Australian Public Assessment Report for Zoledronic Acid

Total Page:16

File Type:pdf, Size:1020Kb

Australian Public Assessment Report for Zoledronic Acid Australian Public Assessment Report for Zoledronic Acid Proprietary Product Name: Aclasta/Osteovan Sponsor: Novartis Australia Pty Ltd August 2011 Therapeutic Goods Administration About the Therapeutic Goods Administration (TGA) · The TGA is a division of the Australian Government Department of Health and Ageing, and is responsible for regulating medicines and medical devices. · TGA administers the Therapeutic Goods Act 1989 (the Act), applying a risk management approach designed to ensure therapeutic goods supplied in Australia meet acceptable standards of quality, safety and efficacy (performance), when necessary. · The work of the TGA is based on applying scientific and clinical expertise to decision- making, to ensure that the benefits to consumers outweigh any risks associated with the use of medicines and medical devices. · The TGA relies on the public, healthcare professionals and industry to report problems with medicines or medical devices. TGA investigates reports received by it to determine any necessary regulatory action. · To report a problem with a medicine or medical device, please see the information on the TGA website. About AusPARs · An Australian Public Assessment Record (AusPAR) provides information about the evaluation of a prescription medicine and the considerations that led the TGA to approve or not approve a prescription medicine submission. · AusPARs are prepared and published by the TGA. · An AusPAR is prepared for submissions that relate to new chemical entities, generic medicines, major variations, and extensions of indications. · An AusPAR is a static document, in that it will provide information that relates to a submission at a particular point in time. · A new AusPAR will be developed to reflect changes to indications and/or major variations to a prescription medicine subject to evaluation by the TGA. Copyright © Commonwealth of Australia 2011 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Commonwealth. Requests and inquiries concerning reproduction and rights should be addressed to the Commonwealth Copyright Administration, Attorney General’s Department, National Circuit, Barton ACT 2600 or posted at http://www.ag.gov.au/cca AusPAR Aclasta/Osteovan Zoledronic acid Novartis Australia Pty Ltd PM-2010-01920-3-5 Page 2 of 129 Final 31 August 2011 Therapeutic Goods Administration Contents I. Introduction to Product Submission ____________________________________ 4 Product Background _______________________________________________________________________4 Regulatory Status ___________________________________________________________________________6 Product Information _______________________________________________________________________6 II. Quality Findings ____________________________________________________________ 7 III. Nonclinical Findings ______________________________________________________ 7 IV. Clinical Findings ___________________________________________________________ 7 Introduction _________________________________________________________________________________7 Pharmacokinetics___________________________________________________________________________7 Pharmacodynamics_________________________________________________________________________9 Efficacy ____________________________________________________________________________________ 11 Safety ______________________________________________________________________________________ 18 Clinical Summary and Conclusions _____________________________________________________ 35 V. Pharmacovigilance Findings ___________________________________________ 36 Risk Management Plan ___________________________________________________________________ 36 VI. Overall Conclusion and Risk/Benefit Assessment _________________ 37 Quality _____________________________________________________________________________________ 37 Nonclinical ________________________________________________________________________________ 37 Clinical _____________________________________________________________________________________ 37 Risk Management Plan ___________________________________________________________________ 39 Risk-Benefit Analysis _____________________________________________________________________ 