The Isolated Electron
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Five Common Particles
The Five Common Particles The world around you consists of only three particles: protons, neutrons, and electrons. Protons and neutrons form the nuclei of atoms, and electrons glue everything together and create chemicals and materials. Along with the photon and the neutrino, these particles are essentially the only ones that exist in our solar system, because all the other subatomic particles have half-lives of typically 10-9 second or less, and vanish almost the instant they are created by nuclear reactions in the Sun, etc. Particles interact via the four fundamental forces of nature. Some basic properties of these forces are summarized below. (Other aspects of the fundamental forces are also discussed in the Summary of Particle Physics document on this web site.) Force Range Common Particles It Affects Conserved Quantity gravity infinite neutron, proton, electron, neutrino, photon mass-energy electromagnetic infinite proton, electron, photon charge -14 strong nuclear force ≈ 10 m neutron, proton baryon number -15 weak nuclear force ≈ 10 m neutron, proton, electron, neutrino lepton number Every particle in nature has specific values of all four of the conserved quantities associated with each force. The values for the five common particles are: Particle Rest Mass1 Charge2 Baryon # Lepton # proton 938.3 MeV/c2 +1 e +1 0 neutron 939.6 MeV/c2 0 +1 0 electron 0.511 MeV/c2 -1 e 0 +1 neutrino ≈ 1 eV/c2 0 0 +1 photon 0 eV/c2 0 0 0 1) MeV = mega-electron-volt = 106 eV. It is customary in particle physics to measure the mass of a particle in terms of how much energy it would represent if it were converted via E = mc2. -
Elementary Particles: an Introduction
Elementary Particles: An Introduction By Dr. Mahendra Singh Deptt. of Physics Brahmanand College, Kanpur What is Particle Physics? • Study the fundamental interactions and constituents of matter? • The Big Questions: – Where does mass come from? – Why is the universe made mostly of matter? – What is the missing mass in the Universe? – How did the Universe begin? Fundamental building blocks of which all matter is composed: Elementary Particles *Pre-1930s it was thought there were just four elementary particles electron proton neutron photon 1932 positron or anti-electron discovered, followed by many other particles (muon, pion etc) We will discover that the electron and photon are indeed fundamental, elementary particles, but protons and neutrons are made of even smaller elementary particles called quarks Four Fundamental Interactions Gravitational Electromagnetic Strong Weak Infinite Range Forces Finite Range Forces Exchange theory of forces suggests that to every force there will be a mediating particle(or exchange particle) Force Exchange Particle Gravitational Graviton Not detected so for EM Photon Strong Pi mesons Weak Intermediate vector bosons Range of a Force R = c Δt c: velocity of light Δt: life time of mediating particle Uncertainity relation: ΔE Δt=h/2p mc2 Δt=h/2p R=h/2pmc So R α 1/m If m=0, R→∞ As masses of graviton and photon are zero, range is infinite for gravitational and EM interactions Since pions and vector bosons have finite mass, strong and weak forces have finite range. Properties of Fundamental Interactions Interaction -
A Discussion on Characteristics of the Quantum Vacuum
A Discussion on Characteristics of the Quantum Vacuum Harold \Sonny" White∗ NASA/Johnson Space Center, 2101 NASA Pkwy M/C EP411, Houston, TX (Dated: September 17, 2015) This paper will begin by considering the quantum vacuum at the cosmological scale to show that the gravitational coupling constant may be viewed as an emergent phenomenon, or rather a long wavelength consequence of the quantum vacuum. This cosmological viewpoint will be reconsidered on a microscopic scale in the presence of concentrations of \ordinary" matter to determine the impact on the energy state of the quantum vacuum. The derived relationship will be used to predict a radius of the hydrogen atom which will be compared to the Bohr radius for validation. The ramifications of this equation will be explored in the context of the predicted electron mass, the electrostatic force, and the energy density of the electric field around the hydrogen nucleus. It will finally be shown that this perturbed energy state of the quan- tum vacuum can be successfully modeled as a virtual electron-positron plasma, or the Dirac vacuum. PACS numbers: 95.30.Sf, 04.60.Bc, 95.30.Qd, 95.30.Cq, 95.36.+x I. BACKGROUND ON STANDARD MODEL OF COSMOLOGY Prior to developing the central theme of the paper, it will be useful to present the reader with an executive summary of the characteristics and mathematical relationships central to what is now commonly referred to as the standard model of Big Bang cosmology, the Friedmann-Lema^ıtre-Robertson-Walker metric. The Friedmann equations are analytic solutions of the Einstein field equations using the FLRW metric, and Equation(s) (1) show some commonly used forms that include the cosmological constant[1], Λ. -
