Nutriceuticals: Over-The-Counter Products and Osteoporosis

Total Page:16

File Type:pdf, Size:1020Kb

Nutriceuticals: Over-The-Counter Products and Osteoporosis serum calcium levels are too low, and adequate calcium is not provided by the diet, calcium is taken from bone. Osteoporosis: Clinical Updates Long- term dietary calcium deficiency is a known risk Osteoporosis Clinical Updates is a publication of the National factor for osteo porosis. The recommended daily cal- Osteoporosis Foundation (NOF). Use and reproduction of this publication for educational purposes is permitted and cium intake from diet and supplements combined is encouraged without permission, with proper citation. This 1000 mg/day for people aged 19 to 50 and 1200 mg/ publication may not be used for commercial gain. NOF is a day for people older than 50. For all ages, the tolerable non-profit, 501(c)(3) educational organization. Suggested upper limit is 2500 mg calcium per day. citation: National Osteoporosis Foundation. Osteoporosis Clinical Updates. Issue Title. Washington, DC; Year. Adequate calcium intake is necessary for attaining peak bone mass in early life (until about age 30) and for Please direct all inquiries to: National Osteoporosis slowing the rate of bone loss in later life.3 Although Foundation 1150 17th Street NW Washington, DC 20037, calcium alone (or with vitamin D) has not been shown USA Phone: 1 (202) 223-2226 to prevent estrogen-related bone loss, multiple stud- Fax: 1 (202) 223-1726 www.nof.org ies have found calcium consumption between 650 mg Statement of Educational Purpose and over 1400 mg/day reduces bone loss and increases Osteoporosis Clinical Updates is published to improve lumbar spine BMD.4-6 osteoporosis patient care by providing clinicians with state-of-the-art information and pragmatic strategies on How to take calcium supplements: prevention, diagnosis, and treatment that they may apply in Take calcium supplements with food. clinical practice. If unable to take calcium with food or if tak- ing acid-blocking medication, calcium citrate is Overall Objectives recommended Despite the availability of effective prevention, diagnostic, and treatment protocols for osteoporosis, research indicates Spread calcium out that it is significantly underdiagnosed and undertreated 600 mg or less is absorbed best at one time in the general population. Through this publication, NOF Best to take supplement at a relatively low- calcium encourages participants to incorporate current evidence meal and expert recommendations into clinical practice to Chew chewables, swallow tablets improve the bone health of their patients. Take with full glass of water and food Upon completion of each issue of Osteoporosis Clinical Dietary sources of calcium include: Updates, participants should be able to: Dairy products: milk (300 mg/cup), yogurt (300- Recognize current concepts in osteoporosis research 400 mg/cup) and cheeses (138 mg/cup skim cot- and clinical practice Identify implications of these concepts for osteoporosis tage cheese) patient care Fortified orange juices (300 mg/8 oz), breads (150- Adopt evidence-based strategies to study, prevent, and/ ® 200 mg/slice), and cereals (Total brand Raisin Bran or treat osteoporosis 1038 mg/cup); Improve patient care practices by integrating new data Nuts (almonds 75 mg/1 oz, about 25 nuts) and and/or techniques seeds (sesame seed butter, tahini, 64 mg/tbsp) Intended Audience Fish eaten with bones (sardines 325 mg/3oz, canned This continuing education activity is intended for salmon 183 mg/3oz) health professionals who care for patients at risk for or Soy milk (61 mg/cup) suffering from osteoporosis practicing in primary care, Tofu processed with calcium salts (164 mg/quarter endocrinology, geriatrics, gynecology, internal medicine, cup) obstetrics, orthopedics, osteopathy, pediatrics, physiatry, radiology, rheumatology, and/or physical therapy. Green vegetables, such as collards (357 mg/cup) This includes physicians, nurse practitioners, registered Beans, such as navy beans (126 mg/cup) and soy nurses, pharmacists, physician assistants, technologists, beans (261 mg/cup) researchers, public health professionals and health educators Calcium supplements are available in several forms: with an interest in osteoporosis and bone health. calcium carbonate (most common), calcium citrate, 3 and calcium phosphate. Compounds contain different Calcium Safety amounts of elemental calcium. Calcium intake should Concern has been raised about a