WRA Species Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Anti-Inflammatory and Safety Assessment of Polyscias Fruticosa (L.)
The Journal of Phytopharmacology 2014; 3(5): 337-342 Online at: www.phytopharmajournal.com Research Article Anti-inflammatory and safety assessment of Polyscias ISSN 2230-480X fruticosa (L.) Harms (Araliaceae) leaf extract in JPHYTO 2014; 3(5): 337-342 September- October ovalbumin-induced asthma © 2014, All rights reserved George Asumeng Koffuor*, Alex Boye, Jones Ofori-Amoah, Samuel Kyei, Samuel Abokyi, Raymond Appiah Nyarko, Ruth Naalukyem Bangfu George Asumeng Koffuor Department of Medical Laboratory Technology, School of Physical Abstract Sciences, University of Cape Coast, Cape-Coast, Ghana Background: Polyscias fruticosa is a plant used in the traditional management of asthma in Ghana. Alex Boye Aim: This study evaluated the anti-inflammatory property of an ethanolic leaf extract of Polyscias Department of Medical Laboratory fruticosa and safety for use in ovalbumin-induced asthma. Methodology: The total and differential Technology, School of Physical white blood cell counts, C-reactive protein level, and erythrocyte sedimentation rate were determined for Sciences, University of Cape Coast, blood samples obtained from Duncan Hartley guinea-pigs following sensitization (150 µg OVA + 100 Cape-Coast, Ghana mg aluminium hydroxide, I.P), OVA aerosol challenge, and treatment with 2 ml/kg normal saline, 10mg/kg prednisolone and 100, 250 or 500 mg/kg of the extract. An acute and delayed toxicity study Jones Ofori-Amoah Department of Pharmacology, was also conducted. Results: White blood cells and its differentials were significantly elevated (P ≤ Faculty of Pharmacy and 0.05) after OVA-induced asthma. Treatments with the extracts and prednisolone significantly reduced Pharmaceutical Sciences, Kwame (P≤0.05) elevated white blood cells and its differentials. -
A Landscape-Based Assessment of Climate Change Vulnerability for All Native Hawaiian Plants
Technical Report HCSU-044 A LANDscape-bASED ASSESSMENT OF CLIMatE CHANGE VULNEraBILITY FOR ALL NatIVE HAWAIIAN PLANts Lucas Fortini1,2, Jonathan Price3, James Jacobi2, Adam Vorsino4, Jeff Burgett1,4, Kevin Brinck5, Fred Amidon4, Steve Miller4, Sam `Ohukani`ohi`a Gon III6, Gregory Koob7, and Eben Paxton2 1 Pacific Islands Climate Change Cooperative, Honolulu, HI 96813 2 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawaii National Park, HI 96718 3 Department of Geography & Environmental Studies, University of Hawai‘i at Hilo, Hilo, HI 96720 4 U.S. Fish & Wildlife Service —Ecological Services, Division of Climate Change and Strategic Habitat Management, Honolulu, HI 96850 5 Hawai‘i Cooperative Studies Unit, Pacific Island Ecosystems Research Center, Hawai‘i National Park, HI 96718 6 The Nature Conservancy, Hawai‘i Chapter, Honolulu, HI 96817 7 USDA Natural Resources Conservation Service, Hawaii/Pacific Islands Area State Office, Honolulu, HI 96850 Hawai‘i Cooperative Studies Unit University of Hawai‘i at Hilo 200 W. Kawili St. Hilo, HI 96720 (808) 933-0706 November 2013 This product was prepared under Cooperative Agreement CAG09AC00070 for the Pacific Island Ecosystems Research Center of the U.S. Geological Survey. Technical Report HCSU-044 A LANDSCAPE-BASED ASSESSMENT OF CLIMATE CHANGE VULNERABILITY FOR ALL NATIVE HAWAIIAN PLANTS LUCAS FORTINI1,2, JONATHAN PRICE3, JAMES JACOBI2, ADAM VORSINO4, JEFF BURGETT1,4, KEVIN BRINCK5, FRED AMIDON4, STEVE MILLER4, SAM ʽOHUKANIʽOHIʽA GON III 6, GREGORY KOOB7, AND EBEN PAXTON2 1 Pacific Islands Climate Change Cooperative, Honolulu, HI 96813 2 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawaiʽi National Park, HI 96718 3 Department of Geography & Environmental Studies, University of Hawaiʽi at Hilo, Hilo, HI 96720 4 U. -
Final Report
