HPC-ABDS High Performance Computing Enhanced Apache Big Data Stack
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Apache Flink™: Stream and Batch Processing in a Single Engine
Apache Flink™: Stream and Batch Processing in a Single Engine Paris Carboney Stephan Ewenz Seif Haridiy Asterios Katsifodimos* Volker Markl* Kostas Tzoumasz yKTH & SICS Sweden zdata Artisans *TU Berlin & DFKI parisc,[email protected] fi[email protected] fi[email protected] Abstract Apache Flink1 is an open-source system for processing streaming and batch data. Flink is built on the philosophy that many classes of data processing applications, including real-time analytics, continu- ous data pipelines, historic data processing (batch), and iterative algorithms (machine learning, graph analysis) can be expressed and executed as pipelined fault-tolerant dataflows. In this paper, we present Flink’s architecture and expand on how a (seemingly diverse) set of use cases can be unified under a single execution model. 1 Introduction Data-stream processing (e.g., as exemplified by complex event processing systems) and static (batch) data pro- cessing (e.g., as exemplified by MPP databases and Hadoop) were traditionally considered as two very different types of applications. They were programmed using different programming models and APIs, and were exe- cuted by different systems (e.g., dedicated streaming systems such as Apache Storm, IBM Infosphere Streams, Microsoft StreamInsight, or Streambase versus relational databases or execution engines for Hadoop, including Apache Spark and Apache Drill). Traditionally, batch data analysis made up for the lion’s share of the use cases, data sizes, and market, while streaming data analysis mostly served specialized applications. It is becoming more and more apparent, however, that a huge number of today’s large-scale data processing use cases handle data that is, in reality, produced continuously over time. -
Administration and Configuration Guide
Red Hat JBoss Data Virtualization 6.4 Administration and Configuration Guide This guide is for administrators. Last Updated: 2018-09-26 Red Hat JBoss Data Virtualization 6.4 Administration and Configuration Guide This guide is for administrators. Red Hat Customer Content Services Legal Notice Copyright © 2018 Red Hat, Inc. This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0 Unported License. If you distribute this document, or a modified version of it, you must provide attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat trademarks must be removed. Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries. Linux ® is the registered trademark of Linus Torvalds in the United States and other countries. Java ® is a registered trademark of Oracle and/or its affiliates. XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries. MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and other countries. Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to or endorsed by the official Joyent Node.js open source or commercial project. -
Oracle Metadata Management V12.2.1.3.0 New Features Overview
An Oracle White Paper October 12 th , 2018 Oracle Metadata Management v12.2.1.3.0 New Features Overview Oracle Metadata Management version 12.2.1.3.0 – October 12 th , 2018 New Features Overview Disclaimer This document is for informational purposes. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described in this document remains at the sole discretion of Oracle. This document in any form, software or printed matter, contains proprietary information that is the exclusive property of Oracle. This document and information contained herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part of your license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates. 1 Oracle Metadata Management version 12.2.1.3.0 – October 12 th , 2018 New Features Overview Table of Contents Executive Overview ............................................................................ 3 Oracle Metadata Management 12.2.1.3.0 .......................................... 4 METADATA MANAGER VS METADATA EXPLORER UI .............. 4 METADATA HOME PAGES ........................................................... 5 METADATA QUICK ACCESS ........................................................ 6 METADATA REPORTING ............................................................. -
Apache Log4j 2 V
