Nuclear Breakup of Borromean Nuclei

Total Page:16

File Type:pdf, Size:1020Kb

Nuclear Breakup of Borromean Nuclei PHYSICAL REVIEW C VOLUME 57, NUMBER 3 MARCH 1998 Nuclear breakup of Borromean nuclei G. F. Bertsch and K. Hencken* Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195 H. Esbensen Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 ~Received 1 August 1997! We study the eikonal model for the nuclear-induced breakup of Borromean nuclei, using 11Li and 6He as examples. The full eikonal model is difficult to realize because of six-dimensional integrals, but a number of simplifying approximations are found to be accurate. The integrated diffractive and one-nucleon stripping cross sections are rather insensitive to the neutron-neutron correlation, but the two-nucleon stripping does show some dependence on the correlation. The distribution of excitation energy in the neutron-core final state in one- neutron stripping reactions is quite sensitive to the shell structure of the halo wave function. Experimental data favor models with comparable amounts of s and p waves in the 11Li halo. @S0556-2813~98!03503-1# PACS number~s!: 25.60.Gc, 25.70.Mn, 21.45.1v, 27.20.1n I. INTRODUCTION during the interaction time, provided we take the interaction from nucleon-nucleon scattering. The energy domain around Halo nuclei having a very weakly bound neutron pair ~of- 250 MeV has an additional advantage from a theoretical ten referred to as Borromean nuclei! are interesting objects, point of view: The real part of the NN forward-scattering but they are difficult to study experimentally. Secondary in- amplitude goes through zero in this vicinity, so only the ab- teractions in radioactive beams have been an important tool, sorptive part of the interaction needs to be treated in the with Coulomb excitation providing quantitative data about theory. the excitation properties @1,2#. Nuclear excitation is also im- The nuclear excitation of Borromean nuclei have been portant from an experimental point of view, but the theoret- considered by a number of authors @7–14#. In treating the ical interpretation of nuclear reaction cross sections deserves differential cross sections, it is common to make a number of closer attention. In this work we attempt to make a link, as simplifying assumptions. We list them here. quantitative as possible, between the nuclear excitation ob- (i) Ground state wave function. Neutron-neutron correla- servables and the fundamental properties of a Borromean tions were neglected in Ref. @8#. We shall apply wave func- nucleus. The fact that correlations can play an important role tions that have the full three-particle correlations. It turns out makes this goal more difficult than for a nucleus with a that differential cross sections are quite insensitive to these correlations, except the two-neutron stripping, which does single-nucleon halo. On the experimental side, we have been show an effect. Independent-particle models can only de- inspired by the work on 11Li carried out at Ganil, NSCL, scribe pure configurations, so a mixture of s and p waves RIKEN and most recently at GSI. The extremely large Cou- requires a correlated model. lomb breakup cross section shows the halo character of the (ii) Reaction model. In this work we use an eikonal model nucleus, but the details of its wave function have been con- description of the nuclear reaction, improving on the black troversial. Starting from the shell model, two of us @3# con- disk model of Ref. @8#. structed a wave function that fits many Coulomb excitation (iii) Neutron-core potential. It is important to include the 2 measurements @4#. It had a dominant p1/2 shell configuration, final-state neutron-core potential in calculating the energy or as one expects from Hartree-Fock theory. However, several momentum spectra, as demonstrated in Refs. @11,14#. Refer- measurements ~see, for example, Ref. @5#! and also the spec- ence @9# also included the final-state interaction, using a 11 2 troscopy of the nearby nucleus Be suggest a leading s1/2 zero-range neutron-core potential. Our detailed models de- configuration in 11Li. scribed here use a realistic finite-range potential in both the In principle, a nuclear-induced breakup gives independent initial and final states. information and so it is desirable to calculate the various We shall investigate the validity of these as well as other cross sections and compare with experiment. A recent ex- approximations that are often made. Our main interest is the periment @6# was carried out on a 12C target at sensitivity of experiments to the properties of the halo 280 MeV/nucleon. At that energy