Lesson 1: the Single Electron Atom: Hydrogen
Lesson 1: The Single Electron Atom: Hydrogen Irene K. Metz, Joseph W. Bennett, and Sara E. Mason (Dated: July 24, 2018) Learning Objectives: 1. Utilize quantum numbers and atomic radii information to create input files and run a single-electron calculation. 2. Learn how to read the log and report files to obtain atomic orbital information. 3. Plot the all-electron wavefunction to determine where the electron is likely to be posi- tioned relative to the nucleus. Before doing this exercise, be sure to read through the Ins and Outs of Operation document. So, what do we need to build an atom? Protons, neutrons, and electrons of course! But the mass of a proton is 1800 times greater than that of an electron. Therefore, based on de Broglie’s wave equation, the wavelength of an electron is larger when compared to that of a proton. In other words, the wave-like properties of an electron are important whereas we think of protons and neutrons as particle-like. The separation of the electron from the nucleus is called the Born-Oppenheimer approximation. So now we need the wave-like description of the Hydrogen electron. Hydrogen is the simplest atom on the periodic table and the most abundant element in the universe, and therefore the perfect starting point for atomic orbitals and energies. The compu- tational tool we are going to use is called OPIUM (silly name, right?). Before we get started, we should know what’s needed to create an input file, which OPIUM calls a parameter files. Each parameter file consist of a sequence of ”keyblocks”, containing sets of related parameters. -
Chapter 5 the Relativistic Point Particle
Chapter 5 The Relativistic Point Particle To formulate the dynamics of a system we can write either the equations of motion, or alternatively, an action. In the case of the relativistic point par- ticle, it is rather easy to write the equations of motion. But the action is so physical and geometrical that it is worth pursuing in its own right. More importantly, while it is difficult to guess the equations of motion for the rela- tivistic string, the action is a natural generalization of the relativistic particle action that we will study in this chapter. We conclude with a discussion of the charged relativistic particle. 5.1 Action for a relativistic point particle How can we find the action S that governs the dynamics of a free relativis- tic particle? To get started we first think about units. The action is the Lagrangian integrated over time, so the units of action are just the units of the Lagrangian multiplied by the units of time. The Lagrangian has units of energy, so the units of action are L2 ML2 [S]=M T = . (5.1.1) T 2 T Recall that the action Snr for a free non-relativistic particle is given by the time integral of the kinetic energy: 1 dx S = mv2(t) dt , v2 ≡ v · v, v = . (5.1.2) nr 2 dt 105 106 CHAPTER 5. THE RELATIVISTIC POINT PARTICLE The equation of motion following by Hamilton’s principle is dv =0. (5.1.3) dt The free particle moves with constant velocity and that is the end of the story. -
Theory of More Than Everything1
Universally of Marineland Alimentary Gastronomy Universe of Murray Gell-Mann Elementary My Dear Watson Unified Theory of My Elementary Participles .. ^ n THEORY OF MORE THAN EVERYTHING1 V. Gates, Empty Kangaroo, M. Roachcock, and W.C. Gall 2 Compartment of Physiques and Astrology Universally of Marineland, Alleged kraP, MD ABSTRACT We derive a theory which, after spontaneous, dynamical, and ad hoc symmetry breaking, and after elimination of all fields except a set of zero measure, produces 10-dimensional superstring theory. Since the latter is a theory of only everything, our theory describes much more than everything, and includes also anything, something, and nothing. (More text should go here. So sue me.) 1Work supported by little or no evidence. 2Address after September 1, 1988: ITP, SHIITE, Roc(e)ky Brook, NY Uniformity of Modern Elementary Particle Physics Unintelligibility of Many Elementary Particle Physicists Universal City of Movieland Alimony Parties You Truth is funnier than fiction | A no-name moose1] Publish or parish | J.C. Polkinghorne Gimme that old minimal supergravity. Gimme that old minimal supergravity. It was good enough for superstrings. 1 It's good enough for me. ||||| Christian Physicist hymn1 2 ] 2. CONCLUSIONS The standard model has by now become almost standard. However, there are at least 42 constants which it doesn't explain. As is well known, this requires a 42 theory with at least @0 times more particles in its spectrum. Unfortunately, so far not all of these 42 new levels of complexity have been discovered; those now known are: (1) grandiose unification | SU(5), SO(10), E6,E7,E8,B12, and Niacin; (2) supersummitry2]; (3) supergravy2]; (4) supursestrings3−5]. -
