of MongoDB server on Digital Ocean FRAMEWORKS: Node.js/Express, Flask, Golang Echo, Django,
    [Show full text]
  • Celery-Rabbitmq Documentation Release 1.0
    Celery-RabbitMQ Documentation Release 1.0 sivabalan May 31, 2015 Contents 1 About 3 1.1 Get it...................................................3 1.2 Downloading and installing from source.................................3 1.3 Using the development version.....................................3 2 Choosing the Broker 5 2.1 RabbitMQ................................................5 3 Application 7 3.1 Creating Task...............................................7 4 Running the celery worker server9 5 Calling the task 11 5.1 Options.................................................. 11 6 Configuration 13 7 The Primitives 15 7.1 Group................................................... 15 7.2 Chains.................................................. 15 7.3 Chord................................................... 16 8 Routing 17 9 Remote Control 19 10 Indices and tables 21 i ii Celery-RabbitMQ Documentation, Release 1.0 Contents: Contents 1 Celery-RabbitMQ Documentation, Release 1.0 2 Contents CHAPTER 1 About Celery is an asynchronous task queue/job queue based on distributed message passing. It is focused on real-time operation and supports scheduling as well. The execution units, called tasks, are executed concurrently on a single or more worker servers using multiprocessing. 1.1 Get it You can install Celery either via the Python Package Index (PyPI) or from source. To install using pip: $ pip install Celery To install using easy_install: $ easy_install Celery 1.2 Downloading and installing from source Download the latest version of Celery from http://pypi.python.org/pypi/celery/ You can install it by doing the following: $ tar xvfz celery-0.0.0.tar.gz $ cd celery-0.0.0 $ python setup.py build # python setup.py install # as root 1.3 Using the development version You can clone the repository by doing the following: $ git clone git://github.com/celery/celery.git 3 Celery-RabbitMQ Documentation, Release 1.0 4 Chapter 1.
    [Show full text]
  • Author Guidelines for 8
    THE CEOS DATA CUBE PORTAL: A USER-FRIENDLY, OPEN SOURCE SOFTWARE SOLUTION FOR THE DISTRIBUTION, EXPLORATION, ANALYSIS, AND VISUALIZATION OF ANALYSIS READY DATA 1Syed R Rizvi, 2Brian Killough, 1Andrew Cherry, 1Sanjay Gowda 1Analytical Mechanics Associates, Hampton, VA 2NASA Langley Research Center, Hampton, VA ABSTRACT through remote sensing and observation of Earth from space. Forest preservation initiatives, carbon measurement There is an urgent need to increase the capacity of initiatives, water management, agricultural monitoring, and developing countries to take part in the study and monitoring urbanization studies are just a few examples of causes that of their environments through remote sensing and space- can benefit greatly from remote sensing data. Currently, based Earth observation technologies. The Open Data Cube however, many developing nations lack the in-country (ODC) provides a mechanism for efficient storage and a expertise and computational infrastructure to utilize remote powerful framework for processing and analyzing satellite sensing data. data. While this is ideal for scientific research, the The CEOS SEO has played an important role in building expansive feature space can also be daunting for end-users software products and tools that leverage the group’s and decision-makers who simply require a solution which extensive experience with space imaging systems and data provides easy exploration, analysis, and visualization of products to provide significant and far-reaching capabilities Analysis Ready Data (ARD). Utilizing innovative web- to government stakeholders and scientific researchers. One design and a modular architecture, the Committee on Earth such example is its support of the Open Data Cube (ODC) Observation Satellites (CEOS) has created a web-based user initiative to provide a data architecture solution that has interface (UI) which harnesses the power of the ODC yet value to its global users and increases the impact of Earth provides a simple and familiar user experience: the CEOS Observation (EO) satellite data [1-2].
    [Show full text]
  • Cloudcv: Large Scale Distributed Computer Vision As a Cloud Service
    CloudCV: Large Scale Distributed Computer Vision as a Cloud Service Harsh Agrawal, Clint Solomon Mathialagan, Yash Goyal, Neelima Chavali, Prakriti Banik, Akrit Mohapatra, Ahmed Osman, Dhruv Batra Abstract We are witnessing a proliferation of massive visual data. Unfortunately scaling existing computer vision algorithms to large datasets leaves researchers re- peatedly solving the same algorithmic, logistical, and infrastructural problems. Our goal is to democratize computer vision; one should not have to be a computer vi- sion, big data and distributed computing expert to have access to state-of-the-art distributed computer vision algorithms. We present CloudCV, a comprehensive sys- tem to provide access to state-of-the-art distributed computer vision algorithms as a cloud service through a Web Interface and APIs. Harsh Agrawal Virginia Tech, e-mail: [email protected] Clint Solomon Mathialagan Virginia Tech e-mail: [email protected] Yash Goyal Virginia Tech e-mail: [email protected] Neelima Chavali Virginia Tech e-mail: [email protected] Prakriti Banik arXiv:1506.04130v3 [cs.CV] 13 Feb 2017 Virginia Tech e-mail: [email protected] Akrit Mohapatra Virginia Tech e-mail: [email protected] Ahmed Osman Imperial College London e-mail: [email protected] Dhruv Batra Virginia Tech e-mail: [email protected] 1 2 Agrawal, Mathialagan, Goyal, Chavali, Banik, Mohapatra, Osman, Batra 1 Introduction A recent World Economic Form report [18] and a New York Times article [38] de- clared data to be a new class of economic asset, like currency or gold. Visual content is arguably the fastest growing data on the web. Photo-sharing websites like Flickr and Facebook now host more than 6 and 90 Billion photos (respectively).
    [Show full text]