Computing the Long Term Evolution of the Solar System with Geometric Numerical Integrators

Total Page:16

File Type:pdf, Size:1020Kb

Computing the Long Term Evolution of the Solar System with Geometric Numerical Integrators Snapshots of modern mathematics № 9/2017 from Oberwolfach Computing the long term evolution of the solar system with geometric numerical integrators Shaula Fiorelli Vilmart • Gilles Vilmart 1 Simulating the dynamics of the Sun–Earth–Moon sys- tem with a standard algorithm yields a dramatically wrong solution, predicting that the Moon is ejected from its orbit. In contrast, a well chosen algorithm with the same initial data yields the correct behavior. We explain the main ideas of how the evolution of the solar system can be computed over long times by taking advantage of so-called geometric numerical methods. Short sample codes are provided for the Sun–Earth–Moon system. 2 1 Computing the trajectories Let us step back in time and imagine we are on the first of January of the year 1600, when Johannes Kepler (1571–1630) has just moved to Prague to become the new assistant of the astronomer Tycho Brahe. Kepler had to escape from persecution in Graz, particularly caused by his adhesion to the controversial Copernican theory, boldly saying that the planets revolve around the Sun. 1 Partially supported by the Swiss National Science Foundation grants 200020_144313/1 and 200021_162404. 2 An earlier version in French of this article first appeared in [11]. 1 How the strange motion of Mars inspired Kepler. Tycho Brahe is very interested in planetary motion and has already calculated very precisely the orbits of known planets. But Mars escapes comprehension: he cannot properly predict its trajectory. Without warning him of the difficulty, Brahe asks Kepler to calculate the precise orbit of Mars. It will take about six years for Kepler to complete this work. Indeed, while Venus has a nearly circular orbit, the trajectory of Mars is more complex: it turns out to be an ellipse, whose flattening 3 is, after Mercury’s, the second largest of all planets’ in the solar system. P b 1 P b 2 S C F b b b b b Semi-major axis a b P4 b P3 Figure 1: Illustration of Kepler’s laws. The Sun S and the point F are the foci of the elliptic trajectory (in red) of the planet P . By the law of equal areas, when the time elapsed between positions P1 and P2 is equal to the time elapsed between positions P3 and P4, then the domains SP1P2 and SP3P4 (in blue) have the same area. Kepler’s three laws. This takes Kepler to propose his three basic laws (com- pare Figure 1): 1. the planets describe elliptical orbits, with the Sun at a focus of each; 2. the segment connecting the Sun and a planet sweeps out equal areas during equal times; this so-called invariant of the problem is called the law of equal areas 4 ; 3 The flattening may be measured by the eccentricity of the ellipse, which is the ratio of the distance between C and F to the semi-major axis a, compare Figure 1. The smaller its eccentricity, the more an ellipse is shaped like a circle. 4 That the derivative with respect to time of the area swept out is zero turns out to be connected to the conservation of the planet’s angular momentum. 2 3. the square of the orbital period T of a planet is proportional to the cube of the semi-major axis a of the elliptical orbit: T 2 = Constant · a3. Newton’s laws of motion and the universal law of gravitation. In 1687, Isaac Newton (1642–1727) publishes his book Philosophiæ Naturalis Principia Mathematica. Inspired by Kepler’s work, he proposes the three laws of motion and the universal law of gravitation, stating that all cosmic objects attract each other mutually with equal forces (but in opposite directions), proportional to the product of their masses and inversely proportional to the square of the distance between them. Let mS and mP denote the masses of two bodies S and P , let D be the distance between S and P , and let −→u be a vector with unit length in the −→ direction from S to P . The gravitational force F S→P applied by S to P is then given by the formula −→ −→ m m F = −F = −G S P −→u , S→P P →S D2 where the constant of proportionality G is called the universal constant of gravitation. It is this law that we will use later to calculate the motion of the planets. Newton’s explanation of Kepler’s law of equal areas. Newton also pro- vides a justification for Kepler’s laws: they represent the motion of a body subject to a single gravitational force, that of the Sun. To explain the law of equal areas, he