it is justified to treat the nucleus. In a previous work @15# we developed models of the target-projectile interaction in the sudden approximation, us- 11Li ground-state wave function with differing amounts of s ing the NN forward scattering amplitude for the interaction. wave. One of our objectives is to see how well the amount of Thus we may neglect the evolution of the wave function s wave can be determined by the observables in a breakup reaction. The observables we consider are integrated cross sections for diffraction and one- and two-nucleon removal *Present address: Department fu¨r Physik und Astronomy, Univer- and the differential cross section for the excitation energy in sita¨t Basel, CH-4056 Basel, Switzerland. the 9Li1n final state when one neutron has been removed. 0556-2813/98/57~3!/1366~12!/$15.0057 1366 © 1998 The American Physical Society 57 NUCLEAR BREAKUP OF BORROMEAN NUCLEI 1367 II. REACTION MODEL over r1 and r2 become independent in a shell-model repre- sentation of C such as Eq. ~11!. Another simplifying ap- The sudden approximation leads to the eikonal model for 0 proximation is the transparent limit, defined here by setting nucleus-nucleus interactions. In previous studies, we have the factor S2(R ) equal to one inside the expectation value of applied the model to the nuclear-induced breakup of single- n 2 nucleon halo nuclei @16#. Here we apply it to the breakup of Eq. ~2!, thus neglecting the absorption of the second neutron. a two-neutron halo nucleus. The effect of the interaction with These two assumptions yield the cross section the target is to multiply the halo wave function by the profile functions S(Ri) for each particle, where Ri denotes the im- 2 2 2 s1n-st,trans52 d RSc~R!^12Sn~R1r1'!&. ~5! pact parameter of particle i with respect to a target nucleus. E The halo nucleus 11Li has two neutrons and a 9Li core, Note that this cross section is identical to the sum of the requiring two profile functions Sn and Sc associated with neutrons and the core, respectively. There are three inte- one-neutron-stripping cross section and two times the two- grated cross sections that leave the core intact, namely, the neutron-stripping cross section, diffractive, the one-nucleon stripping, and the two-nucleon stripping cross sections. These can be written s1n-st,trans5s1n-st12s2n-st . ~6! 2 2 We will see later that the two-neutron-stripping cross section sdif5E d Rcm$^@12Sc~Rc!Sn~R1!Sn~R2!# & is rather small, so the transparent limit is a good approxima- tion for this cross section. 2 2^@12Sc~Rc!Sn~R1!Sn~R2!#& % , ~1a! Of course, much more information about the halo is con- tained in differential cross sections. The diffractive cross sec- tion has three particles in the final state, but that distribution 5 d2R @^S2~R !S2~R !S2~R !& E cm c c n 1 n 2 is beyond what we can calculate, requiring three-particle 2 continuum wave functions for many partial waves. The one- 2^Sc~Rc!Sn~R1!Sn~R2!& #, ~1b! neutron stripping leaves two particles in the final state and the differential cross section for that state is amenable to s 52 d2R ^S2~R !S2~R !@12S2~R !#&, ~2! computation. The expression for the momentum distribution 1n-st E cm c c n 2 n 1 associated with the relative motion of the two surviving par- ticles is 2 2 2 2 s2n-st5 d Rcm^Sc~Rc!@12Sn~R1!#@12Sn~R2!#&, E dsst 52 d2R @12S2~R !# d3r uM~R ,r ,k!u2, ~3! d3k E 1 n 1 E 2c 1 2c ~7! where Rcm is the impact parameter of the halo nucleus with respect to the target nucleus and ^& denotes a ground-state where r is the center-of-mass coordinate of the remaining expectation value. Our ground-state wave function C is ex- 2c 0 neutron-core system with respect to the stripped neutron; the pressed in terms of the relative neutron-core distances r and 1 associated impact parameter with respect to the target r . An example of the needed expectation values is the one- 2 nucleus is denoted by R , R 5R 1r . The amplitude nucleon stripping integral 2c 2c 1 2c' M is given by ^S2S2~12S2!&5 d3r d3r uC ~r ,r !u2S2~R ! c n n E 1 2 0 1 2 c c 3 * M5 E d r2ck ~r2!Sc~Rc!Sn~R2!C0~r1 ,r2!. ~8! 2 2 3Sn~Rc1r2'!@12Sn~Rc1r1'!#. ~4! Here ck(r2) is the continuum wave function of the surviving The integrations are here performed for fixed Rcm so Rc neutron-core system, normalized to a plane wave at infinity. depends on the integration variables Rc5Rcm2(r1' The coordinates Rc , R2 , and r1 are expressed in terms of the 1r2')/(Ac12), where Ac is the mass number of the core integration variables as Rc5R2c2r2' /(Ac11), R25R2c nucleus. 1r2'Ac /(Ac11), and r152r2c1r2 /(Ac11). The six-dimensional integration in Eq. ~4! is very time The numerical calculation of Eq.