39 Summary of the Response from Sponsor _______________________________________________ 40 Advisory Committee Considerations ___________________________________________________ 42 Outcome ___________________________________________________________________________________ 43 References ____________________________________________________________________ 44 Attachment 1. Product Information _____________________________________ 51 AusPAR Aclasta/Osteovan Zoledronic acid Novartis Australia Pty Ltd PM-2010-01920-3-5 Page 3 of 129 Final 31 August 2011 Therapeutic Goods Administration I. Introduction to Product Submission Submission Details Type of Submission Major Variation Decision: Approved Date of Decision: 29 July 2011 Active ingredient(s): Zoledronic acid Product Name(s): Aclasta/Osteovan Sponsor’s Name and Address: Novartis Australia Pty Ltd, PO Box 101, North Ryde, NSW 1670 Dose form(s): Solution for Injection Strength(s): 5 mg/100 mL Container(s): Vial Pack size(s): One vial. Also Multipacks of 3 or 6 vials. Approved Therapeutic use: Treatment of osteoporosis in postmenopausal women to reduce the incidence of hip, vertebral and non-vertebral fractures. Treatment of osteoporosis in patients over 50 years of age with a history of at least one low trauma hip fracture, to reduce the incidence of further fracture. To increase bone mineral density in men with osteoporosis. To increase bone mineral density in patients with osteoporosis associated with long term glucocorticoid use. To prevent glucocorticoid-induced bone mineral density loss. Treatment of Paget's disease of bone. Route(s) of administration: Intravenous (IV) Dosage: Single IV infusion of 5 mg Aclasta administered once a year.a ARTG Number (s) 134665 and 13466 All published references referred to in this AusPAR are listed under the heading References at the end of the document. Product Background Zoledronic acid belongs to the class of nitrogen-containing bisphosphonates which act primarily on bone. The selective action of bisphosphonates on bone is based on their high affinity for mineralized bone. Intravenously administered zoledronic acid is rapidly distributed to bone and, like other bisphosphonates, localises preferentially at sites of bone resorption and inhibits of osteoclast-mediated bone resorption. The main molecular target of zoledronic acid in the osteoclast is the enzyme farnesyl pyrophosphate synthase (FPPS), but this does not exclude other mechanisms. Most agents currently employed in the treatment of osteoporosis, including zoledronic acid (ZA), are osteoclast inhibitors. ZA, like other amino-bisphosphonates, acts in a stepwise fashion. (1) It a For osteoporosis, the duration of therapy should be restricted to no more than three annual doses, that is, three years. AusPAR Aclasta/Osteovan Zoledronic acid Novartis Australia Pty Ltd PM-2010-01920-3-5 Page 4 of 129 Final 31 August 2011 Therapeutic Goods Administration has a strong binding affinity for hydroxyapatite1 which takes up some 50% of the injected dose within minutes. (2) The drug is ingested by osteoclasts at resorbing surfaces of bone, so that the concentration within these cells is several orders of magnitude greater than in other cells. (3) Within the osteoclast, amino bisphosphonates act as cellular toxins. They competitively inhibit farnesyl diphosphate synthase2, an enzyme in the mevalonate pathway. Inhibition of this enzyme prevents the biosynthesis of farnesyl diphosphate and geranyl diphosphate, hydrophobic lipids which combine with guanosine triphosphate (GTP)-binding proteins (such as Ras, Rab and Rho) and without which, the signalling pathways of these proteins are impaired. While osteoblastic activity is also diminished by bisphosphonates, the anti-osteoclastic action of these agents (which may be due to other mechanisms as well as those associated with the inhibition of farnesyl diphosphate synthase) predominates, so that bone mineral loss is prevented and the incidence of fractures is reduced. Figure 1. The structure of zoledronic acid. The P-C-P backbone is common to all bisphosphonates. The affinity for hydroxyapatite and the inhibition of farnesyl diphosphate synthase varies with the structure of the side-chain. For reasons that are probably related to its heterocyclic ring structure (see Figure 1), ZA has a greater affinity for hydroxyapatite than most other bisphosphonates,3 