FINAL REPORT Department of Natural Resources and Environment, Gippsland Region, March 2002 1 © The State of Victoria, Department of Natural Resources and Environment 2002. This publication is copyright. Apart from any fair dealings for the purposes of private study, research, criticism or review as permitted under the Copyright Act 1968, no part may be reproduced, copied, transmitted in any form or by any means (electronic, mechanical, or graphic) without written prior permission of the State of Victoria, Department of Natural Resources and Environment. All requests and enquires should be directed to the Copyright Officer, Library Information Services, Department of Natural Resources and Environment, 5/250 Victoria Parade, East Melbourne, Victoria 3002. ISBN 1 74106 548 8 Find more information about the Department at www.dse.vic.gov.au Customer Service Centre Phone: 136 186 [email protected] General disclaimer This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequences which may arise from your relying on information in this publication. COVER PHOTO LOCATIONS (TOP TO BOTTOM) Photo 1. Depauperate Coastal Tussock Grassland (EVC 163-04) on islands off Wilsons Promontory. Photo 2. Gippsland Plains Grassy Woodland (EVC 55-03) at Moormurng Flora and Fauna Reserve south-west of Bairnsdale. Photo 3. Wet Forest (EVC 30) in the Strzelecki ranges. Photo 4. Mangrove Shrubland (EVC 140) on the South Gippsland coastline at Corner Inlet. -
Araliaceae.Pdf
ARALIACEAE 五加科 wu jia ke Xiang Qibai (向其柏 Shang Chih-bei)1; Porter P. Lowry II2 Trees or shrubs, sometimes woody vines with aerial roots, rarely perennial herbs, hermaphroditic, andromonoecious or dioecious, often with stellate indumentum or more rarely simple trichomes or bristles, with or without prickles, secretory canals pres- ent in most parts. Leaves alternate, rarely opposite (never in Chinese taxa), simple and often palmately lobed, palmately compound, or 1–3-pinnately compound, usually crowded toward apices of branches, base of petiole often broad and sheathing stem, stipules absent or forming a ligule or membranous border of petiole. Inflorescence terminal or pseudo-lateral (by delayed development), um- bellate, compound-umbellate, racemose, racemose-umbellate, or racemose-paniculate, ultimate units usually umbels or heads, occa- sionally racemes or spikes, flowers rarely solitary; bracts usually present, often caducous, rarely foliaceous. Flowers bisexual or unisexual, actinomorphic. Pedicels often jointed below ovary and forming an articulation. Calyx absent or forming a low rim, some- times undulate or with short teeth. Corolla of (3–)5(–20) petals, free or rarely united, mostly valvate, sometimes imbricate. Stamens usually as many as and alternate with petals, sometimes numerous, distinct, inserted at edge of disk; anthers versatile, introrse, 2- celled (or 4-celled in some non-Chinese taxa), longitudinally dehiscent. Disk epigynous, often fleshy, slightly depressed to rounded or conic, sometimes confluent with styles. Ovary inferior (rarely secondarily superior in some non-Chinese taxa), (1 or)2–10(to many)-carpellate; carpels united, with as many locules; ovules pendulous, 2 per locule, 1 abortive; styles as many as carpels, free or partially united, erect or recurved, or fully united to form a column; stigmas terminal or decurrent on inner face of styles, or sessile on disk, circular to elliptic and radiating. -
Rare Or Threatened Vascular Plant Species of Wollemi National Park, Central Eastern New South Wales
Rare or threatened vascular plant species of Wollemi National Park, central eastern New South Wales. Stephen A.J. Bell Eastcoast Flora Survey PO Box 216 Kotara Fair, NSW 2289, AUSTRALIA Abstract: Wollemi National Park (c. 32o 20’– 33o 30’S, 150o– 151oE), approximately 100 km north-west of Sydney, conserves over 500 000 ha of the Triassic sandstone environments of the Central Coast and Tablelands of New South Wales, and occupies approximately 25% of the Sydney Basin biogeographical region. 94 taxa of conservation signiicance have been recorded and Wollemi is recognised as an important reservoir of rare and uncommon plant taxa, conserving more than 20% of all listed threatened species for the Central Coast, Central Tablelands and Central Western Slopes botanical divisions. For a land area occupying only 0.05% of these divisions, Wollemi is of paramount importance in regional conservation. Surveys within Wollemi National Park over the last decade have recorded several new populations of signiicant vascular plant species, including some sizeable range extensions. This paper summarises the current status of all rare or threatened taxa, describes habitat and associated species for many of these and proposes IUCN (2001) codes for all, as well as suggesting revisions to current conservation risk codes for some species. For Wollemi National Park 37 species are currently listed as Endangered (15 species) or Vulnerable (22 species) under the New South Wales Threatened Species Conservation Act 1995. An additional 50 species are currently listed as nationally rare under the Briggs and Leigh (1996) classiication, or have been suggested as such by various workers. Seven species are awaiting further taxonomic investigation, including Eucalyptus sp. -