Recommended publications
  • Systematical Study of Optical Potential Strengths in Reactions Involving Strongly, Weakly Bound and Exotic Nuclei on 120Sn
    Systematical study of optical potential strengths in reactions involving strongly, weakly bound and exotic nuclei on 120Sn M. A. G. Alvarez, J. P. Fern´andez-Garc´ıa, J. L. Le´on-Garc´ıa Departamento FAMN, Universidad de Sevilla, Apartado 1065, 41080 Sevilla, Spain M. Rodr´ıguez-Gallardo Departamento FAMN, Universidad de Sevilla, Apartado 1065, 41080 Sevilla, Spain and Instituto Carlos I de F´ısica Te´orica y Computacional, Universidad de Sevilla, Spain L. R. Gasques, L. C. Chamon, V. A. B. Zagatto, A. L´epine-Szily, J. R. B. Oliveira Universidade de Sao Paulo, Instituto de Fisica, Rua do Matao, 1371, 05508-090, Sao Paulo, SP, Brazil V. Scarduelli Instituto de F´ısica, Universidade Federal Fluminense, 24210-340 Niter´oi,Rio de Janeiro, Brazil and Instituto de F´ısica da Universidade de S~aoPaulo, 05508-090, S~aoPaulo, SP, Brazil B. V. Carlson Departamento de F´ısica, Instituto Tecnol´ogico de Aeron´autica, S~aoJos´edos Campos, SP, Brazil J. Casal Dipartimento di Fisica e Astronomia "G. Galilei" and INFN-Sezione di Padova, Via Marzolo, 8, I-35131, Padova, Italy A. Arazi Laboratorio TANDAR, Comisi´onNacional de Energ´ıa At´omica, Av. Gral. Paz 1499, BKNA1650 San Mart´ın, Argentina D. A. Torres, F. Ramirez Departamento de F´ısica, Universidad Nacional de Colombia, Bogot´a,Colombia (Dated: December 20, 2019) We present new experimental angular distributions for the elastic scattering of 6Li + 120Sn at three bombarding energies. We include these data in a wide systematic involving the elastic scattering of 4;6He, 7Li, 9Be, 10B and 16;18O projectiles on the same target at energies around the respective Coulomb barriers.
    [Show full text]
  • Two-Proton Radioactivity 2
    Two-proton radioactivity Bertram Blank ‡ and Marek P loszajczak † ‡ Centre d’Etudes Nucl´eaires de Bordeaux-Gradignan - Universit´eBordeaux I - CNRS/IN2P3, Chemin du Solarium, B.P. 120, 33175 Gradignan Cedex, France † Grand Acc´el´erateur National d’Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, BP 55027, 14076 Caen Cedex 05, France Abstract. In the first part of this review, experimental results which lead to the discovery of two-proton radioactivity are examined. Beyond two-proton emission from nuclear ground states, we also discuss experimental studies of two-proton emission from excited states populated either by nuclear β decay or by inelastic reactions. In the second part, we review the modern theory of two-proton radioactivity. An outlook to future experimental studies and theoretical developments will conclude this review. PACS numbers: 23.50.+z, 21.10.Tg, 21.60.-n, 24.10.-i Submitted to: Rep. Prog. Phys. Version: 17 December 2013 arXiv:0709.3797v2 [nucl-ex] 23 Apr 2008 Two-proton radioactivity 2 1. Introduction Atomic nuclei are made of two distinct particles, the protons and the neutrons. These nucleons constitute more than 99.95% of the mass of an atom. In order to form a stable atomic nucleus, a subtle equilibrium between the number of protons and neutrons has to be respected. This condition is fulfilled for 259 different combinations of protons and neutrons. These nuclei can be found on Earth. In addition, 26 nuclei form a quasi stable configuration, i.e. they decay with a half-life comparable or longer than the age of the Earth and are therefore still present on Earth.