and it is a more effective inhibitor of farnesyl diphosphate synthase. The relatively long duration of action of zoledronic acid is attributable to its high binding affinity for the active site of FPPS and its strong binding affinity to bone mineral. On a milligram for milligram basis, ZA is the most potent amino-bisphosphonate currently available regardless of the assay employed.4 The Advisory Committee for Prescription Medicines (ACPM) has considered zoledronic acid on several occasions. The Committee recommended that treatment be restricted to three annual doses at its April 2008 meeting; this was mainly because there were safety concerns relating to bisphosphonates that were not fully addressed in the limited data set submitted. In the current Australian submission, the sponsor has not requested any changes to
Recommended publications
  • Nitrate Prodrugs Able to Release Nitric Oxide in a Controlled and Selective
    Europäisches Patentamt *EP001336602A1* (19) European Patent Office Office européen des brevets (11) EP 1 336 602 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.7: C07C 205/00, A61K 31/00 20.08.2003 Bulletin 2003/34 (21) Application number: 02425075.5 (22) Date of filing: 13.02.2002 (84) Designated Contracting States: (71) Applicant: Scaramuzzino, Giovanni AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU 20052 Monza (Milano) (IT) MC NL PT SE TR Designated Extension States: (72) Inventor: Scaramuzzino, Giovanni AL LT LV MK RO SI 20052 Monza (Milano) (IT) (54) Nitrate prodrugs able to release nitric oxide in a controlled and selective way and their use for prevention and treatment of inflammatory, ischemic and proliferative diseases (57) New pharmaceutical compounds of general effects and for this reason they are useful for the prep- formula (I): F-(X)q where q is an integer from 1 to 5, pref- aration of medicines for prevention and treatment of in- erably 1; -F is chosen among drugs described in the text, flammatory, ischemic, degenerative and proliferative -X is chosen among 4 groups -M, -T, -V and -Y as de- diseases of musculoskeletal, tegumental, respiratory, scribed in the text. gastrointestinal, genito-urinary and central nervous sys- The compounds of general formula (I) are nitrate tems. prodrugs which can release nitric oxide in vivo in a con- trolled and selective way and without hypotensive side EP 1 336 602 A1 Printed by Jouve, 75001 PARIS (FR) EP 1 336 602 A1 Description [0001] The present invention relates to new nitrate prodrugs which can release nitric oxide in vivo in a controlled and selective way and without the side effects typical of nitrate vasodilators drugs.
    [Show full text]
  • Protocol Supplementary
    Optimal Pharmacological Management and Prevention of Glucocorticoid-Induced Osteoporosis (GIOP) Protocol for a Systematic Review and Network Meta-Analysis Supplementary Materials: Sample Search Strategy Supplementary 1: MEDLINE Search Strategy Database: OVID Medline Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Ovid MEDLINE(R) Daily and Ovid MEDLINE(R) 1946 to Present Line 1 exp Osteoporosis/ 2 osteoporos?s.ti,ab,kf. 3 Bone Diseases, Metabolic/ 4 osteop?eni*.ti,ab,kf. 5 Bone Diseases/ 6 exp Bone Resorption/ 7 malabsorption.ti,ab,kf. 8 Bone Density/ 9 BMD.ti,ab,kf. 10 exp Fractures, Bone/ 11 fracture*.ti,ab,kf. 12 (bone* adj2 (loss* or disease* or resorption* or densit* or content* or fragil* or mass* or demineral* or decalcif* or calcif* or strength*)).ti,ab,kf. 13 osteomalacia.ti,ab,kf. 14 or/1-13 15 exp Glucocorticoids/ 16 exp Steroids/ 17 (glucocorticoid* or steroid* or prednisone or prednisolone or hydrocortisone or cortisone or triamcinolone or dexamethasone or betamethasone or methylprednisolone).ti,ab,kf. 18 or/15-17 19 14 and 18 20 ((glucocorticoid-induced or glucosteroid-induced or corticosteroid-induced or glucocorticosteroid-induced) adj1 osteoporos?s).ti,ab,kf. 21 19 or 20 22 exp Diphosphonates/ 23 (bisphosphon* or diphosphon*).ti,ab,kf. 24 exp organophosphates/ or organophosphonates/ 25 (organophosphate* or organophosphonate*).ti,ab,kf. 26 (alendronate or alendronic acid or Fosamax or Binosto or Denfos or Fosagen or Lendrate).ti,ab,kf. 27 (Densidron or Adrovance or Alenotop or Alned or Dronat or Durost or Fixopan or Forosa or Fosval or Huesobone or Ostemax or Oseolen or Arendal or Beenos or Berlex or Fosalen or Fosmin or Fostolin or Fosavance).ti,ab,kf.