uses a method that can be interpreted as the first geometric numerical integrator, as presented in [3, 9]. The idea is to apply the Sun’s attractive gravitational force not continuously over time, but via a sequence of impulses: Suppose that S is the position of the Sun, and suppose that a planet is located initially at point A, see Figure 2. Let us first assume that the Sun applies no gravitational force at all; in this case, the planet moves during a certain time from A to a point B along a straight −−→ line, with a constant velocity in the direction AB (see Figure 2). Waiting for the same time again, the planet should continue on the same straight line until −−→ −→ it reaches the point c, with AB = Bc. However, let us apply an impulse of force from the Sun to the planet: this force adds a velocity component to the motion of the planet that Newton −−→ represents by the vector BV along the segment SB. The planet’s velocity is −→ −−→ now the sum of two components: the vector Bc and the vector BV , and the −−→ resulting vector is BC which defines the point C. The planet thus moves with this new constant velocity until it reaches C. 3 bc c C b V b B b Sb A (a) Figure from Newton’s (b) The planet’s motion subject Principia Mathematica (1687). to a single “force impulse”. Figure 2: Newton’s proof of Kepler’s second law. Iterating this process, the planet follows the path A, B, C, D, E, F, . .. New- ton proves that all the triangles SAB, SBC, SCD, SDE, SEF have the same area by the following argument: Newton’s geometric proof. We first note that the triangles SAB and SBc −−→ −→ have the same area, because they have the same basis AB = Bc and the same height issued from S. Next, observing that BcCV is a parallelogram, we deduce −→ −→ that Cc is parallel to SB. The triangles SBc and SBC thus have the same −→ basis SB and the same heights issued from c and C respectively; and hence they have the same area. Thus, the triangles SAB and SBC have the same area. Newton thus proves a discrete version of Kepler’s second law, meaning a motion with successive jolts. The process which permits to get from A to B, then B to C, and so forth, corresponds in fact to a geometric numerical scheme, known today as the symplectic Euler method, which we will present later on. We will also see that as the time interval between two force impulses tends to zero, the obtained approximation of the trajectory converges towards the exact solution of the problem. 2 What is a differential equation, and how can we solve it? Many physical phenomena can be modeled by differential equations, that is to say, equations in which the unknown is not a number but a function, and involving one or more derivatives of this function. 5 5 Note to advanced readers: in this snapshot, we are only concerned with the case where these functions depend on one variable only, so-called ordinary differential equations. 4 A differential equation example: de Beaune’s problem. As an example, let us consider a problem formulated by Florimond de Beaune in 1638: 6 Find a curve C in the plane, given by a function y(t), such that the tangent to C in any point M with abscissa t intersects the horizontal axis at the point u = t − 1 (see Figure 3). M b C u = t − 1 t b b D = 1 Figure 3: The problem of de Beaune (1638). We note that the slope of the tangent at M = (t, y(t)) to the curve C equals the quotient of the height y(t) over the width D = 1, which means the slope is equal to y(t). In addition, we recall that by definition the slope is the derivative of y at t. Together, this gives the differential equation y0(t) = y(t). The general solution of this equation is y(t) = C · et, where C is a constant that can be determined by adding an initial condition y(0) = y0. The differential t equation with a given initial value then possesses a unique solution y(t) = y0 · e . Numerical methods. For a general differential equation, however, it is in practice often difficult or even impossible to find a formula for the exact solution. Therefore a numerical integrator, which is an algorithmic method for calculating an approximate solution, must be used. 6 De Beaune (1601–1652) is famous mostly for the problem presented here. It is one of four problems that he submitted to René Descartes (1596–1650), who had just published La Géométrie in 1637. 5 There exists a wide range of algorithms for solving a differential equation of the form 0 y (t) = f(y(t)), y(0) = y0, where y0 is a given initial condition, f is a given function and y is an unknown function depending on t.