Intergeneric Graft Compatibility Within the Family Araliaceae
RESEARCH UPDATES Fatshedera ( Fatsia x Hedera) that have Materials and methods Intergeneric been grown erect are sold as novelty specimens. Growers usually get a high Twenty-three cultivars of Graft percentage of successful grafts with Araliaceae representing six genera and Compatibility healthy plant material and good graft- 16 species were obtained from com- ing technique. mercial sources. Two species each of within the Family Variegated forms of Aralia elata two genera native to Hawaii, do not root from cuttings and produce Cheirodendron and Tetraplasandra, Araliaceae nonvariegated seedlings. The varie- were collected in the Koolau Moun- gated forms are propagated by bud- tains on Oahu (Table 1). ding onto seedling or vegetatively Rootstocks propagated from tip Kenneth W. Leonhardt1 produced nonvariegated rootstocks of cuttings rooted in equal parts ver- A. elata (Leiss, 1977). One variegated miculite and perlite under intermit- form of A. elata also has been cleft- tent mist and full sun were grown in Additional index words. Aralia, grafted successfully onto a rootstock 15-cm plastic pots containing equal Ginsing, Panax family, propagation of A. spinosa (Raulston, 1985.) parts peat moss, perlite, and field soil The relative ease of the Hedera x (by volume). Lime and a slow-release Summary. Novelty Araliaceae potted Fatshedera graft raised the possibility granular fertilizer were incorporated. plants were created by a wide variety of graft compatibility of Hedera with Rootstocks were established in a green- of interspecific and intergeneric graft other relatives, particularly those grow- house under 25% shade cover until combinations. Twenty-four species of ing tall rapidly or having other desir- grafted. -
Post-Fire Recovery of Woody Plants in the New England Tableland Bioregion
Post-fire recovery of woody plants in the New England Tableland Bioregion Peter J. ClarkeA, Kirsten J. E. Knox, Monica L. Campbell and Lachlan M. Copeland Botany, School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351, AUSTRALIA. ACorresponding author; email: [email protected] Abstract: The resprouting response of plant species to fire is a key life history trait that has profound effects on post-fire population dynamics and community composition. This study documents the post-fire response (resprouting and maturation times) of woody species in six contrasting formations in the New England Tableland Bioregion of eastern Australia. Rainforest had the highest proportion of resprouting woody taxa and rocky outcrops had the lowest. Surprisingly, no significant difference in the median maturation length was found among habitats, but the communities varied in the range of maturation times. Within these communities, seedlings of species killed by fire, mature faster than seedlings of species that resprout. The slowest maturing species were those that have canopy held seed banks and were killed by fire, and these were used as indicator species to examine fire immaturity risk. Finally, we examine whether current fire management immaturity thresholds appear to be appropriate for these communities and find they need to be amended. Cunninghamia (2009) 11(2): 221–239 Introduction Maturation times of new recruits for those plants killed by fire is also a critical biological variable in the context of fire Fire is a pervasive ecological factor that influences the regimes because this time sets the lower limit for fire intervals evolution, distribution and abundance of woody plants that can cause local population decline or extirpation (Keith (Whelan 1995; Bond & van Wilgen 1996; Bradstock et al. -
Plant Care Tips