possible connection be estimated on the basis of elemental calcium in the between calcium supplementation and cardiovascular supplement taken (shown on the nutrition supplement risks. Associations have been observed between calcium label). supplementation without vitamin D and increased risk Calcium in over-the-counter supplements is gener- of myocardial infarction (MI). Using a more powerful ally well absorbed in the various compounds available. tool of combining effects seen in individual studies by Individual users may find that one compound works meta-analysis of randomized trials of calcium supple- better for them because it causes fewer side effects, mentation (minus vitamin D), the same association was such as gas or constipation. Because the body doesn’t demonstrated: roughly a 30% increase in MI, but not readily absorb more than about 600 mg of elemental stroke or mortality.7,8 A similar, although smaller in- calcium at a time, it is best to take calcium supplements crease in MI was observed in meta-analysis of data from with a low-calcium meal and to spread out supple- the Women’s Health Initiative.9 ments, perhaps taking one in the morning and one at Data on calcium taken in conjunction with vitamin D night. Calcium carbonate is absorbed best when taken and pharmacotherapy for osteoporosis, however, have with food. Calcium citrate can be taken anytime. demonstrated no increase in overall mortality and Achieving bone-building and bone-preserving effects of cardiovascular events.10-12 There is still much that is pharmacologic therapies for osteoporosis requires ade- unknown about the risk of high calcium intake on the quate calcium intake. cardiovascular system. The current consensus is that calcium consumed through food intake is the best means to meet daily intake recommendations and is unlikely to have a nega- tive impact. Therefore, individuals should consume as much calcium as possible from foods. Supplements should be used only to bring all-source intake to rec- ommended levels of 1000-1200 mg/day. In general, more calcium than the recommended amount will not provide added benefit and may, indeed, pose a risk. In years past, the main concern about calcium supple- ments was lead contamination in calcium-carbonate based supplements derived from dolomite, bone meal, or unrefined oyster shell. Like other nutritional supple- ments, calcium supplements are not FDA tested for lead content. It is up to the manufacturer to ensure that a supplement meets FDA standards. The FDA Provisional Total Tolerable Intake level for lead is 75 mcg for adults. Several studies have found detectible lead in commercial calcium supplements.13,14 In 2008, the FDA tested lead content in 324 multivitamins sold in the U.S. Small amounts of lead were found in Figure 1. 7KLVFDOFLXPFDOFXODWRULVDYDLODEOHRQWKH12) most of them (320 of 324), but none came close to ZHEVLWH3DWLHQWVFDQXVHLWWRHVWLPDWHWKHLUFDOFLXPLQWDNH the harmful threshold (highest daily exposure was <5 15 DQGQHHGIRUVXSSOHPHQWDWLRQWRUHDFKLQWDNHJRDOV mcg/day). $YDLODEOHDWKWWSZZZQRIRUJDERXWRVWHRSRURVLV SUHYHQWLRQFDOFLXPFDOFXODWRU If the supplement has a USP label, the lead content has been tested and determined to be within accept- able levels. Most major brands of calcium supplements voluntarily meet the USP standards for purity and safe 4 lead levels. CME Program Eligibility Calcium is known to offset the effects of lead by block- Method of Participation in the Learning Process: Clinician ing its absorption (both in the sup plement and in other learners will read and analyze the subject matter, conduct dietary contributors of lead).16,17 Research has shown additional informal research through related internet that blood lead levels are lower in peo ple who take searches on the subject matter, and complete a post-test 18 assessment of knowledge and skills gained as a result of the calcium supplements than in those who do not. Data activity. available to date support the view that patients are safe After participating in this activity, the reader has the taking calcium-plus-vitamin-D supplements from re- option of taking a post-test with a passing grade of 70% or spected manufacturers. Patients should, however, avoid better to qualify for continuing education credit for this supplements derived from dolomite, bone meal, or activity. It is estimated it will take 1.0 hour(s) to complete the reading and take the post-test. Continuing education unre fined oyster shell. Be advised that calcium carbon- credit will be available for two years from the date of ate preparations are currently the least expensive and publication. the most widely available. Alternatives to calcium car- bonate include calcium citrate, calcium phosphate, and Accreditation The National Osteoporosis Foundation is accredited by the (by prescription) calcium acetate. Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. Vitamin D and Bone The National Osteoporosis Foundation designates this educational activity for a maximum of 1.0 AMA PRA Vitamin D regulates intestinal calcium absorption Category 1 Credit(s)TM. Physicians should only claim credit and helps