...................................................................................................................................... Apache Log4j 2 v. 2.4.1 User's Guide ...................................................................................................................................... The Apache Software Foundation 2015-10-08 T a b l e o f C o n t e n t s i Table of Contents ....................................................................................................................................... 1. Table of Contents . i 2. Introduction . 1 3. Architecture . 3 4. Log4j 1.x Migration . 10 5. API . 16 6. Configuration . 19 7. Web Applications and JSPs . 50 8. Plugins . 58 9. Lookups . 62 10. Appenders . 70 11. Layouts . 128 12. Filters . 154 13. Async Loggers . 167 14. JMX . 181 15. Logging Separation . 188 16. Extending Log4j . 190 17. Programmatic Log4j Configuration . 198 18. Custom Log Levels . 204 © 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D . T a b l e o f C o n t e n t s ii © 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D . 1 I n t r o d u c t i o n 1 1 Introduction ....................................................................................................................................... 1.1 Welcome to Log4j 2! 1.1.1 Introduction Almost every large application includes its own logging or tracing API. In conformance with this rule, the E.U. -
Apache Sentry
Apache Sentry Prasad Mujumdar [email protected] [email protected] Agenda ● Various aspects of data security ● Apache Sentry for authorization ● Key concepts of Apache Sentry ● Sentry features ● Sentry architecture ● Integration with Hadoop ecosystem ● Sentry administration ● Future plans ● Demo ● Questions Who am I • Software engineer at Cloudera • Committer and PPMC member of Apache Sentry • also for Apache Hive and Apache Flume • Part of the the original team that started Sentry work Aspects of security Perimeter Access Visibility Data Authentication Authorization Audit, Lineage Encryption, what user can do data origin, usage Kerberos, LDAP/AD Masking with data Data access Access ● Provide user access to data Authorization ● Manage access policies what user can do ● Provide role based access with data Agenda ● Various aspects of data security ● Apache Sentry for authorization ● Key concepts of Apache Sentry ● Sentry features ● Sentry architecture ● Integration with Hadoop ecosystem ● Sentry administration ● Future plans ● Demo ● Questions Apache Sentry (Incubating) Unified Authorization module for Hadoop Unlocks Key RBAC Requirements Secure, fine-grained, role-based authorization Multi-tenant administration Enforce a common set of policies across multiple data access path in Hadoop. Key Capabilities of Sentry Fine-Grained Authorization Permissions on object hierarchie. Eg, Database, Table, Columns Role-Based Authorization Support for role templetes to manage authorization for a large set of users and data objects Multi Tanent Administration -
Apache Oozie Apache Oozie Get a Solid Grounding in Apache Oozie, the Workflow Scheduler System for “In This Book, the Managing Hadoop Jobs
Apache Oozie Apache Oozie Apache Get a solid grounding in Apache Oozie, the workflow scheduler system for “In this book, the managing Hadoop jobs. In this hands-on guide, two experienced Hadoop authors have striven for practitioners walk you through the intricacies of this powerful and flexible platform, with numerous examples and real-world use cases. practicality, focusing on Once you set up your Oozie server, you’ll dive into techniques for writing the concepts, principles, and coordinating workflows, and learn how to write complex data pipelines. tips, and tricks that Advanced topics show you how to handle shared libraries in Oozie, as well developers need to get as how to implement and manage Oozie’s security capabilities. the most out of Oozie. ■ Install and confgure an Oozie server, and get an overview of A volume such as this is basic concepts long overdue. Developers ■ Journey through the world of writing and confguring will get a lot more out of workfows the Hadoop ecosystem ■ Learn how the Oozie coordinator schedules and executes by reading it.” workfows based on triggers —Raymie Stata ■ Understand how Oozie manages data dependencies CEO, Altiscale ■ Use Oozie bundles to package several coordinator apps into Oozie simplifies a data pipeline “ the managing and ■ Learn about security features and shared library management automating of complex ■ Implement custom extensions and write your own EL functions and actions Hadoop workloads. ■ Debug workfows and manage Oozie’s operational details This greatly benefits Apache both developers and Mohammad Kamrul Islam works as a Staff Software Engineer in the data operators alike.” engineering team at Uber. -
Is a SPARQL Endpoint a Good Way to Manage Nursing Documentation
Is a SPARQL Endpoint a Good way to Manage Nursing Documentation Is a SPARQL Endpoint a good way to Manage Nursing Documentation by Muhammad Aslam Supervisor: Associate Professor Jan Pettersen Nytun Project report for Master Thesis in Information & Communication Technology IKT 590 in Spring 2014 University of Agder Faculty of Engineering and Science Grimstad, 2 June 2014 Status: Final Keywords: Semantic Web, Ontology, Jena, SPARQL, Triple Store, Relational Database Page 1 of 86 Is a SPARQL Endpoint a Good way to Manage Nursing Documentation Abstract. In Semantic Web there are different technologies available, among these technologies ontologies are considered a basic technology to promote semantic management and activities. An ontology is capable