    [Show full text]
  • Scientific Opportunities with Fast Fragmentation Beams from RIA
    Scientific Opportunities with Fast Fragmentation Beams from RIA National Superconducting Cyclotron Laboratory Michigan State University March 2000 EXECUTIVE SUMMARY................................................................................................... 1 1. INTRODUCTION............................................................................................................. 5 2. EXTENDED REACH WITH FAST BEAMS .................................................................. 9 3. SCIENTIFIC MOTIVATION......................................................................................... 12 3.1. Properties of Nuclei far from Stability ..................................................................... 12 3.2. Nuclear Astrophysics................................................................................................ 15 4. EXPERIMENTAL PROGRAM...................................................................................... 20 4.1. Limits of Nuclear Existence ..................................................................................... 20 4.2. Extended and Unusual Distributions of Neutron Matter .......................................... 33 4.3. Properties of Bulk Nuclear Matter............................................................................ 39 4.4. Collective Oscillations.............................................................................................. 51 4.5. Evolution of Nuclear Properties Towards the Drip Lines ........................................ 56 Appendix A: Rate
    [Show full text]
  • Pair and Single Neutron Transfer with Borromean 8He A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by HAL-CEA Pair and single neutron transfer with Borromean 8He A. Lemasson, A. Navin, M. Rejmund, N. Keeley, V. Zelevinsky, S. Bhattacharyya, A. Shrivastava, Dominique Bazin, D. Beaumel, Y. Blumenfeld, et al. To cite this version: A. Lemasson, A. Navin, M. Rejmund, N. Keeley, V. Zelevinsky, et al.. Pair and single neutron transfer with Borromean 8He. Physics Letters B, Elsevier, 2011, 697, pp.454-458. <10.1016/j.physletb.2011.02.038>. <in2p3-00565792> HAL Id: in2p3-00565792 http://hal.in2p3.fr/in2p3-00565792 Submitted on 14 Feb 2011 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. Pair and single neutron transfer with Borromean 8He A. Lemassona,1, A. Navina,∗, M. Rejmunda, N. Keeleyb, V. Zelevinskyc, S. Bhattacharyyaa,d, A. Shrivastavaa,e, D. Bazinc, D. Beaumelf, Y. Blumenfeldf, A. Chatterjeee, D. Guptaf,2, G. de Francea, B. Jacquota, M. Labicheg, R. Lemmong, V. Nanalh, J. Nybergi, R. G. Pillayh, R. Raabea,3, K. Ramachandrane, J.A. Scarpacif, C. Schmitta, C. Simenelj, I. Stefana,f,4, C.N.
    [Show full text]
  • A Doorway to Borromean Halo Nuclei: the Samba Configuration
    A doorway to Borromean halo nuclei: the Samba configuration M. T. Yamashita Universidade Estadual Paulista, CEP 18409-010 Itapeva, SP, Brasil T. Frederico Departamento de F´ısica, Instituto Tecnol´ogico de Aeron´autica, Centro T´ecnico Aeroespacial, 12228-900 S˜ao Jos´edos Campos, Brasil M. S. Hussein Instituto de F´ısica, Universidade de S˜ao Paulo, C.P. 66318, CEP 05315-970 S˜ao Paulo, Brasil (Dated: October 22, 2018) We exploit the possibility of new configurations in three-body halo nuclei - Samba type - (the neutron-core form a bound system) as a doorway to Borromean systems. The nuclei 12Be, 15B, 23N and 27F are of such nature, in particular 23N with a half-life of 37.7 s and a halo radius of 6.07 fm is an excellent example of Samba-halo configuration. The fusion below the barrier of the Samba halo nuclei with heavy targets could reveal the so far elusive enhancement and a dominance of one-neutron over two-neutron transfers, in contrast to what was found recently for the Borromean halo nucleus 6He + 238U. PACS numbers: 25.70.Jj, 25.70.Mn, 24.10.Eq, 21.60.-n Borromean nuclei, be them halo or not, are quite com- isotope exists in oxygen (see, however, Ref. [1]). mon and their study has been intensive [1, 2, 3, 4]. These As an example we consider the boron isotopes: A = three-body systems have the property that any one of 8, 9, 10, 11, 12, 13, 14, 15, 17, 19. Both 17B and 19B their two-body subsystems is unbound.