Recommended publications
  • Vita Walter Gautschi
    VITA WALTER GAUTSCHI April 1, 2021 EDUCATION Ph.D. University of Basel, Switzerland 1953 (Thesis advisor: A. M. Ostrowski) PROFESSIONAL EXPERIENCE Research Fellow Istituto Nazionale per le Applicazioni del Calcolo, Rome 1954–55 Research Fellow Harvard Computation Lab. 1955–56 Research Mathematician Natl. Bureau of Standards 1956–59 Professor. Lecturer American U., Washington, D.C. Mathematician Oak Ridge National Lab. 1959–63 Professor of Math. & Computer Science Purdue University 1963–2000 Professor Emeritus Purdue University 2000– Visiting Professor Technical Univ. of Munich, Germany 1970–71 Visiting Professor Mathematics Res. Center, Univ. of WI 1976–77 Visiting Professor ETH Zurich 1996–2001 Visiting Professor University of Padova 1997 Visiting Professor University of Basel 2000 1 PROFESSIONAL SOCIETIES AND HONORS Schweizerische Mathematische Gesellschaft American Mathematical Society Mathematical Association of America Society for Industrial and Applied Mathematics Corresponding Member, Bavarian Academy of Sciences, Munich, 2001– Foreign Member, Academy of Sciences, Turin, 2001– SIAM Fellow, Class 2012 Member, Council of the American Mathematical Society, 1975–80, 1984–95 Fulbright Research Scholar, Munich, 1970–71 Listed in Who is Who in the World Listed in the International Biographical Centre’s Top 100 Educators 2009 and in 2000 Outstanding Intellectuals of the 21st Century Listed in S. Gottwald, H.-J. Ilgauds, and K.-H. Schlote, Lexikon bedeutender Mathematiker, 2d ed., Verlag Programm Mathematik, Leipzig, in preparation. RESEARCH INTERESTS Numerical Analysis Constructive Approximation Theory Special Functions Orthogonal Polynomials GENERAL INFORMATION Birthdate: December 11, 1927 Birthplace: Basel, Switzerland Marital Status: Married – Erika Children: 4 Citizenship: USA PUBLICATIONS Books B1. (with H. Bavinck and G. M. Willems) Colloquium approximatietheorie, MC Syllabus 14, Mathematisch Centrum Amsterdam, 1971.
    [Show full text]
  • The Solar System's Extended Shelf Life
    Vol 459|11 June 2009 NEWS & VIEWS PLANETARY SCIENCE The Solar System’s extended shelf life Gregory Laughlin Simulations show that orbital chaos can lead to collisions between Earth and the inner planets. But Einstein’s tweaks to Newton’s theory of gravity render these ruinous outcomes unlikely in the next few billion years. In the midst of a seemingly endless torrent of charted with confidence tens of millions of ‘disturbing function’ could not be neglected, baleful economic and environmental news, a years into the future. An ironclad evaluation and consideration of these terms revived the dispatch from the field of celestial dynamics of the Solar System’s stability, however, eluded question of orbital stability. In 1889, Henri manages to sound a note of definite cheer. On mathematicians and astronomers for nearly Poincaré demonstrated that even the gravita- page 817 of this issue, Laskar and Gastineau1 three centuries. tional three-body problem cannot be solved report the outcome of a huge array of computer In the seventeenth century, Isaac Newton by analytic integration, thereby eliminating simulations. Their work shows that the orbits was bothered by his inability to fully account any possibility that an analytic solution for of the terrestrial planets — Mercury, Venus, for the observed motions of Jupiter and Saturn. the entire future motion of the eight planets Earth and Mars — have a roughly 99% chance The nonlinearity of the gravitational few-body could be found. Poincaré’s work anticipated the of maintaining their current, well-ordered problem led him to conclude3 that, “to consider now-familiar concept of dynamical chaos and clockwork for the roughly 5 billion years that simultaneously all these causes of motion and the sensitive dependence of nonlinear systems remain before the Sun evolves into a red giant to define these motions by exact laws admit- on initial conditions5.