to exhibits a common, shareable and reusable view of a specific application domain, and they give meaning to information structures that are exchanged by information systems [63]. In this project our main goal is to develop an application that helps to store and manage the patient related clinical data. For this reason first we made an ontology, in ontology we add some patient related records. After that we made a Java application in which we read this ontology by the help of Jena. Then we checked this application with some other database solutions such as Triple Store (Jena TDB) and Relational database (Jena SDB). After that we performed SPARQL Queries to get results that reads from databases we have used, on the basis of results that we received after performing SPARQL Queries, we made an analysis on the performance and efficiency of databases. In these results we found that Triple Stores (Jena TDB) have capabilities to response very fast among other databases. -
Flexible and Integrated Resource Management for Iaas Cloud Environments Based on Programmability
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE INFORMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO JULIANO ARAUJO WICKBOLDT Flexible and Integrated Resource Management for IaaS Cloud Environments based on Programmability Thesis presented in partial fulfillment of the requirements for the degree of Doctor of Computer Science Advisor: Prof. Dr. Lisandro Z. Granville Porto Alegre December 2015 CIP — CATALOGING-IN-PUBLICATION Wickboldt, Juliano Araujo Flexible and Integrated Resource Management for IaaS Cloud Environments based on Programmability / Juliano Araujo Wick- boldt. – Porto Alegre: PPGC da UFRGS, 2015. 125 f.: il. Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul. Programa de Pós-Graduação em Computação, Porto Alegre, BR– RS, 2015. Advisor: Lisandro Z. Granville. 1. Cloud Computing. 2. Cloud Networking. 3. Resource Man- agement. I. Granville, Lisandro Z.. II. Título. UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL Reitor: Prof. Carlos Alexandre Netto Vice-Reitor: Prof. Rui Vicente Oppermann Pró-Reitor de Pós-Graduação: Prof. Vladimir Pinheiro do Nascimento Diretor do Instituto de Informática: Prof. Luis da Cunha Lamb Coordenador do PPGC: Prof. Luigi Carro Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro “Life is like riding a bicycle. To keep your balance you must keep moving.” —ALBERT EINSTEIN ACKNOWLEDGMENTS First of all, I would like to thank my parents and brother for the unconditional support and example of determination and perseverance they have always been for me. I am aware that time has been short and joyful moments sporadic, but if today I am taking one more step ahead this is due to the fact that you always believed in my potential and encourage me to move on. -
Synthesis and Development of a Big Data Architecture for the Management of Radar Measurement Data
1 Faculty of Electrical Engineering, Mathematics & Computer Science Synthesis and Development of a Big Data architecture for the management of radar measurement data Alex Aalbertsberg Master of Science Thesis November 2018 Supervisors: dr. ir. Maurice van Keulen (University of Twente) prof. dr. ir. Mehmet Aks¸it (University of Twente) dr. Doina Bucur (University of Twente) ir. Ronny Harmanny (Thales) University of Twente P.O. Box 217 7500 AE Enschede The Netherlands Approval Internship report/Thesis of: …………………………………………………………………………………………………………Alexander P. Aalbertsberg Title: …………………………………………………………………………………………Synthesis and Development of a Big Data architecture for the management of radar measurement data Educational institution: ………………………………………………………………………………..University of Twente Internship/Graduation period:…………………………………………………………………………..2017-2018 Location/Department:.…………………………………………………………………………………435 Advanced Development, Delft Thales Supervisor:……………………………………………………………………………R. I. A. Harmanny This report (both the paper and electronic version) has been read and commented on by the supervisor of Thales Netherlands B.V. In doing so, the supervisor has reviewed the contents and considering their sensitivity, also information included therein such as floor plans, technical specifications, commercial confidential information and organizational charts that contain names. Based on this, the supervisor has decided the following: o This report is publicly available (Open). Any defence may take place publicly and the report may be included in public libraries and/or published in knowledge bases. • o This report and/or a summary thereof is publicly available to a limited extent (Thales Group Internal). tors . It will be read and reviewed exclusively by teachers and if necessary by members of the examination board or review ? committee. The content will be kept confidential and not disseminated through publication or inclusion in public libraries and/or knowledge bases. -
Deliverable No. 5.3 Techniques to Build the Cloud Infrastructure Available to the Community