Last Modified: 12/24/2015 The Emerald Leaf - Plant Care Tips Page: 1 of 47 Species Light Water Temperature Bug Name Pic Varieties / Description Requirements Needs Needs Plant Problems Problems Pruning Aglaonema (Chinese Evergreen) Narrow leaf Preventative varieties are more Leaves will rot if pruning will keep Allow to suseptable to the getting too much the plant bushy, thoroughly cold (under 65 water; Tips will dry otherwise it will dry degrees) causing out if not enough get leggy. Cutting Amelia (looks like Maria but a between the leaves to water or too much will easily root in bit lighter) Low to Moderate watering severely fade sun. Mealy water BJ Freeman (large ovid leaf light green and grey) Diamond Bay (round leaf, more gold coloring than Silver Bay) Elite Series, India Series Emerald Bay (Similar to Silver Bay but more green) Gemini (Dark green leaves with lighter green stripes) Last Modified: 12/24/2015 The Emerald Leaf - Plant Care Tips Page: 2 of 47 Species Light Water Temperature Bug Name Pic Varieties / Description Requirements Needs Needs Plant Problems Problems Pruning Maria (long narrow dark grey/green leaves) Maria Christina (looks like Silver Queen) Maryann (large ovid leaf, dark green and grey "v" like stripes) Silver Bay (round leaves w/a silvery white center) Silver Queen (long narrow white & green speckled leaves) Tigress (Longer green foliage with silvery-green stripes) Aralia Last Modified: 12/24/2015 The Emerald Leaf - Plant Care Tips Page: 3 of 47 Species Light Water Temperature Bug Name Pic Varieties / Description Requirements Needs Needs Plant Problems Problems Pruning Leaf drop generally indicates too much water or too Mealy, Preventative Balfour Variegated - Polyscias Allow to cold. -
Polyscias Sp. Douglas-Denison (R.Schahinger HO526133) Tas Herbarium Common Name: Ferny Panax (Wapstra Et Al
Listing Statement for Polyscias sp. Douglas-Denison (ferny panax) Polyscias sp. Douglas-Denison ferny panax T A S M A N I A N T H R E A T E N E D F L O R A L I S T I N G S T A T E M E N T Image by Louise Gilfedder Scientific name: Polyscias sp. Douglas-Denison (R.Schahinger HO526133) Tas Herbarium Common name: ferny panax (Wapstra et al. 2005) Group: vascular plant, dicotyledon, family Araliaceae Name history: Polyscias sambucifolia, Polyscias aff. sambucifolia Status: Threatened Species Protection Act 1995: endangered Environment Protection and Biodiversity Conservation Act 1999: Not Listed Distribution: Endemic status: Endemic to Tasmania? Tasmanian NRM Regions: North & South Figure 1. Distribution of Polyscias sp. Douglas- Plate 1. Polyscias sp. Douglas-Denison Denison, showing Natural Resource Management (image by Richard Schahinger) regions Threatened Species Section – Department of Primary Industries, Parks, Water and Environment Listing Statement for Polyscias sp. Douglas-Denison (ferny panax) IDENDIFICATION AND ECOLOGY ovule. Fruit are laterally compressed succulent Polyscias sp. Douglas-Denison is a small drupes, about 4 mm long, bluish-green or steel- evergreen tree in the Araliaceae family (Baker & blue in colour. Duretto 2011). It is known in Tasmania from six sites on the central east coast where it grows Confusing Species in damp sclerophyll forest. Forms of Polyscias sambucifolia have been in cultivation in Tasmanian gardens since the late Polyscias sp. Douglas-Denison is capable of 1800s, with some escapees now considered to vigorous spread via root suckering, especially be naturalised (Rodway 1903, Curtis 1963, de after fire. -
The Bulletin, 2020 Summer-Fall Issue
Vol. XXXVI No. 2 SUMMER-FALL 2020 the bulletinof the National Tropical Botanical Garden THE BULLETIN OF NTBG | SUMMER-FALL 2020 1 contents 3 MESSAGE FROM THE CEO/DIRECTOR ON THE COVER Planting hope The endemic Dubautia-Sadleria shrubland- fernland below the summit of Kawaikini, Kaua‘i’s highest peak (5,243 ft.), is a prime features example of healthy native Hawaiian habitat free of disease and invasive species. Photo for the future… by Ken Wood 6 HOW NTBG CONTRIBUTES TO PLANT HEALTH The Bulletin is a publication for supporters by NTBG staff of the National Tropical Botanical Garden, a not-for-profit institution dedicated to tropical plant conservation, scientific During this unprecedented pause, scientists, policy makers, and 14 TWO DECADES AFTER RESTORATION, research, and education. global leaders are highlighting the opportunity to safeguard our REFLECTIONS ON