    [Show full text]
  • Workshop on Astronomy and Dynamics at the Occasion of Jacques Laskar’S 60Th Birthday Testing Modified Gravity with Planetary Ephemerides
    Workshop on Astronomy and Dynamics at the occasion of Jacques Laskar's 60th birthday Testing Modified Gravity with Planetary Ephemerides Luc Blanchet Gravitation et Cosmologie (GR"CO) Institut d'Astrophysique de Paris 29 avril 2015 Luc Blanchet (IAP) Testing Modified Gravity Colloque Jacques Laskar 1 / 25 Evidence for dark matter in astrophysics 1 Oort [1932] noted that the sum of observed mass in the vicinity of the Sun falls short of explaining the vertical motion of stars in the Milky Way 2 Zwicky [1933] reported that the velocity dispersion of galaxies in galaxy clusters is far too high for these objects to remain bound for a substantial fraction of cosmic time 3 Ostriker & Peebles [1973] showed that to prevent the growth of instabilities in cold self-gravitating disks like spiral galaxies, it is necessary to embed the disk in the quasi-spherical potential of a huge halo of dark matter 4 Bosma [1981] and Rubin [1982] established that the rotation curves of galaxies are approximately flat, contrarily to the Newtonian prediction based on ordinary baryonic matter Luc Blanchet (IAP) Testing Modified Gravity Colloque Jacques Laskar 2 / 25 Evidence for dark matter in astrophysics 1 Oort [1932] noted that the sum of observed mass in the vicinity of the Sun falls short of explaining the vertical motion of stars in the Milky Way 2 Zwicky [1933] reported that the velocity dispersion of galaxies in galaxy clusters is far too high for these objects to remain bound for a substantial fraction of cosmic time 3 Ostriker & Peebles [1973] showed that to
    [Show full text]
  • Writing the History of Dynamical Systems and Chaos
    Historia Mathematica 29 (2002), 273–339 doi:10.1006/hmat.2002.2351 Writing the History of Dynamical Systems and Chaos: View metadata, citation and similar papersLongue at core.ac.uk Dur´ee and Revolution, Disciplines and Cultures1 brought to you by CORE provided by Elsevier - Publisher Connector David Aubin Max-Planck Institut fur¨ Wissenschaftsgeschichte, Berlin, Germany E-mail: [email protected] and Amy Dahan Dalmedico Centre national de la recherche scientifique and Centre Alexandre-Koyre,´ Paris, France E-mail: [email protected] Between the late 1960s and the beginning of the 1980s, the wide recognition that simple dynamical laws could give rise to complex behaviors was sometimes hailed as a true scientific revolution impacting several disciplines, for which a striking label was coined—“chaos.” Mathematicians quickly pointed out that the purported revolution was relying on the abstract theory of dynamical systems founded in the late 19th century by Henri Poincar´e who had already reached a similar conclusion. In this paper, we flesh out the historiographical tensions arising from these confrontations: longue-duree´ history and revolution; abstract mathematics and the use of mathematical techniques in various other domains. After reviewing the historiography of dynamical systems theory from Poincar´e to the 1960s, we highlight the pioneering work of a few individuals (Steve Smale, Edward Lorenz, David Ruelle). We then go on to discuss the nature of the chaos phenomenon, which, we argue, was a conceptual reconfiguration as
    [Show full text]
  • A Long Term Numerical Solution for the Insolation Quantities of the Earth Jacques Laskar, Philippe Robutel, Frédéric Joutel, Mickael Gastineau, A.C.M
    A long term numerical solution for the insolation quantities of the Earth Jacques Laskar, Philippe Robutel, Frédéric Joutel, Mickael Gastineau, A.C.M. Correia, Benjamin Levrard To cite this version: Jacques Laskar, Philippe Robutel, Frédéric Joutel, Mickael Gastineau, A.C.M. Correia, et al.. A long term numerical solution for the insolation quantities of the Earth. 2004. hal-00001603 HAL Id: hal-00001603 https://hal.archives-ouvertes.fr/hal-00001603 Preprint submitted on 23 May 2004 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Astronomy & Astrophysics manuscript no. La˙2004 May 23, 2004 (DOI: will be inserted by hand later) A long term numerical solution for the insolation quantities of the Earth. J. Laskar1, P. Robutel1, F. Joutel1, M. Gastineau1, A.C.M. Correia1,2, and B. Levrard1 1 Astronomie et Syst`emesDynamiques, IMCCE-CNRS UMR8028, 77 Av. Denfert-Rochereau, 75014 Paris, France 2 Departamento de F´ısica da Universidade de Aveiro, Campus Universit´ario de Santiago, 3810-193 Aveiro, Portugal May 23, 2004 Abstract. We present here a new solution for the astronomical computation of the insolation quantities on Earth spanning from -250 Myr to 250 Myr.