Deliverable No. 5.3 Techniques to build the cloud infrastructure available to the community Grant Agreement No.: 600841 Deliverable No.: D5.3 Deliverable Name: Techniques to build the cloud infrastructure available to the community Contractual Submission Date: 31/03/2015 Actual Submission Date: 31/03/2015 Dissemination Level PU Public X PP Restricted to other programme participants (including the Commission Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) Grant Agreement no. 600841 D5.3 – Techniques to build the cloud infrastructure available to the community COVER AND CONTROL PAGE OF DOCUMENT Project Acronym: CHIC Project Full Name: Computational Horizons In Cancer (CHIC): Developing Meta- and Hyper-Multiscale Models and Repositories for In Silico Oncology Deliverable No.: D5.3 Document name: Techniques to build the cloud infrastructure available to the community Nature (R, P, D, O)1 R Dissemination Level (PU, PP, PU RE, CO)2 Version: 1.0 Actual Submission Date: 31/03/2015 Editor: Manolis Tsiknakis Institution: FORTH E-Mail: [email protected] ABSTRACT: This deliverable reports on the technologies, techniques and configuration needed to install, configure, maintain and run a private cloud infrastructure for productive usage. KEYWORD LIST: Cloud infrastructure, OpenStack, Eucalyptus, CloudStack, VMware vSphere, virtualization, computation, storage, security, architecture. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 600841. The author is solely responsible for its content, it does not represent the opinion of the European Community and the Community is not responsible for any use that might be made of data appearing therein. -
Cómo Citar El Artículo Número Completo Más Información Del
DYNA ISSN: 0012-7353 Universidad Nacional de Colombia Iván-Herrera-Herrera, Nelson; Luján-Mora, Sergio; Gómez-Torres, Estevan Ricardo Integración de herramientas para la toma de decisiones en la congestión vehicular DYNA, vol. 85, núm. 205, 2018, Abril-Junio, pp. 363-370 Universidad Nacional de Colombia DOI: https://doi.org/10.15446/dyna.v85n205.67745 Disponible en: https://www.redalyc.org/articulo.oa?id=49657889045 Cómo citar el artículo Número completo Sistema de Información Científica Redalyc Más información del artículo Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Integration of tools for decision making in vehicular congestion• Nelson Iván-Herrera-Herreraa, Sergio Luján-Morab & Estevan Ricardo Gómez-Torres a a Facultad de Ciencias de la Ingeniería e Industrias, Universidad Tecnológica Equinoccial, Quito, Ecuador. [email protected], [email protected] b Departamento de Lenguajes y Sistemas Informáticos, Universidad de Alicante, Alicante, España. [email protected] Received: September 15th, 2017. Received in revised form: March 15th, 2018. Accepted: March 21th, 2018. Abstract The purpose of this study is to present an analysis of the use and integration of technological tools that help decision making in situations of vehicular congestion. The city of Quito-Ecuador is considered as a case study for the done work. The research is presented according to the development of an application, using Big Data tools (Apache Flume, Apache Hadoop, Apache Pig), favoring the processing of a lot of information that is required to collect, store and process. -
Evaluation of SPARQL Queries on Apache Flink
applied sciences Article SPARQL2Flink: Evaluation of SPARQL Queries on Apache Flink Oscar Ceballos 1 , Carlos Alberto Ramírez Restrepo 2 , María Constanza Pabón 2 , Andres M. Castillo 1,* and Oscar Corcho 3 1 Escuela de Ingeniería de Sistemas y Computación, Universidad del Valle, Ciudad Universitaria Meléndez Calle 13 No. 100-00, Cali 760032, Colombia; [email protected] 2 Departamento de Electrónica y Ciencias de la Computación, Pontificia Universidad Javeriana Cali, Calle 18 No. 118-250, Cali 760031, Colombia; [email protected] (C.A.R.R.); [email protected] (M.C.P.) 3 Ontology Engineering Group, Universidad Politécnica de Madrid, Campus de Montegancedo, Boadilla del Monte, 28660 Madrid, Spain; ocorcho@fi.upm.es * Correspondence: [email protected] Abstract: Existing SPARQL query engines and triple stores are continuously improved to handle more massive datasets. Several approaches have been developed in this context proposing the storage and querying of RDF data in a distributed fashion, mainly using the MapReduce Programming Model and Hadoop-based ecosystems. New trends in Big Data technologies have also emerged (e.g., Apache Spark, Apache Flink); they use distributed in-memory processing and promise to deliver higher data processing performance. In this paper, we present a formal interpretation of some PACT transformations implemented in the Apache Flink DataSet API. We use this formalization to provide a mapping to translate a SPARQL query to a Flink program. The mapping was implemented in a prototype used to determine the correctness and performance of the solution. The source code of the Citation: Ceballos, O.; Ramírez project is available in Github under the MIT license.