Recommended publications
  • Guidelines on Management of Osteoporosis, April 2011 (Updated 04/2012, 06/2013, 09/2013, 04/2014, 09/2014 and 02/2015)
    Hertfordshire Guidelines on Management of Osteoporosis, April 2011 (updated 04/2012, 06/2013, 09/2013, 04/2014, 09/2014 and 02/2015) Guidelines on Management of Osteoporosis Introduction These guidelines take into account recommendations from the DH Guidance on Falls and Fractures (Jul 2009), NICE Technology appraisals for Primary and Secondary Prevention (updated January 2011) and interpreted locally, National Osteoporosis Guideline Group (NOGG) and local decisions on choice of drug treatment. The recommendations in the guideline should be used to aid management decisions but do not replace the need for clinical judgement in the care of individual patients in clinical practice. Diagnosis of osteoporosis The diagnosis of osteoporosis relies on the quantitative assessment of bone mineral density (BMD), usually by central dual energy X-ray absorptiometry (DXA). BMD at the femoral neck provides the reference site. It is defined as a value for BMD 2.5 SD or more below the young female adult mean (T-score less than or equal to –2.5 SD). Severe osteoporosis (established osteoporosis) describes osteoporosis in the presence of 1 or more fragility fracture. Diagnostic thresholds differ from intervention thresholds for several reasons. Firstly, the fracture risk varies at different ages, even with the same T-score. Other factors that determine intervention thresholds include the presence of clinical risk factors and the cost and benefits of treatment. Investigation of osteoporosis The range of tests will depend on the severity of the disease, age at presentation and the presence or absence of fractures. The aims of the clinical history, physical examination and clinical tests are to: • Exclude diseases that mimic osteoporosis (e.g.
    [Show full text]
  • Alendronate, Etidronate, Risedronate, Raloxifene, Strontium Ranelate And
    Issue date: October 2008 (amended January 2010 and January 2011) Alendronate, etidronate, risedronate, raloxifene, strontium ranelate and teriparatide for the secondary prevention of osteoporotic fragility fractures in postmenopausal women (amended) NICE technology appraisal guidance 161 (amended) NICE technology appraisal guidance 161 (amended) Alendronate, etidronate, risedronate, raloxifene, strontium ranelate and teriparatide for the secondary prevention of osteoporotic fragility fractures in postmenopausal women (amended) Ordering information You can download the following documents from www.nice.org.uk/guidance/TA161 • The NICE guidance (this document). • A quick reference guide – the recommendations. • ‘Understanding NICE guidance’ – a summary for patients and carers. • Details of all the evidence that was looked at and other background information. For printed copies of the quick reference guide or ‘Understanding NICE guidance’, phone NICE publications on 0845 003 7783 or email [email protected] and quote: • N1725 (quick reference guide) • N1726 (’Understanding NICE guidance’). This guidance represents the view of NICE, which was arrived at after careful consideration of the evidence available. Healthcare professionals are expected to take it fully into account when exercising their clinical judgement. However, the guidance does not override the individual responsibility of healthcare professionals to make decisions appropriate to the circumstances of the individual patient, in consultation with the patient and/or guardian or carer. Implementation of this guidance is the responsibility of local commissioners and/or providers. Commissioners and providers are reminded that it is their responsibility to implement the guidance, in their local context, in light of their duties to avoid unlawful discrimination and to have regard to promoting equality of opportunity.