1.1. Introduction the Phenomenon of Positron Annihilation Spectroscopy
PRINCIPLES OF POSITRON ANNIHILATION Chapter-1 __________________________________________________________________________________________ 1.1. Introduction The phenomenon of positron annihilation spectroscopy (PAS) has been utilized as nuclear method to probe a variety of material properties as well as to research problems in solid state physics. The field of solid state investigation with positrons started in the early fifties, when it was recognized that information could be obtained about the properties of solids by studying the annihilation of a positron and an electron as given by Dumond et al. [1] and Bendetti and Roichings [2]. In particular, the discovery of the interaction of positrons with defects in crystal solids by Mckenize et al. [3] has given a strong impetus to a further elaboration of the PAS. Currently, PAS is amongst the best nuclear methods, and its most recent developments are documented in the proceedings of the latest positron annihilation conferences [4-8]. PAS is successfully applied for the investigation of electron characteristics and defect structures present in materials, magnetic structures of solids, plastic deformation at low and high temperature, and phase transformations in alloys, semiconductors, polymers, porous material, etc. Its applications extend from advanced problems of solid state physics and materials science to industrial use. It is also widely used in chemistry, biology, and medicine (e.g. locating tumors). As the process of measurement does not mostly influence the properties of the investigated sample, PAS is a non-destructive testing approach that allows the subsequent study of a sample by other methods. As experimental equipment for many applications, PAS is commercially produced and is relatively cheap, thus, increasingly more research laboratories are using PAS for basic research, diagnostics of machine parts working in hard conditions, and for characterization of high-tech materials. -
A Young Physicist's Guide to the Higgs Boson
A Young Physicist’s Guide to the Higgs Boson Tel Aviv University Future Scientists – CERN Tour Presented by Stephen Sekula Associate Professor of Experimental Particle Physics SMU, Dallas, TX Programme ● You have a problem in your theory: (why do you need the Higgs Particle?) ● How to Make a Higgs Particle (One-at-a-Time) ● How to See a Higgs Particle (Without fooling yourself too much) ● A View from the Shadows: What are the New Questions? (An Epilogue) Stephen J. Sekula - SMU 2/44 You Have a Problem in Your Theory Credit for the ideas/example in this section goes to Prof. Daniel Stolarski (Carleton University) The Usual Explanation Usual Statement: “You need the Higgs Particle to explain mass.” 2 F=ma F=G m1 m2 /r Most of the mass of matter lies in the nucleus of the atom, and most of the mass of the nucleus arises from “binding energy” - the strength of the force that holds particles together to form nuclei imparts mass-energy to the nucleus (ala E = mc2). Corrected Statement: “You need the Higgs Particle to explain fundamental mass.” (e.g. the electron’s mass) E2=m2 c4+ p2 c2→( p=0)→ E=mc2 Stephen J. Sekula - SMU 4/44 Yes, the Higgs is important for mass, but let’s try this... ● No doubt, the Higgs particle plays a role in fundamental mass (I will come back to this point) ● But, as students who’ve been exposed to introductory physics (mechanics, electricity and magnetism) and some modern physics topics (quantum mechanics and special relativity) you are more familiar with.. -
1 Solving Schrödinger Equation for Three-Electron Quantum Systems
Solving Schrödinger Equation for Three-Electron Quantum Systems by the Use of The Hyperspherical Function Method Lia Leon Margolin 1 , Shalva Tsiklauri 2 1 Marymount Manhattan College, New York, NY 2 New York City College of Technology, CUNY, Brooklyn, NY, Abstract A new model-independent approach for the description of three electron quantum dots in two dimensional space is developed. The Schrödinger equation for three electrons interacting by the logarithmic potential is solved by the use of the Hyperspherical Function Method (HFM). Wave functions are expanded in a complete set of three body hyperspherical functions. The center of mass of the system and relative motion of electrons are separated. Good convergence for the ground state energy in the number of included harmonics is obtained. 1. Introduction One of the outstanding achievements of nanotechnology is construction of artificial atoms- a few-electron quantum dots in semiconductor materials. Quantum dots [1], artificial electron systems realizable in modern semiconductor structures, are ideal physical objects for studying effects of electron-electron correlations. Quantum dots may contain a few two-dimensional (2D) electrons moving in the plane z=0 in a lateral confinement potential V(x, y). Detailed theoretical study of physical properties of quantum-dot atoms, including the Fermi-liquid-Wigner molecule crossover in the ground state with growing strength of intra-dot Coulomb interaction attracted increasing interest [2-4]. Three and four electron dots have been studied by different variational methods [4-6] and some important results for the energy of states have been reported. In [7] quantum-dot Beryllium (N=4) as four Coulomb-interacting two dimensional electrons in a parabolic confinement was investigated. -
