Plate Tectonics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TO BE DONE in BOOK} A
CLASS6 DATE: 16.05.2020 CHAPTER 2. LANDFORMS EXERCISE WITH QUESTION ANSWERS AND MAP WORK. 1. TICK THE RIGHT OPTION {TO BE DONE IN BOOK} a. Aravallis. b. Intermontane plateau. c. Faulting. d. Deposition. 2. FILL IN THE BLANKS {TO BE DONE IN BOOK} a. Pointed. b. Minerals. c. Fault zone. d. Old fold. 3. Differentiate between: {TO BE DONE IN NOTEBOOK} a. Old Fold Mountain Young Fold Mountain These mountains have been subjected to the They are newly formed and having forces of denudation for a long geological heights higher than old fold mountain. period. They are much lower with rounded peaks They have pointed peaks, steeper and and gentle slopes. deeper slopes. Eg: Aravalli in India. Eg: The Himalayas in India. b. Rift Valley Block mountain The lowland mass remaining after the The uplifted land mass remaining after faulting are known as Rift valley. the faulting are known as Block mountains It is bordered by fault zones and separated Block mountains are steep sided and flat by land masses. topped. Eg: Great Rift Valley of Africa. Eg: Vindhyas in India. c. Erosional Plains Depositional Plains This type of plains are formed as result of It is formed as a result of deposition of erosion and weathering. sediments. These plains have been flattened by the These plains are made by depositing the erosion of soil and rocks away from a soil and rocks on a lower surface. higher feature. Eg:- Upper Mississippi valley of USA. Eg:- The Indo-Gangetic Plains in India. d. Intermontane Plateaus Piedmont Plateaus They are the highest and the most extensive They are relatively low rolling hills with type. -
The East African Rift System in the Light of KRISP 90
ELSEVIER Tectonophysics 236 (1994) 465-483 The East African rift system in the light of KRISP 90 G.R. Keller a, C. Prodehl b, J. Mechie b,l, K. Fuchs b, M.A. Khan ‘, P.K.H. Maguire ‘, W.D. Mooney d, U. Achauer e, P.M. Davis f, R.P. Meyer g, L.W. Braile h, 1.0. Nyambok i, G.A. Thompson J a Department of Geological Sciences, University of Texas at El Paso, El Paso, TX 79968-0555, USA b Geophysikalisches Institut, Universitdt Karlwuhe, Hertzstrasse 16, D-76187Karlsruhe, Germany ’ Department of Geology, University of Leicester, University Road, Leicester LEl 7RH, UK d U.S. Geological Survey, Office of Earthquake Research, 345 Middlefield Road, Menlo Park, CA 94025, USA ’ Institut de Physique du Globe, Universite’ de Strasbourg, 5 Rue Ret& Descartes, F-67084 Strasbourg, France ‘Department of Earth and Space Sciences, University of California at Los Angeles, Los Angeles, CA 90024, USA ’ Department of Geology and Geophysics, University of Wuconsin at Madison, Madison, WI 53706, USA h Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN 47907, USA i Department of Geology, University of Nairobi, P.O. Box 14576, Nairobi, Kenya ’ Department of Geophysics, Stanford University, Stanford, CA 94305, USA Received 21 September 1992; accepted 8 November 1993 Abstract On the basis of a test experiment in 1985 (KRISP 85) an integrated seismic-refraction/ teleseismic survey (KRISP 90) was undertaken to study the deep structure beneath the Kenya rift down to depths of NO-150 km. This paper summarizes the highlights of KRISP 90 as reported in this volume and discusses their broad implications as well as the structure of the Kenya rift in the general framework of other continental rifts. -
Africa-Arabia-Eurasia Plate Interactions and Implications for the Dynamics of Mediterranean Subduction and Red Sea Rifting
This page added by the GeoPRISMS office. Africa-Arabia-Eurasia plate interactions and implications for the dynamics of Mediterranean subduction and Red Sea rifting Authors: R. Reilinger, B. Hager, L. Royden, C. Burchfiel, R. Van der Hilst Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA USA, [email protected], Tel: (617)253 -7860 This page added by the GeoPRISMS office. Our proposed GeoPRISMS Initiative is based on the premise that understanding the mechanics of plate motions (i.e., the force balance on the plates) is necessary to develop realistic models for plate interactions, including processes at subduction and extensional (rifting) plate boundaries. Important