    [Show full text]
  • Ipriflavone in the Treatment of Postmenopausal Osteoporosis a Randomized Controlled Trial
    ORIGINAL CONTRIBUTION Ipriflavone in the Treatment of Postmenopausal Osteoporosis A Randomized Controlled Trial Peter Alexandersen, MD Context Data on the efficacy and safety of ipriflavone for prevention of postmeno- Anne Toussaint, MD pausal bone loss are conflicting. Claus Christiansen, MD, PhD Objectives To investigate the effect of oral ipriflavone on prevention of postmeno- pausal bone loss and to assess the safety profile of long-term treatment with iprifla- Jean-Pierre Devogelaer, MD, PhD vone in postmenopausal osteoporotic women. Christian Roux, MD, PhD Design and Setting Prospective, randomized, double-blind, placebo-controlled, 4-year Jacques Fechtenbaum, MD, PhD study conducted in 4 centers in Belgium, Denmark, and Italy from August 1994 to July 1998. Carlo Gennari, MD, PhD Participants Four hundred seventy-four postmenopausal white women, aged 45 Jean Yves Reginster, MD, PhD to 75 years, with bone mineral densities (BMDs) of less than 0.86 g/cm2. for the Ipriflavone Multicenter Interventions Patients were randomly assigned to receive ipriflavone, 200 mg 3 times European Fracture Study per day (n = 234), or placebo (n = 240); all received 500 mg/d of calcium. TUDIES OF IPRIFLAVONE, A SYN- Main Outcome Measures Efficacy measures included spine, hip, and forearm BMD thetic isoflavone derivative, have and biochemical markers of bone resorption (urinary hydroxyproline corrected for cre- atinine and urinary CrossLaps [Osteometer Biotech, Herlev, Denmark] corrected for suggested that it inhibits bone re- creatinine), assessed every 6 months. Laboratory safety measures and adverse events sorption and stimulates osteo- were recorded every 3 months. Sblast activity in vitro in cell cultures1,2 and Results Based on intent-to-treat analysis, after 36 months of treatment, the annual in vivo in experimental models of osteo- 3 percentage change from baseline in BMD of the lumbar spine for ipriflavone vs pla- porosis.
    [Show full text]
  • Botanicals in Postmenopausal Osteoporosis
    nutrients Review Botanicals in Postmenopausal Osteoporosis Wojciech Słupski, Paulina Jawie ´nand Beata Nowak * Department of Pharmacology, Wroclaw Medical University, ul. J. Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; [email protected] (W.S.); [email protected] (P.J.) * Correspondence: [email protected]; Tel.: +48-607-924-471 Abstract: Osteoporosis is a systemic bone disease characterized by reduced bone mass and the deterioration of bone microarchitecture leading to bone fragility and an increased risk of fractures. Conventional anti-osteoporotic pharmaceutics are effective in the treatment and prophylaxis of osteoporosis, however they are associated with various side effects that push many women into seeking botanicals as an alternative therapy. Traditional folk medicine is a rich source of bioactive compounds waiting for discovery and investigation that might be used in those patients, and therefore botanicals have recently received increasing attention. The aim of this review of literature is to present the comprehensive information about plant-derived compounds that might be used to maintain bone health in perimenopausal and postmenopausal females. Keywords: osteoporosis; menopause; botanicals; herbs 1. Introduction Women’s health and quality of life is modulated and affected strongly by hormone status. An oestrogen level that changes dramatically throughout life determines the Citation: Słupski, W.; Jawie´n,P.; development of women’s age-associated diseases. Age-associated hormonal imbalance Nowak, B. Botanicals in and oestrogen deficiency are involved in the pathogenesis of various diseases, e.g., obesity, Postmenopausal Osteoporosis. autoimmune disease and osteoporosis. Many female patients look for natural biological Nutrients 2021, 13, 1609. https:// products deeply rooted in folk medicine as an alternative to conventional pharmaceutics doi.org/10.3390/nu13051609 used as the prophylaxis of perimenopausal health disturbances.
    [Show full text]
  • Strontium Ranelate Cochrane Reviews Does It Affect the Management of Postmenopausal Osteoporosis?