    [Show full text]
  • Ipriflavone in the Treatment of Postmenopausal Osteoporosis a Randomized Controlled Trial
    ORIGINAL CONTRIBUTION Ipriflavone in the Treatment of Postmenopausal Osteoporosis A Randomized Controlled Trial Peter Alexandersen, MD Context Data on the efficacy and safety of ipriflavone for prevention of postmeno- Anne Toussaint, MD pausal bone loss are conflicting. Claus Christiansen, MD, PhD Objectives To investigate the effect of oral ipriflavone on prevention of postmeno- pausal bone loss and to assess the safety profile of long-term treatment with iprifla- Jean-Pierre Devogelaer, MD, PhD vone in postmenopausal osteoporotic women. Christian Roux, MD, PhD Design and Setting Prospective, randomized, double-blind, placebo-controlled, 4-year Jacques Fechtenbaum, MD, PhD study conducted in 4 centers in Belgium, Denmark, and Italy from August 1994 to July 1998. Carlo Gennari, MD, PhD Participants Four hundred seventy-four postmenopausal white women, aged 45 Jean Yves Reginster, MD, PhD to 75 years, with bone mineral densities (BMDs) of less than 0.86 g/cm2. for the Ipriflavone Multicenter Interventions Patients were randomly assigned to receive ipriflavone, 200 mg 3 times European Fracture Study per day (n = 234), or placebo (n = 240); all received 500 mg/d of calcium. TUDIES OF IPRIFLAVONE, A SYN- Main Outcome Measures Efficacy measures included spine, hip, and forearm BMD thetic isoflavone derivative, have and biochemical markers of bone resorption (urinary hydroxyproline corrected for cre- atinine and urinary CrossLaps [Osteometer Biotech, Herlev, Denmark] corrected for suggested that it inhibits bone re- creatinine), assessed every 6 months. Laboratory safety measures and adverse events sorption and stimulates osteo- were recorded every 3 months. Sblast activity in vitro in cell cultures1,2 and Results Based on intent-to-treat analysis, after 36 months of treatment, the annual in vivo in experimental models of osteo- 3 percentage change from baseline in BMD of the lumbar spine for ipriflavone vs pla- porosis.
    [Show full text]
  • Date Database Search Strategy Filters Results Results After Duplicates
    Date Database Search Strategy Filters Results Results after Duplicates Removed 12/12/2018 PubMed (("Patient Participation"[Mesh] OR "Patient Participation" OR “Patient Filters: 120 108 Involvement” OR “Patient Empowerment” OR “Patient Participation Rates” English OR “Patient Participation Rate” OR “Patient Activation” OR “Patient Engagement” OR "Refusal to Participate"[Mesh] OR "Refusal to Participate" OR "Self Care"[Mesh] OR "Self Care" OR "Self-Care" OR “Well-being” OR Wellbeing OR “well being” OR "Walking"[Mesh] OR Walking OR Walk OR Walked OR Ambulation OR "Gait"[Mesh] OR Gait OR Gaits OR "Mobility Limitation"[Mesh] OR "Mobility Limitation" OR Mobility OR “Mobility Limitations” OR “Ambulation Difficulty” OR “Ambulation Difficulties” OR “Difficulty Ambulation” OR “Ambulatory Difficulty” OR “Ambulatory Difficulties” OR “Difficulty Walking” OR "Dependent Ambulation"[Mesh] OR "Dependent Ambulation" OR “functional status” OR “functional state” OR "Community Participation"[Mesh] OR "Community Participation" OR “Community Involvement” OR “Community Involvements” OR “Consumer Participation” OR “Consumer Involvement” OR “Public Participation” OR “Community Action” OR “Community Actions” OR "Social Participation"[Mesh] OR "Social Participation" OR "Activities of Daily Living"[Mesh] OR "Activities of Daily Living" OR ADL OR “Daily Living Activities” OR “Daily Living Activity” OR “Chronic Limitation of Activity” OR "Quality of Life"[Mesh] OR "Quality of Life" OR “Life Quality” OR “Health- Related Quality Of Life” OR “Health Related Quality Of
    [Show full text]
  • Botanicals in Postmenopausal Osteoporosis
    nutrients Review Botanicals in Postmenopausal Osteoporosis Wojciech Słupski, Paulina Jawie ´nand Beata Nowak * Department of Pharmacology, Wroclaw Medical University, ul. J. Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; [email protected] (W.S.); [email protected] (P.J.) * Correspondence: [email protected]; Tel.: +48-607-924-471 Abstract: Osteoporosis is a systemic bone disease characterized by reduced bone mass and the deterioration of bone microarchitecture leading to bone fragility and an increased risk of fractures. Conventional anti-osteoporotic pharmaceutics are effective in the treatment and prophylaxis of osteoporosis, however they are associated with various side effects that push many women into seeking botanicals as an alternative therapy. Traditional folk medicine is a rich source of bioactive compounds waiting for discovery and investigation that might be used in those patients, and therefore botanicals have recently received increasing attention. The aim of this review of literature is to present the comprehensive information about plant-derived compounds that might be used to maintain bone health in perimenopausal and postmenopausal females. Keywords: osteoporosis; menopause; botanicals; herbs 1. Introduction Women’s health and quality of life is modulated and affected strongly by hormone status. An oestrogen level that changes dramatically throughout life determines the Citation: Słupski, W.; Jawie´n,P.; development of women’s age-associated diseases. Age-associated hormonal imbalance Nowak, B. Botanicals in and oestrogen deficiency are involved in the pathogenesis of various diseases, e.g., obesity, Postmenopausal Osteoporosis. autoimmune disease and osteoporosis. Many female patients look for natural biological Nutrients 2021, 13, 1609. https:// products deeply rooted in folk medicine as an alternative to conventional pharmaceutics doi.org/10.3390/nu13051609 used as the prophylaxis of perimenopausal health disturbances.