    [Show full text]
  • Pure and Fundamental
    PURE AND FUNDAMENTAL THE LARGEST RESEARCH CENTRE IN QUÉBEC The CenTre de reCherChes maThémaTiques (crm) is the largest research centre in Québec and one of the most important mathematics research centres in the world. The crm was created in 1968 at the Université de montréal and gathers all the stakeholders in mathematical research at Québec universities and some other canadian universities. The crm organizes events attended by researchers from all over the globe and representing all mathematical disciplines. The crm focuses on pure and applied mathematics in all areas of human activity, for instance theoretical physics, brain and molecular imaging, quantum information, statistics, and genomics. Indeed mathematics is both the first science and the 1 servant of experimental science, which draws upon its new concepts, its language, and its methods. Fonds de recherche sur la nature et les technologies Plenary speakers A short course on SFT Organizers will be given by: P. Biran (Tel Aviv) M. Abreu (Instituto Superior F. Bourgeois (Université Libre O. Cornea (Montréal) Técnico) de Bruxelles) D. Gabai (Princeton) R. Cohen (Stanford) K. Cieliebak (München) E. Ghys (ENS, Lyon) A. Givental (Berkeley) T. Ekholm (Southern California) E. Giroux (ENS, Lyon) F. Lalonde (Montréal) E. Katz (Duke) R. Gompf (Austin, Texas) R. Lipshitz (Stanford) J. Sabloff (Haverford College) H. Hofer (Courant Institute) L. Polterovich (Tel Aviv) K. Wehrheim (MIT) K. Honda (Southern California) R. Schoen (Stanford) E. Ionel (Stanford) D. McDuff (Stony Brook) T. Mrowka (MIT) Y.-G. Oh (Wisconsin-Madison) K. Ono (Hokkaido) P. Ozsvath (Columbia) R. Pandharipande (Princeton) D. Salamon (ETH, Zurich) 0 Thematic Program 8 A bird eye’s view of the CRM 9 4 M.
    [Show full text]
  • HA-LU 2019 International Conference in Honor of Ernst Hairer and Christian Lubich
    HA-LU 2019 International conference in honor of Ernst Hairer and Christian Lubich Gran Sasso Science Institute, L'Aquila 17{21 June 2019 ii Program at a glance June 17 June 18 June 19 June 20 June 21 9.15 Opening Sanz-Serna Overton Hochbruck Zennaro 10.00 Wanner Gander Yserentant Chartier Vilmart 10.45 Coffee break Coffee break Coffee break Coffee break Coffee break 11.15 Ascher Quarteroni Vandereycken Jahnke Cohen 12.00 Deuflhard Banjai Palencia Li Lasser 12.45 Lunch Lunch Lunch Lunch Lunch 14.30 Ostermann Akrivis Group photo Hairer 15.15 Gonzalez-Pinto Calvo 16.00 Coffee break Coffee break 16.30 Photo exhibition iii iv List of abstracts Monday, 17 June 2019 1 Zigzags with B¨urgi,Bernoulli, Euler and the Seidel-Entringer-Arnol'd tri- angle (Gerhard Wanner)......................... 1 Different faces of stiffness (Uri Ascher).................... 1 Convergence results for collocation methods different from the Bible (Peter Deuflhard)................................. 2 Low-rank splitting integrators for stiff differential equations (Alexander Ostermann)................................ 2 On the convergence in `p norms of a MoL approach based on AMF-W- methods for m-dimensional linear parabolic problems of diffusion- reaction type (Severiano Gonzalez-Pinto)................ 3 Tuesday, 18 June 2019 5 Numerical integrators for the Hamiltonian Monte Carlo method (Jesus Maria Sanz Serna)............................ 5 The Method of Reflections (Martin Gander)................. 5 Modeling the heart function (Alfio Quarteroni) ............... 6 Fast and oblivious quadrature for the Schr¨odingerequation (Lehel Banjai) 6 Energy-decaying Runge-Kutta methods for phase field equations (Georgios Akrivis) .................................. 6 High-order stroboscopic averaging methods for highly oscillatory delay problems (Mari Paz Calvo) ......................