advances are being made with new geologic and geophysical techniques and observations that are providing fundamental insights into the dynamics of these plate tectonic processes. Our proposed research addresses directly the following questions identified in the GeoPRISMS SCD Draft Science Plan: 4.2 (How does deformation across the subduction plate boundary evolve in space and time, through the seismic cycle and beyond?), 4.6 (What are the physical and chemical conditions that control subduction zone initiation and the development of mature arc systems?), and 4.7 (What are the critical feedbacks between surface processes and subduction zone mechanics and dynamics?). It has long been recognized that the Greater Mediterranean region provides a natural laboratory to study a wide range of geodynamic processes (Figure 1) including ocean subduction and continent- continent collision (Hellenic arc, Arabia-Eurasia collision), lithospheric delamination (E Turkey High Plateau, Alboran Sea/High Atlas), back-arc extension (Mediterranean basins, including Alboran, Central Mediterranean, Aegean), “escape” tectonics and associated continental transform faulting (Anatolia, North and East Anatolian faults), and active continental and ocean rifting (East African and northern Red Sea rifting, central Red Sea and Gulf of Aden young ocean rifting). -
Mountains Block Mountains
Mountains Block Mountains • Block mountains are created when large areas or blocks of earth are broken and displaced vertically. • The uplifted blocks are termed as horsts and the lowered blocks are called graben. • Block mountains are also called fault block mountains since they are formed due to faulting as a result of tensile and compressive forces. • Block mountains are surrounded by faults on either side of rift valleys or grabens. • The Great African Rift Valley (valley floor is graben), The Rhine Valley and the Vosges mountain in Europe are examples. Compression and Tension • When the earth’s crust bends folding occurs, but when it cracks, faulting takes place. • The faulted edges are very steep, e.g. the Vosges and Black Forest of the Rhineland. • Tension may also cause the central portion to be let down between two adjacent fault blocks forming a graben or rift valley, which will have steep walls. • The East African Rift Valley system is the best example. It is 3,000 miles long, stretching from East Africa through the Red Sea to Syria. • Compressional forces set up by earth movements may produce a thrust or reverse fault and shorten the crust. A block may be raised or lowered in relation to surrounding areas. • In general large-scale block mountains and rift valleys are due to tension rather than compression. • The faults may occur in series and be further complicated by tilting and other irregularities. • Denudation through the ages modifies faulted landforms. • Block mountains may originate when the middle block moves downward and becomes a rift valley while the surrounding blocks stand higher as block mountains. -
The Central Asia Collision Zone: Numerical Modelling of the Lithospheric Structure and the Present-Day Kinematics
Th e Central Asia collision zone: numerical modelling of the lithospheric structure and the present - day kinematics Lavinia Tunini A questa tesi doctoral està subjecta a l a llicència Reconeixement - NoComercial – SenseObraDerivada 3.0. Espanya de Creative Commons . Esta tesis doctoral está sujeta a la licencia Reconocimiento - NoComercial – SinObraDerivada 3.0. España de Creative Commons . Th is doctoral thesis is license d under the Creative Commons Attribution - NonCommercial - NoDerivs 3.0. Spain License . The Central Asia collision zone: numerical modelling of the lithospheric structure and the present-day kinematics Ph.D. thesis presented at the Faculty of Geology of the University of Barcelona to obtain the Degree of Doctor in Earth Sciences Ph.D. student: Lavinia Tunini 1 Supervisors: Tutor: Dra. Ivone Jiménez-Munt 1 Prof. Dr. Juan José Ledo Fernández 2 Prof. Dr. Manel Fernàndez Ortiga 1 1 Institute of Earth Sciences Jaume Almera 2 Department of Geodynamics and Geophysics of the University of Barcelona This thesis has been prepared at the Institute of Earth Sciences Jaume Almera Consejo