    [Show full text]
  • Nutriceuticals: Over-The-Counter Products and Osteoporosis
    serum calcium levels are too low, and adequate calcium is not provided by the diet, calcium is taken from bone. Osteoporosis: Clinical Updates Long- term dietary calcium deficiency is a known risk Osteoporosis Clinical Updates is a publication of the National factor for osteo porosis. The recommended daily cal- Osteoporosis Foundation (NOF). Use and reproduction of this publication for educational purposes is permitted and cium intake from diet and supplements combined is encouraged without permission, with proper citation. This 1000 mg/day for people aged 19 to 50 and 1200 mg/ publication may not be used for commercial gain. NOF is a day for people older than 50. For all ages, the tolerable non-profit, 501(c)(3) educational organization. Suggested upper limit is 2500 mg calcium per day. citation: National Osteoporosis Foundation. Osteoporosis Clinical Updates. Issue Title. Washington, DC; Year. Adequate calcium intake is necessary for attaining peak bone mass in early life (until about age 30) and for Please direct all inquiries to: National Osteoporosis slowing the rate of bone loss in later life.3 Although Foundation 1150 17th Street NW Washington, DC 20037, calcium alone (or with vitamin D) has not been shown USA Phone: 1 (202) 223-2226 to prevent estrogen-related bone loss, multiple stud- Fax: 1 (202) 223-1726 www.nof.org ies have found calcium consumption between 650 mg Statement of Educational Purpose and over 1400 mg/day reduces bone loss and increases Osteoporosis Clinical Updates is published to improve lumbar spine BMD.4-6 osteoporosis patient care by providing clinicians with state-of-the-art information and pragmatic strategies on How to take calcium supplements: prevention, diagnosis, and treatment that they may apply in Take calcium supplements with food.
    [Show full text]
  • Phvwp Class Review Bisphosphonates and Osteonecrosis of the Jaw (Alendronic Acid, Clodronic Acid, Etidronic Acid, Ibandronic
    PhVWP Class Review Bisphosphonates and osteonecrosis of the jaw (alendronic acid, clodronic acid, etidronic acid, ibandronic acid, neridronic acid, pamidronic acid, risedronic acid, tiludronic acid, zoledronic acid), SPC wording agreed by the PhVWP in February 2006 Section 4.4 Pamidronic acid and zoledronic acid: “Osteonecrosis of the jaw has been reported in patients with cancer receiving treatment regimens including bisphosphonates. Many of these patients were also receiving chemotherapy and corticosteroids. The majority of reported cases have been associated with dental procedures such as tooth extraction. Many had signs of local infection including osteomyelitis. A dental examination with appropriate preventive dentistry should be considered prior to treatment with bisphosphonates in patients with concomitant risk factors (e.g. cancer, chemotherapy, radiotherapy, corticosteroids, poor oral hygiene). While on treatment, these patients should avoid invasive dental procedures if possible. For patients who develop osteonecrosis of the jaw while on bisphosphonate therapy, dental surgery may exacerbate the condition. For patients requiring dental procedures, there are no data available to suggest whether discontinuation of bisphosphonate treatment reduces the risk of osteonecrosis of the jaw. Clinical judgement of the treating physician should guide the management plan of each patient based on individual benefit/risk assessment.” Remaining bisphosphonates: “Osteonecrosis of the jaw, generally associated with tooth extraction and/or local infection (including osteomyelits) has been reported in patients with cancer receiving treatment regimens including primarily intravenously administered bisphophonates. Many of these patients were also receiving chemotherapy and corticosteroids. Osteonecrosis of the jaw has also been reported in patients with osteoporosis receiving oral bisphophonates. A dental examination with appropriate preventive dentistry should be considered prior to treatment with bisphosphonates in patients with concomitant risk factors (e.g.