    CLINICAL PRACTICE Strontium ranelate Cochrane reviews Does it affect the management of postmenopausal osteoporosis? This series of articles facilitated by the Cochrane Musculoskeletal Group (CMSG) aims to place the findings of recent Tania Winzenberg Cochrane musculoskeletal reviews in a context immediately relevant to general practitioners. This article considers MBBS, FRACGP, whether the availability of strontium ranelate affects the management of postmenopausal osteoporosis. MMedSc(ClinEpi), PhD, is Research Fellow – General Practice, Menzies Research Institute, University of Osteoporosis is a costly condition1,2 and is the fifth the pharmacologically active component of the compound Tasmania. tania.winzenberg@ most common musculoskeletal problem managed in and has been shown to simultaneously decrease bone utas.edu.au general practice at 0.9 per 100 patient encounters.3 resorption and stimulate bone formation both in vitro and in Sandi Powell Secondary prevention of osteoporotic fracture is poorly animal models,6 although the exact mechanisms for these MBBS(Hons), is junior implemented4 despite the availability of efficacious actions are as yet unclear. Research Fellow, Menzies Research Institute, and senior 1 treatments. O’Donnell et al performed a systematic review to assess endocrinology registrar, Royal the efficacy and adverse effects of strontium compared Hobart Hospital, Tasmania Strontium ranelate, a pharmacological treatment for to either placebo or other treatments for postmenopausal Graeme Jones osteoporosis which is relatively new to Australia, has been osteoporosis. The review results are summarised in Table MBBS(Hons), FRACP, MMedSc, available on the Pharmaceutical Benefits Scheme (PBS) 1 and how these results might affect practice are shown MD, FAFPHM, is Head, by authority prescription since April 2007.5 Strontium is in Table 2.
    [Show full text]
  • Ipriflavone: an Important Bone-Building Isoflavone
    Ipriflavone: An Important Bone-Building Isoflavone Kathleen A. Head, N.D. Abstract Ipriflavone, an isoflavone synthesized from the soy isoflavone daidzein, holds great promise in the prevention and treatment of osteoporosis and other metabolic bone diseases. It has been widely studied in humans and found effective for inhibiting bone resorption and enhancing bone formation, the net result being an increase in bone density and a decrease in fracture rates in osteoporotic women. While ipriflavone appears to enhance estrogen’s effect, it does not possess intrinsic estrogenic activity, making it an attractive adjunct or alternative to conventional hormone replacement therapy. Preliminary studies have also found ipriflavone effective in preventing bone loss associated with chronic steroid use, immobility, ovariectomy, renal osteodystro- phy, and gonadotrophin hormone-releasing hormone agonists. In addition, it holds prom- ise for the treatment of other metabolic diseases affecting the bones, including Paget’s disease of the bone, hyperparathyroidism, and tinnitus caused by otosclerosis. (Altern Med Rev 1999;4(1):10-22) Introduction Ipriflavone (chemical structure: 7-isopropoxyisoflavone), derived from the soy isoflavone, daidzein, holds great promise for osteoporosis prevention and treatment (see Figure 1). Ipriflavone (IP) was discovered in the 1930s but has only recently begun to be embraced by the medical community in this country. Over 150 studies on safety and effective- ness, both animal and human, have been conducted in Italy, Hungary, and Japan. As of 1997, 2,769 patients had been treated a total of 3,132 patient years.1 Pharmacokinetics IP is metabolized mainly in the liver and excreted in the urine. Food appears to enhance its absorption.