PI‘ILANIHALE environment in new ways as the world reopens. In the midst of We encourage you to share this HEIAU RISING publication with your family and friends. uncertainty, our core mission of saving plants is relevant, timely, by Chipper Wichman with Mike Opgenorth If your household is receiving more than and vital to a brighter future. Please consider joining us at this one copy and you wish to receive only critical juncture by using the enclosed envelope to make your one, please inform our Development 22 NTBG AUDITS THE SEED BANK Office at our national headquarters at: contribution today. To donate online, go to ntbg.org/donate. TAKING STOCK [email protected]. by Kelli Jones National Tropical Botanical Garden 3530 Papalina Road, Kalāheo 24 GOING NATIVE IN SOUTH FLORIDA Hawai‘i 96741 USA by Craig Morell Tel. -
Attachment 1 PROPOSAL for the PIA NATURAL AREA RESERVE
Attachment 1 PROPOSAL FOR THE PIA NATURAL AREA RESERVE February 2021 I EXECUTIVE SUMMARY The mauka (upland) portion of Pia Valley, on the island of Oʻahu, is proposed for inClusion in the State of Hawaiʻi Natural Area Reserve System (NARS). The proposed Pia NAR Contains unique lowland mesiC (moist) eCosystems in the leeward Koʻolau mountains, and habitat for extremely rare plants and animals. Some plants and animals in the proposed Pia NAR are found nowhere else in the world. This parcel was generously donated to the Department of Land and Natural Resources by landowner PatriCia Godfrey. II INTRODUCTION (General) This Reserve would inClude an area of approximately 300 aCres of Pia Valley mauka of the Hawaiʻi Loa and Niu Valley subdivisions up to the Koʻolau Crest in the Hawaiʻi Kai region of Oʻahu, TMK 3-7-03:03 (Figure 1). The proposed NAR Contains ʻŌhiʻa and uluhe-dominated forests (US Dept. of Interior, 2006; Figure 2). The inClusion of this area into the NARS would inCrease the representation of Oʻahu’s lowland mesiC eCosystems. There are reCords of 29 rare speCies found in the area or historiCally known from the area (see Appendix 1). The proposed Reserve falls within Federally- designated CritiCal Habitat for 17 speCies. GeologiCally, this area is a hanging valley that is less eroded than nearby valleys. This may explain why there is a higher diversity of native speCies and fewer weeds. Proposed Pia Natural Area Reserve Legend 0 0.5 Miles Na Ala Hele Trails - TMK (1) 3-7-003-003 LJ Forest Reserve Figure 1: Map of proposed Pia Natural Area Reserve. -
Polyscias Sambucifolia Subsp
Plants of South Eastern New South Wales Flowers and young fruit. Photographer John Tann, Ripe fruit. Photographer John Tann, Paruna Reserve Paruna Reserve near Sydney near Sydney Flowering stems. Australian Plant Image Index, Flowers, young fruit, and leafy stem (subsp. photographer Murray Fagg, Australian National Bipinnate leaves). Photographer Don Wood, Botanic Gardens, Canberra, ACT Yurammie State Forest, west of Merimbula Flowering branches (subsp. Long leaflets). Photographer Chris Clarke, Alpine National Park, Vic Flowers, young fruit, and leafy stem (subsp. Short leaflets). Photographer Don Wood, Wadbilliga National Park Line drawing (subsp. Bipinnate leaves). d. flowering branch. K Maling, University of Sydney, © 2021 Royal Botanic Gardens Board, Melbourne, Vic Line drawing (subsp. Long leaflets). c. flowering branch. K Maling, University of Sydney, © 2021 Royal Botanic Gardens Board, Melbourne, Vic Line drawings (subsp. Short leaflets). e. flowering branch. K Maling, University of Sydney, © 2021 Royal Botanic Gardens Board, Melbourne, Vic Common name Elderberry Panax, Ornamental Ash, Elderberry Ash Ferny Panax (subsp. Bipinnate leaves) Family Araliaceae Where found Forest, woodland, disturbed areas, and rocky sites. Widespread. Rarely on the Western Slopes. subsp. Bipinnate leaves (J.H.Ross 3967) Vic. Herbarium. Forest, often on rocky soils, below 1300 m altitude. Widespread. Rarely on the Western Slopes. subsp. Long leaflets (P.G.Neish 208) Vic. Herbarium. Wet forest and rainforest margins. Coast, ranges, and the mountainous parts of the tablelands. Rarely elsewhere. subsp. Short leaflets (V.Stajsic 196) Vic. Herbarium. Forest and woodland, often in disturbed sites, usually between 750 and 1970 m altitude. Ranges and mountainous areas on the tablelands. ACT and Brindabella National Park.