    [Show full text]
  • Table of Contents (Online, Part 1)
    PERIODICALS Postmaster send address changes to: PHYSICALREVIEWCTM For editorial and subscription correspondence, PHYSICAL REVIEW C please see inside front cover APS Subscription Services (ISSN: 0556-2813) P.O. Box 41 Annapolis Junction, MD 20701 THIRD SERIES, VOLUME 90, NUMBER 6 CONTENTS DECEMBER 2014 RAPID COMMUNICATIONS Nuclear Structure Stretched states in 12,13B with the (d,α) reaction (5 pages) ................................................ 061301(R) A. H. Wuosmaa, J. P. Schiffer, S. Bedoor, M. Albers, M. Alcorta, S. Almaraz-Calderon, B. B. Back, P. F. Bertone, C. M. Deibel, C. R. Hoffman, J. C. Lighthall, S. T. Marley, R. C. Pardo, K. E. Rehm, and D. V. Shetty Intermediate-energy Coulomb excitation of 104Sn: Moderate E2 strength decrease approaching 100Sn (6 pages) ..................................................................................... 061302(R) P. Doornenbal, S. Takeuchi, N. Aoi, M. Matsushita, A. Obertelli, D. Steppenbeck, H. Wang, L. Audirac, H. Baba, P. Bednarczyk, S. Boissinot, M. Ciemala, A. Corsi, T. Furumoto, T. Isobe, A. Jungclaus, V. Lapoux, J. Lee, K. Matsui, T. Motobayashi, D. Nishimura, S. Ota, E. C. Pollacco, H. Sakurai, C. Santamaria, Y. Shiga, D. Sohler, and R. Taniuchi Probing shape coexistence by α decays to 0+ states (5 pages) ............................................. 061303(R) D. S. Delion, R. J. Liotta, Chong Qi, and R. Wyss Pairing-induced speedup of nuclear spontaneous fission (5 pages) .......................................... 061304(R) Jhilam Sadhukhan, J. Dobaczewski, W. Nazarewicz, J. A. Sheikh, and A. Baran Evidence of halo structure in 37Mg observed via reaction cross sections and intruder orbitals beyond the island of inversion (5 pages) ................................................................................ 061305(R) M. Takechi et al. From the lightest nuclei to the equation of state of asymmetric nuclear matter with realistic nuclear interactions (5 pages) ...............................................................................
    [Show full text]
  • Arxiv:2103.05357V1 [Nucl-Ex] 9 Mar 2021
    Experimental Study of Intruder Components in Light Neutron-rich Nuclei via Single-nucleon Transfer Reaction∗ Liu Wei,1 Lou Jianling,1, y Ye Yanlin,1 and Pang Danyang2 1School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China 2School of Physics, Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191, China With the development of radioactive beam facilities, study on the shell evolution in unstable nuclei has become a hot topic. The intruder components, especially s-wave intrusion, in the low-lying states of light neutron-rich nuclei near N = 8 are of particular importance for the study of shell evolution. Single-nucleon transfer reaction in inverse kinematics has been a sensitive tool to quantitatively investigate the single-particle- orbital component in the selectively populated states. The spin-parity, the spectroscopic factor (or single-particle strength), as well as the effective single-particle energy can be extracted from this kind of reaction. These ob- servables are often useful to explain the nature of shell evolution, and to constrain, check and test parameters used in nuclear structure models. In this article, we review the experimental studies of the intruder components in neutron-rich He, Li, Be, B, C isotopes by using various single-nucleon transfer reactions. Focus will be laid on the precise determination of the intruder s-wave strength in low-lying states. Keywords: single-nucleon transfer reaction, intruder component, light neutron-rich nuclei I. INTRODUCTION components in low-lying states. Sometimes, these two or- bitals are even inverted, which means the 2s1=2 orbital can Electrons confined by Coulomb potential in atoms possess intrude into 1d5=2, and occasionally even intrude into 1p1=2 a well-known shell structure.