Superior de Investigaciones Científicas (CSIC) March 2015 Alla mia famiglia La natura non ha fretta, eppure tutto si realizza. – Lao Tzu Agradecimientos En mano tenéis un trabajo de casi 4 años, 173 páginas que no hubieran podido salir a luz sin el apoyo de quienes me han ayudado durante este camino, permitiendo acabar la Tesis antes que la Tesis acabase conmigo. En primer lugar quiero agradecer mis directores de tesis, Ivone Jiménez-Munt y Manel Fernàndez. Gracias por haberme dado la oportunidad de entrar en el proyecto ATIZA, de aprender de la modelización numérica, de participar a múltiples congresos y presentaciones, y, mientras, compartir unas cervezas. -
South African Great Escarpment
Sentinel Vision EVT-227 South African Great Escarpment 19 April 2018 Sentinel-1 CSAR IW acquired on 30 August 2017 from 17:17:27 to 17:18:42 UTC Sentinel-2 MSI acquired on 03 September 2017 at 08:19:59 UTC ... Se ntinel-1 CSAR IW acquired on 08 September 2017 from 16:53:05 to 16:53:30 UTC Sentinel-3 SLSTR RBT acquired from 04 January 2018 to 07:59:47 UTC Author(s): Sentinel Vision team, VisioTerra, France - [email protected] 2D Layerstack Keyword(s): Land, mountains, geology, faults, subduction, plateau, orogeny, South Africa Fig. 1 - S2 (03.09.2017) - 11,8,2 colour composite - Zoom on Cape Town region evidencing Table Mountain. 3D view 2D view Table Mountain, Sandstone layers form the ramparts overlying a basement of Precambrian slates and granite - source: Cape Town University Department of Geological Sciences of Cape Town University describes the Geology of the Cape Peninsula: "The late-Precambrian age Malmesbury Group is the oldest rock formation in the area, consisting of alternating layers of dark grey fine-grained greywacke sandstone and slate, seen along the rocky Sea Point and Bloubergstrand shorelines. These sediments were originally deposited on an ancient continental slope by submarine slumping and turbidity currents. The sequence was subsequently metamorphosed by heat and pressure and folded tightly in a NW direction so that the rock layers are now almost vertical. The Peninsula Granite is a huge batholith that was intruded into the Malmesbury Group about 630 million years ago as molten rock (magma) and crystallized deep in the earth, but has since then been exposed by prolonged erosion. -
Geological Evolution of the Red Sea: Historical Background, Review and Synthesis
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/277310102 Geological Evolution of the Red Sea: Historical Background, Review and Synthesis Chapter · January 2015 DOI: 10.1007/978-3-662-45201-1_3 CITATIONS READS 6 911 1 author: William Bosworth Apache Egypt Companies 70 PUBLICATIONS 2,954 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Near and Middle East and Eastern Africa: Tectonics, geodynamics, satellite gravimetry, magnetic (airborne and satellite), paleomagnetic reconstructions, thermics, seismics, seismology, 3D gravity- magnetic field modeling, GPS, different transformations and filtering, advanced integrated examination. View project Neotectonics of the Red Sea rift system View project All content following this page was uploaded by William Bosworth on 28 May 2015. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. Geological Evolution of the Red Sea: Historical Background, Review, and Synthesis William Bosworth Abstract The Red Sea is part of an extensive rift system that includes from south to north the oceanic Sheba Ridge, the Gulf of Aden, the Afar region, the Red Sea, the Gulf of Aqaba, the Gulf of Suez, and the Cairo basalt province. Historical interest in this area has stemmed from many causes with diverse objectives, but it is best known as a potential model for how continental lithosphere first ruptures and then evolves to oceanic spreading, a key segment of the Wilson cycle and plate tectonics. -
Plate Tectonics