    [Show full text]
  • Avenir De La Terre
    Avenir de la Terre L'avenir biologique et géologique de la Terre peut être extrapolé à partir de plusieurs facteurs, incluant la chimie de la surface de la Terre, la vitesse de refroidissement de l'intérieur de la Terre, les interactions gravitationnelles avec les autres objets du Système solaire et une augmentation constante de la luminosité solaire. Un facteur d'incertitude dans cette extrapolation est l'influence des 2 technologies introduites par les êtres humains comme la géo-ingénierie , qui 3, 4 peuvent causer des changements significatifs sur la planète . Actuellement, 5 6 l'extinction de l'Holocène est provoquée par la technologie et ses effets peuvent 7 durer cinq millions d'années . À son tour, la technologie peut provoquer l'extinction Illustration montrant la Terre après la transformation du Soleil engéante de l'humanité, laissant la Terre revenir graduellement à un rythme d'évolution plus 8, 9 rouge, scénario devant se dérouler lent résultant uniquement de processus naturels à long terme . 1 dans sept milliards d'années . Au cours d'intervalles de plusieurs millions d'années, des événements célestes aléatoires présentent un risque global pour la biosphère, pouvant aboutir à des extinctions massives. Ceci inclut les impacts provoqués par des comètes et des astéroïdes avec des diamètres de 5 à 10 km ou plus et les supernovas proches de la Terre. D'autres événements géologiques à grandes échelles sont plus facilement prédictibles. Si les effets du réchauffement climatique sur le long terme ne sont pas pris en compte, les paramètres de Milanković prédisent que la planète continuera à subir des périodes glaciaires au moins jusqu'à la fin des glaciations quaternaires.
    [Show full text]
  • Arxiv:1209.5996V1 [Astro-Ph.EP] 26 Sep 2012 1.1
    , 1{28 Is the Solar System stable ? Jacques Laskar ASD, IMCCE-CNRS UMR8028, Observatoire de Paris, UPMC, 77 avenue Denfert-Rochereau, 75014 Paris, France [email protected] R´esum´e. Since the formulation of the problem by Newton, and during three centuries, astrono- mers and mathematicians have sought to demonstrate the stability of the Solar System. Thanks to the numerical experiments of the last two decades, we know now that the motion of the pla- nets in the Solar System is chaotic, which prohibits any accurate prediction of their trajectories beyond a few tens of millions of years. The recent simulations even show that planetary colli- sions or ejections are possible on a period of less than 5 billion years, before the end of the life of the Sun. 1. Historical introduction 1 Despite the fundamental results of Henri Poincar´eabout the non-integrability of the three-body problem in the late 19th century, the discovery of the non-regularity of the Solar System's motion is very recent. It indeed required the possibility of calculating the trajectories of the planets with a realistic model of the Solar System over very long periods of time, corresponding to the age of the Solar System. This was only made possible in the past few years. Until then, and this for three centuries, the efforts of astronomers and mathematicians were devoted to demonstrate the stability of the Solar System. arXiv:1209.5996v1 [astro-ph.EP] 26 Sep 2012 1.1. Solar System stability The problem of the Solar System stability dates back to Newton's statement concerning the law of gravitation.
    [Show full text]
  • Press Release
    PRESS RELEASE Released on 15 July 2011 When minor planets Ceres and Vesta rock the Earth into chaos Based on the article “Strong chaos induced by close encounters with Ceres and Vesta”, by J. Laskar, M. Gastineau, J.-B. Delisle, A. Farrès, and A. Fienga Published in Astronomy & Astrophysics, 2011, vol. 532, L4 Astronomy & Astrophysics is publishing a new study of the orbital evolution of minor planets Ceres and Vesta, a few days before the Dawn spacecraft enters Vesta's orbit. A team of astronomers found that close encounters among these bodies lead to strong chaotic behavior of their orbits, as well as of the Earth's eccentricity. This means, in particular, that the Earth's past orbit cannot be reconstructed beyond 60 million years. Astronomy & Astrophysics is publishing numerical simulations of the long-term evolution of the orbits of minor planets Ceres and Vesta, which are the largest bodies in the asteroid belt, between Mars and Jupiter. Ceres is 6000 times less massive than the Earth and almost 80 times less massive than our Moon. Vesta is almost four times less massive than Ceres. These two minor bodies, long thought to peacefully orbit in the asteroid belt, are found to affect their large neighbors and, in particular, the Earth in a way that had not been anticipated. This is showed in the new astronomical computations released by Jacques Laskar from Paris Observatory and his colleagues [1]. Fig. 1. Observations of Ceres by NASA's Hubble Space Telescope. © NASA, ESA, J.-Y. Li (University of Maryland) and G. Bacon (STScI).