    [Show full text]
  • PRODUCT MONOGRAPH Pr Zoledronic Acid
    PRODUCT MONOGRAPH Pr Zoledronic Acid - A (zoledronic acid injection) 5 mg/100 mL solution for intravenous infusion Bone Metabolism Regulator Sandoz Canada Inc. Date of Revision: 145 Jules-Léger June 01, 2016 Boucherville, QC, Canada J4B 7K8 Control No. : TBD Zoledronic Acid – A Page 1 of 62 Table of Contents PART I: HEALTH PROFESSIONAL INFORMATION ............................................................ 3 SUMMARY PRODUCT INFORMATION ........................................................................... 3 INDICATIONS AND CLINICAL USE ................................................................................. 3 CONTRAINDICATIONS ....................................................................................................... 4 WARNINGS AND PRECAUTIONS ..................................................................................... 4 ADVERSE REACTIONS ..................................................................................................... 10 DOSAGE AND ADMINISTRATION ................................................................................. 25 OVERDOSAGE ..................................................................................................................... 27 ACTION AND CLINICAL PHARMACOLOGY............................................................... 27 STORAGE AND STABILITY ............................................................................................. 30 SPECIAL HANDLING INSTRUCTIONS .......................................................................... 30
    [Show full text]
  • Pharmaco-Economic Study for the Prescribing of Prevention and Treatment of Osteoporosis
    Technical Report 2: An analysis of the utilisation and expenditure of medicines dispensed for the prophylaxis and treatment of osteoporosis Technical report to NCAOP/HSE/DOHC By National Centre for Pharmacoeconomics An analysis of the utilisation and expenditure of medicines dispensed for the prophylaxis and treatment of osteoporosis February 2007 National Centre for Pharmacoeconomics Executive Summary 1. The number of prescriptions for the treatment and prophylaxis of osteoporosis has increased from 143,261 to 415,656 on the GMS scheme and from 52,452 to 136,547 on the DP scheme over the time period 2002 to 2005. 2. In 2005 over 60,000 patients received medications for the prophylaxis and treatment of osteoporosis on the GMS scheme with an associated expenditure of €16,093,676. 3. Approximately 80% of all patients who were dispensed drugs for the management of osteoporosis were prescribed either Alendronate (Fosamax once weekly) or Risedronate (Actonel once weekly) respectively. 4. On the DP scheme, over 27,000 patients received medications for the prophylaxis and treatment of osteoporosis in 2005 with an associated expenditure of € 6,028,925. 5. The majority of patients treated with drugs affecting bone structure were over 70 years e.g. 12,224 between 70 and 74yrs and 25,518 over 75yrs. 6. In relation to changes in treatment it was identified from the study that approximately 8% of all patients who are initiated on one treatment for osteoporosis are later switched to another therapy. 7. There was a statistically significant difference between the use of any osteoporosis medication and duration of prednisolone (dose response, chi- square test, p<0.0001).
    [Show full text]
  • Current and Potential Future Drug Treatments for Osteoporosis
    700 Annals ofthe Rheumatic Diseases 1996;55:700-714 REVIEW Ann Rheum Dis: first published as 10.1136/ard.55.10.700 on 1 October 1996. Downloaded from Current and potential future drug treatments for osteoporosis Sanjeev Patel Osteoporosis is the most common metabolic ture risk increases by a factor of 1.5 to 3.0.6 bone disease in the developed world and is Other determinants of osteoporotic fracture increasingly recognised as an important public are shown in table 1. health problem.' There is marked worldwide Drugs active on bone can be simplistically variation in its incidence. It is predicted that classified as those that inhibit bone resorption the incidence of hip fractures caused by or those that stimulate bone formation (table osteoporosis will increase, particularly in 2). The effects of these drugs on bone mineral developing countries.2 The human burden of density are summarised in fig 1. Drugs that osteoporosis is considerable, with increased stimulate bone formation lead to a direct morbidity and mortality, especially following increase in bone mineral density, whereas those osteoporotic hip fractures.' The current finan- that inhibit bone resorption result in limited cial burden is substantial, with estimated yearly increases in bone mineral density by costs of £750 million in the UK,' $10 billion in uncoupling bone turnover and allowing forma- the USA, and FF3.7 billion in France.3 The tion to continue in excess of resorption. This ability to measure bone mineral density and leads to an increase in bone mineral density thereby monitor response to intervention has due to filling in of the remodelling space (the been vital in the development ofpharmacologi- remodelling transient).7 It has been suggested cal treatments.