PLATE TECTONICS INTRODUCTION • Plate tectonics a unifying theory for geology • Combined 2 hypotheses: Continental drift Sea-floor spreading Early Case for Continental Drift • Continental coastlines would fit together (Wegener’s work) • Rocks & fossils indicated that continents joined Pangea- supercontinent • Combined Laurasia & Gondwanaland • Late Paleozoic glaciation • Paleoclimatology indicated apparent polar wandering • Skepticism about Continental Drift Problem of forces Paleomagnetism & Revival of Continental Drift • Magnetite aligns on existing magnetic field • Dip indicates old magnetic pole position • Apparent motion of north magnetic pole through time Split in path indicates continents split apart Recent Evidence for Continental Drift • Fitting continents at continental slope rather than shoreline • Refined matches of rocks between continents • Isotopic ages support matches • Glacial evidence • Matches between Africa and South America are particularly convincing History of Continental Positions • Pangea split up 200 m.y. (early Mesozoic) • Continents in motion for at least 2 billion years SEA-FLOOR SPREADING • Sea-floor moves away from mid-oceanic ridge • Plunges beneath continent or island arc- subduction • Rate of 1 to 6 (or more) cm/year • Driving force Originally regarded as mantle convection SEA-FLOOR SPREADING • Explanations Mid-oceanic ridge • Hot mantle rock beneath ridge High heat flow Basalt eruptions • Rift valley • Shallow-focus earthquakes Explanations Oceanic trenches • Low heat flow • Negative gravity -
Spatial Characteristics and Controlling Factors of the Strike-Slip Fault Zones in the Northern Slope of Tazhong Uplift, Tarim Ba
Spatial Characteristics and Controlling Factors of the Strike-slip Fault Zones in the Northern Slope of Tazhong Uplift, Tarim Basin: Insight from 3D Seismic Data Xiaoying Han 1, 2, 3, Liangjie Tang 1, 2 *, Shang Deng 4, Zicheng Cao 5 1. State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum, Beijing 102249, China 2. Basin & Reservoir Research Center, China University of Petroleum, Beijing 102249, China 3. College of Mining Engineering, North China University of Science and Technology, Tangshan, 063009, China 4. Petroleum Exploration and Production Research Institute, SINOPEC, Beijing 100083, China 5. Exploration and Production Research Institute of Northwest Oilfield Branch Company, SINOPEC, Urumqi 830000, China *Corresponding author: Liangjie Tang E-mail address: [email protected] Telephone: +86 13701288636 Postal address: No18 Fuxue Road, Changping District, Beijing China University of Petroleum-Beijing, Beijing 102249, China Abstract: The detailed characteristics of the Paleozoic strike-slip fault zones developed in the northern slope of Tazhong uplift are closely related to hydrocarbon explorations. In this study, five major strike-slip fault zones that cut through the Cambrian-Middle Devonian units are identified, by using 3D seismic data. Each of the strike-slip fault zones is characterized by two styles of deformation, namely deeper strike-slip faults and shallower en-echelon faults. By counting the reverse separation of the horizon along the deeper faults, activity intensity on the deeper strike-slip faults in the south is stronger than that on the northern ones. The angle between the strike of the shallower en-echelon normal faults and the principal displacement zone (PDZ) below them is likely to have a tendency to decrease slightly from the south to the north, which may indicate that activity intensity on the shallower southern en-echelon faults is stronger than that on the northern ones. -
Pan-African Orogeny 1
Encyclopedia 0f Geology (2004), vol. 1, Elsevier, Amsterdam AFRICA/Pan-African Orogeny 1 Contents Pan-African Orogeny North African Phanerozoic Rift Valley Within the Pan-African domains, two broad types of Pan-African Orogeny orogenic or mobile belts can be distinguished. One type consists predominantly of Neoproterozoic supracrustal and magmatic assemblages, many of juvenile (mantle- A Kröner, Universität Mainz, Mainz, Germany R J Stern, University of Texas-Dallas, Richardson derived) origin, with structural and metamorphic his- TX, USA tories that are similar to those in Phanerozoic collision and accretion belts. These belts expose upper to middle O 2005, Elsevier Ltd. All Rights Reserved. crustal levels and contain diagnostic features such as ophiolites, subduction- or collision-related granitoids, lntroduction island-arc or passive continental margin assemblages as well as exotic terranes that permit reconstruction of The term 'Pan-African' was coined by WQ Kennedy in