    [Show full text]
  • When Geology Reveals the Ancient Solar System
    When geology reveals the ancient solar system https://www.observatoiredeparis.psl.eu/when-geology-reveals-the.html Press release | CNRS When geology reveals the ancient solar system Date de mise en ligne : lundi 11 mars 2019 Observatoire de Paris - PSL Centre de recherche en astronomie et astrophysique Copyright © Observatoire de Paris - PSL Centre de recherche en astronomie et astrophysique Page 1/3 When geology reveals the ancient solar system Because of the chaotic nature of the Solar System, astronomers believed till now that it would be impossible to compute planetary positions and orbits beyond 60 million years in the past. An international team has now crossed this limit by showing how the analysis of geological data enables one to reach back to the state of the Solar System 200 million years ago. This work, to which have participated a CNRS astronomer from the Paris Observatory at the Institut de Mécanique Céleste et de Calcul des Ephémérides (Observatoire de Paris - PSL / CNRS / Sorbonne Université / Université de Lille), is published in the Proceedings of the National Academy of Sciences dated March 4th 2019. Le système solaire © Y. Gominet/IMCCE/NASA In contrast to one's ideas, the planets do not turn around the Sun on fixed orbits like an orrery. Every body in our Solar System affects the motion of all the others, somewhat as if they were all interconnected via springs : a small perturbation somewhere in the system influences all the planets, which tends to re-establish their original positions. Planetary orbits have a slow rotatory motion around the Sun and oscillate around a mean value.
    [Show full text]
  • Curriculum Vitæ
    Curriculum Vitæ LAURENT O. JAY September 2011 Position: Professor of Mathematics Associate Chair Director of Graduate Studies Address: Department of Mathematics 14 MacLean Hall The University of Iowa Iowa City, IA 52242-1419 USA Phone: +1 319 335 0898 Fax: +1 319 335 0627 E-mail: [email protected] Homepage: http://www.math.uiowa.edu/~ljay/ Higher Education • University of Geneva, Switzerland, Mathematics, Ph.D. (”Doctorat `es Sciences Mention Math´ematiques”), 1994. Advisor: Professor Ernst Hairer. • University of Geneva, Switzerland, Computer Science, M.Sc. (”Diplˆome d’Infor- maticien”), 1990. • University of Geneva, Switzerland, Mathematics, M.Sc. (”Diplˆome de Math´ema- ticien”), 1990. • University of Geneva, Switzerland, Computer Science, B.Sc. (”Licence `es Sci- ences Informatique”), 1989. Academic Positions Long Term Positions • Associate Chair and Director of Graduate Studies in Mathematics since July 2011. • Full Professor with tenure since July 2009, Department of Mathematics, Uni- versity of Iowa, Iowa City, USA. Associate Professor with tenure July 2003-June 2009. Assistant Professor, August 1998-June 2003. Affiliated faculty member of the interdisciplinary Program in Applied Mathematical and Computational 1 Sciences, July 2002-present. Courses taught so far: Graduate courses: Numeri- cal analysis I; Numerical analysis II; Nonlinear dynamics and chaos; Nonlinear dynamics with numerical methods; Optimization techniques; Ordinary differen- tial equations I; Ordinary differential equations II; Topics in numerical analy- sis; Topics in applied mathematics, Quantum mechanics (foundations, practical models, and algorithms). Undergraduate courses: Calculus I; Calculus II; Dif- ferential equations for engineers; Elementary numerical analysis; Engineering calculus I; Matrix algebra. • Postdoctoral Associate, February 1997-January 1998, Minnesota Supercom- puter Institute and Computer Science Department, University of Minnesota, Minneapolis, USA.
    [Show full text]