    [Show full text]
  • The 29F Nucleus As a Lighthouse on the Coast of the Island of Inversion ✉ L
    PERSPECTIVE https://doi.org/10.1038/s42005-020-00402-5 OPEN The 29F nucleus as a lighthouse on the coast of the island of inversion ✉ L. Fortunato 1,2 , J. Casal 1,2, W. Horiuchi 3, Jagjit Singh 4 & A. Vitturi1,2 1234567890():,; The exotic, neutron-rich and weakly-bound isotope 29F stands out as a waymarker on the southern shore of the island of inversion, a portion of the nuclear chart where the effects of nuclear forces lead to a reshuffling of the single particle levels and to a reorganization of the nuclear structure far from stability. This nucleus has become very popular, as new measurements allow to refine theoretical models. We review the latest developments and suggest how to further assess the structure by proposing predictions on electromagnetic transitions that new experiments of Relativistic Coulomb Excitation should soon become able to measure. eakly bound nuclear systems severely test our ability to disentangle the mysteries and oddities of the nuclear interactions and how nuclear systems achieve stability. One of W fl the latest conundrums in this respect is the structure of the exotic 29- uorine isotope. With nine protons and 20 neutrons, it is located almost on the edge of the stability valley of the = nuclide chart, very close to the neutron drip-line, i.e., the dividing line (Sn 0, null separation energy) between bound and unbound neutron-rich nuclei. Pioneering researches on this isotope have recently skyrocketed, as more and more theoretical and experimental papers are being published. The main interest lies in understanding if it belongs to the so-called island of inversion, a portion of the nuclear chart where the standard list of single-particle energy levels (that are filled by nucleons, very similarly to the atomic physics counterpart, in a sort of Aufbauprinzip, a.k.a.
    [Show full text]
  • Nuclear Physics at the Edge of Stability
    Nuclear physics at the edge of stability French participation (staff only): N.L. Achouri1, P. Ascher2, M. Assié3, D. Beaumel3, B. Blank2, Y. Blumenfeld3, B. Borderie3, A. Chbihi4, A. Corsi5, S. Courtin6, F. Delaunay1, J.-P. Ebran7, F. Flavigny1, J. Frankland4, M. Gerbaux2, J. Gibelin1, J. Giovinazzo2, S. Grévy4, D. Gruyer1, F. Gulminelli1, G. Hupin3, E. Khan3, T. Kurtukian-Nieto1, D. Lacroix3, N. Le Neindre1, O. Lopez1, F. M. Marquès1, A. Matta1, F. de Oliveira Santos4, N. Orr1, M. Ploszajczak4, O. Sorlin4, M. Parlog1, I. Stefan3, G. Verde4 and E. Vient1 1LPC, 2CENBG,3IJCLab, 4GANIL, 5CEA/IRFU, 6IPHC, 7CEA/DAM Context The physics at the drip line is a relatively new topic in which French scientists have a very good experimental visibility and expertise, both on the neutron or proton-rich sides of the valley of stability and using different experimental techniques and instruments. The merit of studying the continuum was realized early in nuclear theory however the challenges still remind tremendous. This broad topic offers many potential new discoveries related to shell evolutions, clustering or halo formation and their medium dependence, evolution of pairing and nuclear superfluidity at the drip line, with connections spanning from others open quantum systems and universality of few-body systems to nuclear astrophysics, of which large swathes largely unknown. Introduction The mean field concept, which describes the atomic nucleus in terms of single nucleons moving in an average potential, augmented by two-body or three-body residual interactions, is a very successful tool to describe shell structure and shell evolutions along the chart of nuclei.
    [Show full text]
  • Halo Structure of the Neutron-Dripline Nucleus 19B K.J
    Halo Structure of the Neutron-Dripline Nucleus 19B K.J. Cook, T. Nakamura, Y. Kondo, K. Hagino, K. Ogata, A.T. Saito, N.L. Achouri, T. Aumann, H. Baba, F. Delaunay, et al. To cite this version: K.J. Cook, T. Nakamura, Y. Kondo, K. Hagino, K. Ogata, et al.. Halo Structure of the Neutron- Dripline Nucleus 19B. Phys.Rev.Lett., 2020, 124 (21), pp.212503. 10.1103/PhysRevLett.124.212503. hal-02870791 HAL Id: hal-02870791 https://hal.archives-ouvertes.fr/hal-02870791 Submitted on 20 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The halo structure of the neutron-dripline nucleus 19B K.J. Cook,1, ∗ T. Nakamura,1 Y. Kondo,1 K. Hagino,2 K. Ogata,3, 4 A.T. Saito,1 N.L. Achouri,5 T. Aumann,6, 7 H. Baba,8 F. Delaunay,5 Q. Deshayes,5 P. Doornenbal,8 N. Fukuda,8 J. Gibelin,5 J.W. Hwang,9 N. Inabe,8 T. Isobe,8 D. Kameda,8 D. Kanno,1 S. Kim,9 N. Kobayashi,1 T. Kobayashi,10 T. Kubo,8 S. Leblond,5, y J.