    [Show full text]
  • Ipriflavone: an Important Bone-Building Isoflavone
    Ipriflavone: An Important Bone-Building Isoflavone Kathleen A. Head, N.D. Abstract Ipriflavone, an isoflavone synthesized from the soy isoflavone daidzein, holds great promise in the prevention and treatment of osteoporosis and other metabolic bone diseases. It has been widely studied in humans and found effective for inhibiting bone resorption and enhancing bone formation, the net result being an increase in bone density and a decrease in fracture rates in osteoporotic women. While ipriflavone appears to enhance estrogen’s effect, it does not possess intrinsic estrogenic activity, making it an attractive adjunct or alternative to conventional hormone replacement therapy. Preliminary studies have also found ipriflavone effective in preventing bone loss associated with chronic steroid use, immobility, ovariectomy, renal osteodystro- phy, and gonadotrophin hormone-releasing hormone agonists. In addition, it holds prom- ise for the treatment of other metabolic diseases affecting the bones, including Paget’s disease of the bone, hyperparathyroidism, and tinnitus caused by otosclerosis. (Altern Med Rev 1999;4(1):10-22) Introduction Ipriflavone (chemical structure: 7-isopropoxyisoflavone), derived from the soy isoflavone, daidzein, holds great promise for osteoporosis prevention and treatment (see Figure 1). Ipriflavone (IP) was discovered in the 1930s but has only recently begun to be embraced by the medical community in this country. Over 150 studies on safety and effective- ness, both animal and human, have been conducted in Italy, Hungary, and Japan. As of 1997, 2,769 patients had been treated a total of 3,132 patient years.1 Pharmacokinetics IP is metabolized mainly in the liver and excreted in the urine. Food appears to enhance its absorption.
    [Show full text]
  • June 2011 Circular No
    7 th June 2011 Circular No. P06/2011 Dear Healthcare Professional, Re: European Medicines Agency finalises review of bisphosphonates and atypical stress fractures Bisphosphonates have been authorised in the EU for hypercalcaemia and the prevention of bone problems in patients with cancer since the early 1990s. They have also been available since the mid 1990s for the treatment of osteoporosis and Paget’s disease of the bone. Bisphosphonates include alendronic acid, clodronic acid, etidronic acid, ibandronic acid, neridronic acid, pamidronic acid, risedronic acid, tiludronic acid and zoledronic acid. They are available in the EU as tablets and as solutions for infusion under various trade names and as generic medicines2. In 2008, the CHMP’s Pharmacovigilance Working Party (PhVWP) noted that alendronic acid was associated with an increased risk of atypical fracture of the femur (thigh bone) that developed with low or no trauma. As a result, a warning was added to the product information of alendronic acid-containing medicines across Europe. The PhVWP also concluded at the time that it was not possible to rule out the possibility that the effect could be a class effect (an effect common to all bisphosphonates), and decided to keep the issue under close review. In April 2010, the PhVWP noted that further data from both the published literature and post- marketing reports were now available that suggested that atypical stress fractures of the femur may be a class effect. The working party concluded that there was a need to conduct a further review to determine if any regulatory action was necessary. Page 1 of 3 Medicines Authority 203 Level 3, Rue D'Argens, Gzira, GZR 1368 – Malta.