    [Show full text]
  • Recent Advances in the Pathogenesis and Treatment of Osteoporosis
    AGEING Clinical Medicine 2015 Vol 15, No 6: s92–s96 R e c e n t a d v a n c e s i n t h e p a t h o g e n e s i s a n d t r e a t m e n t of osteoporosis Authors: E l i z a b e t h M C u r t i s , A R e b e c c a J M o o n , B E l a i n e M D e n n i s o n , C N i c h o l a s C H a r v e y D a n d C y r u s C o o p e rE Over recent decades, the perception of osteoporosis has and propensity to fracture. Worldwide, there are nearly 9 changed from that of an inevitable consequence of ageing, to million osteoporotic fractures each year, and the US Surgeon that of a well characterised and treatable chronic non-commu- General's report of 2004, consistent with data from the UK, nicable disease, with major impacts on individuals, healthcare suggested that almost one in two women and one in five men systems and societies. Characterisation of its pathophysiol- will experience a fracture in their remaining lifetime from ABSTRACT ogy from the hierarchical structure of bone and the role of its the age of 50 years.1 The cost of osteoporotic fracture in the cell population, development of effective strategies for the UK approaches £3 billion annually and, across the EU, the identifi cation of those most appropriate for treatment, and estimated total economic cost of the approximately 3.5 million an increasing armamentarium of effi cacious pharmacologi- fragility fractures in 2010 was €37 billion.
    [Show full text]
  • Free PDF Download
    European Review for Medical and Pharmacological Sciences 2018; 22: 4669-4676 Ipriflavone promotes osteogenesis of MSCs derived from osteoporotic rats A.-G. GAO1,2, Y.-C. ZHOU2, Z.-J. HU2, B.-B. LU2 1Department of Orthopedics, The First Affiliated Hospital Of Soochow University, Suzhou, China 2Department of Orthopedics, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China Abstract. – OBJECTIVE: To explore whether celerated bone resorption, bone mass decrease, Ipriflavone could prevent postmenopausal oste- microstructure destruction and bone fragility oporosis (PMOP) and improve bone quality via elevation, thus eventually leading to high risk of promoting osteogenesis of bone marrow-de- fracture5. Therefore, PMOP is a serious problem rived mesenchymal stem cell (MSCs). 6 MATERIALS AND METHODS: MSCs were ex- that poses a great challenge in public health . In tracted from rats and identified using flow cy- recent years, hormone replacement therapy and tometry. Osteogenic specific genes and adipo- calcitonin intervention are the main treatments genic specific genes in MSCs were detected by for PMOP7. However, the long-term use of es- quantitative Real-time polymerase chain reac- trogen significantly increases the prevalence of tion (qRT-PCR). The effect of Ipriflavone on os- endometrial cancer and breast cancer8. Besides, teogenesis was detected by CCK-8 (cell count- the long-term use of calcitonin injection is incon- ing kit-8) assay, ALP activity detection, alizarin 3 red staining and Western blot, respectively. Fur- venient and expensive . Currently, Ipriflavone has thermore, ovariectomized PMOP rat model was been well recognized since it could effectively constructed. The effects of Ipriflavone on osteo- prevent PMOP9,10.
    [Show full text]
  • [Product Monograph Template
    PRODUCT MONOGRAPH Pr ZOLEDRONIC ACID INJECTION 5 mg / 100 mL zoledronic acid (as zoledronic acid monohydrate) Solution for intravenous infusion Bone Metabolism Regulator Manufacturer: Dr. Reddy’s Laboratories Limited Bachupally 500 090 – INDIA Imported/Distributed By: Date of Revision: August 1, 2019 Dr. Reddy’s Laboratories Canada Inc. Mississauga, ON L4W 4Y1 Canada Submission Control Number: 228238 1 Table of Contents PART I: HEALTH PROFESSIONAL INFORMATION ..................................................................... 3 SUMMARY PRODUCT INFORMATION .................................................................................... 3 INDICATIONS AND CLINICAL USE ......................................................................................... 3 CONTRAINDICATIONS ............................................................................................................... 4 WARNINGS AND PRECAUTIONS ............................................................................................. 4 ADVERSE REACTIONS ............................................................................................................. 10 DRUG INTERACTIONS.............................................................................................................. 24 DOSAGE AND ADMINISTRATION ......................................................................................... 25 OVERDOSAGE ............................................................................................................................ 27 ACTION AND CLINICAL
    [Show full text]