their evolution in Phanerozoic-style plate tectonic scen- 1964 on the basis of an assessment of available Rb-Sr arios. Such belts include the Arabian-Nubian shield of and K-Ar ages in Africa. The Pan-African was inter- Arabia and north-east Africa (Figure 2), the Damara- preted as a tectono-thermal event, some 500 Ma ago, Kaoko-Gariep Belt and Lufilian Arc of south-central during which a number of mobile belts formed, sur- and south-western Africa, the West Congo Belt of rounding older cratons. The concept was then extended Angola and Congo Republic, the Trans-Sahara Belt of to the Gondwana continents (Figure 1) although West Africa, and the Rokelide and Mauretanian belts regional names were proposed such as Brasiliano along the western Part of the West African Craton for South America, Adelaidean for Australia, and (Figure 1). -
REGIONAL GEOGRAPHY of AFRICA. Uganda Certificate of Education
REGIONAL GEOGRAPHY OF AFRICA. Uganda Certificate of Education. GEOGRAPHY Code: 273/2, Paper 2 2 hours 30 minutes PART I : THE REST OF AFRICA. INSTRUCTIONS TO CANDIDATES: This paper consists of two sections: Part I Rest of Africa. Answer two questions from part I @ question carry 25marks. Any additional question (s) answered will not be marked. Four questions are set and a candidate is required to answer only two questions. This region covers 50% of paper 273/2. 1) Download and print out a hard copy then copy this notes in a fresh book for Rest of Africa paper2. 2) If You need a copy of this work organized by the teacher for Rest of Africa. Call 0775 534057 for a book of Africa and it will be delivered. Emihen – Utec 1 SIZE, SHAPE AND POSITION. POSITION OF AFRICA. Africa is one of the largest continents of the world. It’s the second to the largest landmass combined of Eurasia i.e. Europe and Asia continents. LOCATION: Africa lies between latitudes 37.51’N just West of Cape Blanc in Tunisia to Cape Aghulhas at Latitude 34.51’S a distance of 8,000kms. Africa also lies between Cape Ras Hagun 51.50’E and Cape Verde 17.32’W. SIZE: Africa covers land area of about 30,300,300km2. THE SHAPE: Africa’s shape is unbalanced; with her northern part being bulky and wide, while the southern part being thinner and narrower in appearance. Emihen-Utec 2 The Latitude EQUATOR divides the continent into TWO HALVES, there being approximately; 3800kms between the Cape Agulhas in the south and Equator while between Tunisia and Equator in the North is 4,100kms. -
Arabian Peninsula from Wikipedia, the Free Encyclopedia Jump to Navigationjump to Search "Arabia" and "Arabian" Redirect Here
Arabian Peninsula From Wikipedia, the free encyclopedia Jump to navigationJump to search "Arabia" and "Arabian" redirect here. For other uses, see Arabia (disambiguation) and Arabian (disambiguation). Arabian Peninsula Area 3.2 million km2 (1.25 million mi²) Population 77,983,936 Demonym Arabian Countries Saudi Arabia Yemen Oman United Arab Emirates Kuwait Qatar Bahrain -shibhu l-jazīrati l ِش ْبهُ ا ْل َج ِزي َرةِ ا ْلعَ َربِيَّة :The Arabian Peninsula, or simply Arabia[1] (/əˈreɪbiə/; Arabic jazīratu l-ʿarab, 'Island of the Arabs'),[2] is َج ِزي َرةُ ا ْلعَ َرب ʿarabiyyah, 'Arabian peninsula' or a peninsula of Western Asia situated northeast of Africa on the Arabian plate. From a geographical perspective, it is considered a subcontinent of Asia.[3] It is the largest peninsula in the world, at 3,237,500 km2 (1,250,000 sq mi).[4][5][6][7][8] The peninsula consists of the countries Yemen, Oman, Qatar, Bahrain, Kuwait, Saudi Arabia and the United Arab Emirates.[9] The peninsula formed as a result of the rifting of the Red Sea between 56 and 23 million years ago, and is bordered by the Red Sea to the west and southwest, the Persian Gulf to the northeast, the Levant to the north and the Indian Ocean to the southeast. The peninsula plays a critical geopolitical role in the Arab world due to its vast reserves of oil and natural gas. The most populous cities on the Arabian Peninsula are Riyadh, Dubai, Jeddah, Abu Dhabi, Doha, Kuwait City, Sanaʽa, and Mecca. Before the modern era, it was divided into four distinct regions: Red Sea Coast (Tihamah), Central Plateau (Al-Yamama), Indian Ocean Coast (Hadhramaut) and Persian Gulf Coast (Al-Bahrain).