    [Show full text]
  • Bone Protection in Myeloma
    Myeloma group BONE PROTECTION IN MYELOMA INDICATIONS • Long-term bisphosphonate therapy: This is the primary subject of this protocol. Prophylactic treatment should be given to all patients with myeloma requiring treatment, whether or not bone lesions are evident as per the BCSH Guidelines 20101 and should continue for at least 2 years.2 Discontinuing bisphosphonates after 2 years’ treatment in patients with well controlled disease, and restarting at relapse/progression is a reasonable approach. Therapy can be withheld 2 weeks prior to undergoing ASCT and re-initiated 2 months post-ASCT Denosumab is NOT routinely funded for bone protection in myeloma. For patients with renal impairment who are not eligible to receive bisphosphonates, Individual funding request must be approved prior to initiation of therapy. EVIDENCE • The 2012 Cochrane review suggested that adding bisphosphonates to the treatment of multiple myeloma reduces vertebral fracture, probably pain and possibly the incidence of hypercalcaemia.3 • For every 10 patients with myeloma treated with bisphosphonates one patient will avoid a vertebral fracture. • The Nordic myeloma study group compared the effect of two doses of (30 mg or 90 mg) pamidronate on health-related quality of life and skeletal morbidity in patients with newly diagnosed multiple myeloma in a randomised phase 3 trial. Primary outcome of physical function after 12 months and secondary outcome of time to first SRE were not significantly different in a 4 year follow up between the two drug doses.4 • Efficacy and safety of 120 mg Denosumab SC every 4 weeks or 4 mg zoledronic acid (dose- adjusted for reduced renal function) IV every 4 weeks were compared in three randomised, double blind, active controlled studies, in IV-bisphosphonate naïve patients with advanced malignancies involving bone: adults with breast cancer (study 1), other solid tumours or multiple myeloma (study 2), and castrate-resistant prostate cancer (study 3).
    [Show full text]
  • PRODUCT MONOGRAPH Pr Zoledronic Acid
    PRODUCT MONOGRAPH Pr Zoledronic Acid - A (zoledronic acid injection) 5 mg/100 mL solution for intravenous infusion Bone Metabolism Regulator Sandoz Canada Inc. Date of Revision: 145 Jules-Léger June 01, 2016 Boucherville, QC, Canada J4B 7K8 Control No. : TBD Zoledronic Acid – A Page 1 of 62 Table of Contents PART I: HEALTH PROFESSIONAL INFORMATION ............................................................ 3 SUMMARY PRODUCT INFORMATION ........................................................................... 3 INDICATIONS AND CLINICAL USE ................................................................................. 3 CONTRAINDICATIONS ....................................................................................................... 4 WARNINGS AND PRECAUTIONS ..................................................................................... 4 ADVERSE REACTIONS ..................................................................................................... 10 DOSAGE AND ADMINISTRATION ................................................................................. 25 OVERDOSAGE ..................................................................................................................... 27 ACTION AND CLINICAL PHARMACOLOGY............................................................... 27 STORAGE AND STABILITY ............................................................................................. 30 SPECIAL HANDLING INSTRUCTIONS .......................................................................... 30
    [Show full text]
  • Annexes to the Annual Report of the European Medicines Agency 2014
    Annexes to the annual report of the European Medicines Agency 2014 Table of contents Annex 1 – Members of the Management Board ............................................................................. 2 Annex 2 – Members of the Committee for Medicinal Products for Human Use ................................... 4 Annex 3 – Members of the Pharmacovigilance Risk Assessment Committee ...................................... 6 Annex 4 – Members of the Committee for Medicinal Products for Veterinary Use ............................... 8 Annex 5 – Members of the Committee on Orphan Medicinal Products ............................................ 10 Annex 6 – Members of the Committee on Herbal Medicinal Products .............................................. 12 Annex 07 – Committee for Advanced Therapies .......................................................................... 14 Annex 8 – Members of the Paediatric Committee ........................................................................ 16 Annex 9 – Working parties and working groups .......................................................................... 18 Annex 10 – CHMP opinions in 2014 on medicinal products for human use ...................................... 22 Annex 11 – CVMP opinions in 2014 on medicinal products for veterinary use .................................. 36 Annex 12 – COMP opinions in 2014 on designation of orphan medicinal products ............................ 41 Annex 13 – HMPC European Union herbal monographs in 2014....................................................
    [Show full text]