    [Show full text]
  • Frontiers in the Physics of Nucleus
    LV NATIONAL CONFERENCE ON NUCLEAR PHYSICS FRONTIERS IN THE PHYSICS OF NUCLEUS June 28–July 1, 2005 Saint-Petersburg Russia BOOK OF ABSTRACTS SAINT-PETERSBURG 2005 ST. PETERSBURG STATE UNIVERSITY V.A.FOCK INSTITUTE OF PHYSICS RUSSIAN ACADEMY OF SCIENCES PETERSBURG NUCLEAR PHYSICS INSTITUTE JOINT INSTITUTE FOR NUCLEAR RESEARCH LV NATIONAL CONFERENCE ON NUCLEAR PHYSICS «FRONTIERS IN THE PHYSICS OF NUCLEUS» BOOK OF ABSTRACTS June 28 – July 1, 2005 Saint-Petersburg Russia Saint-Petersburg 2005 EDITORIAL BOARD: Vlasnikov А.К. – Editor-in-chief Grigoriev E.P. – Properties of Atomic Nuclei (Experiment) Mikhajlov V.M. – Properties of Atomic Nuclei (Theory) Fadeev S.N. – Exotic and Heaviest Nuclei Lazarev V.V. – Experimental Investigations of Nuclear Reactions Bunakov V.E. – Theory of Nuclear Reactions Krasnov L.V. – Fundamental Interactions in Nuclear Physics Sergienko V.A. – Accelerator Facilities and Experimental Techniques LV NATIONAL CONFERENCE ON NUCLEAR PHYSICS «FRONTIERS IN THE PHYSICS OF NUCLEUS». BOOK OF ABSTRACS. The scientific program of the conference presented in the book of abstracts highlights almost all modern achievements in nuclear physics such as: drip-line nuclei, high-spin and super deformed states in nuclei, multiphonon and multiquasiparticle states in nuclei, many- body problem in atomic nuclei, effective interactions in nuclei, nonlinear nuclear dynamics, neutron-rich nuclei, neutron halo, cluster radioactivity, quark associations and nucleon- nucleon forces, mesons and quarks in nuclei, hyper nuclei, synthesis of new super
    [Show full text]
  • Investigation of the Unbound 21C Nucleus Via Transfer Reaction
    EPJ Web of Conferences 66, 03031 (2014) DOI: 10.1051/epjconf/2014 6603031 C Owned by the authors, published by EDP Sciences, 2014 Investigation of the unbound 21C nucleus via transfer reaction Tokuro Fukuia and Kazuyuki Ogata 1Research Center for Nuclear Physics, Osaka University, Osaka 567-0047, Japan Abstract. The cross section of the transfer reaction 20C(d,p)21C at 30.0 MeV is investi- gated. The continuum-discretized coupled-channels method (CDCC) is used in order to obtain the final state wave function. The smoothing procedure of the transition matrix and the channel-coupling effect on the cross section are discussed. 1 Introduction Interpretation of the properties of unbound nuclei which populate beyond the drip-line or as exited states of unstable nuclei, is one of the most important subjects in nuclear physics. This will be helpful to determine the drip-line in the nuclear chart. Very recently, for example, evidence for an unbound ground state of 26O was reported [1] which could extend the definition of the region for the existence of nuclei to the unbound state region. Unbound nuclei can exist as a product of a nuclear reaction because of their very short life-time compared with that of usual unstable nuclei. Reaction studies are thus important to investigate the properties of unbound nuclei. In this study we focus on 21C and aim to elucidate a resonance structure and roles of the non- resonant continuum states. Clarification of 21C properties will lead us to deeper understanding of 22C, the neutron drip-line nucleus of carbon isotopes, which contains n-20C subsystems.
    [Show full text]