One-Electron Atom
One-electron Atom The atomic orbitals of hydrogen-like atoms are solutions to the Schrödinger equation in a spherically symmetric potential. In this case, the potential term is the potential given by Coulomb's law: where •ε0 is the permittivity of the vacuum, •Z is the atomic number (number of protons in the nucleus), •e is the elementary charge (charge of an electron), •r is the distance of the electron from the nucleus. After writing the wave function as a product of functions: (in spherical coordinates), where Ylm are spherical harmonics, we arrive at the following Schrödinger equation: 2010年10月11日星期一 where µ is, approximately, the mass of the electron. More accurately, it is the reduced mass of the system consisting of the electron and the nucleus. Different values of l give solutions with different angular momentum, where l (a non-negative integer) is the quantum number of the orbital angular momentum. The magnetic quantum number m (satisfying ) is the (quantized) projection of the orbital angular momentum on the z-axis. 2010年10月11日星期一 Wave function In addition to l and m, a third integer n > 0, emerges from the boundary conditions placed on R. The functions R and Y that solve the equations above depend on the values of these integers, called quantum numbers. It is customary to subscript the wave functions with the values of the quantum numbers they depend on. The final expression for the normalized wave function is: where: • are the generalized Laguerre polynomials in the definition given here. • Here, µ is the reduced mass of the nucleus-electron system, where mN is the mass of the nucleus. -
Gravitational Field of Massive Point Particle in General Relativity
Gravitational Field of Massive Point Particle in General Relativity P. P. Fiziev∗ Department of Theoretical Physics, Faculty of Physics, Sofia University, 5 James Bourchier Boulevard, Sofia 1164, Bulgaria. and The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34014 Trieste, Italy. Utilizing various gauges of the radial coordinate we give a description of static spherically sym- metric space-times with point singularity at the center and vacuum outside the singularity. We show that in general relativity (GR) there exist a two-parameters family of such solutions to the Einstein equations which are physically distinguishable but only some of them describe the gravitational field of a single massive point particle with nonzero bare mass M0. In particular, we show that the widespread Hilbert’s form of Schwarzschild solution, which depends only on the Keplerian mass M < M0, does not solve the Einstein equations with a massive point particle’s stress-energy tensor as a source. Novel normal coordinates for the field and a new physical class of gauges are proposed, in this way achieving a correct description of a point mass source in GR. We also introduce a gravi- tational mass defect of a point particle and determine the dependence of the solutions on this mass − defect. The result can be described as a change of the Newton potential ϕN = GN M/r to a modi- M − 2 0 fied one: ϕG = GN M/ r + GN M/c ln M and a corresponding modification of the four-interval. In addition we give invariant characteristics of the physically and geometrically different classes of spherically symmetric static space-times created by one point mass. -
1 the Principle of Wave–Particle Duality: an Overview
3 1 The Principle of Wave–Particle Duality: An Overview 1.1 Introduction In the year 1900, physics entered a period of deep crisis as a number of peculiar phenomena, for which no classical explanation was possible, began to appear one after the other, starting with the famous problem of blackbody radiation. By 1923, when the “dust had settled,” it became apparent that these peculiarities had a common explanation. They revealed a novel fundamental principle of nature that wascompletelyatoddswiththeframeworkofclassicalphysics:thecelebrated principle of wave–particle duality, which can be phrased as follows. The principle of wave–particle duality: All physical entities have a dual character; they are waves and particles at the same time. Everything we used to regard as being exclusively a wave has, at the same time, a corpuscular character, while everything we thought of as strictly a particle behaves also as a wave. The relations between these two classically irreconcilable points of view—particle versus wave—are , h, E = hf p = (1.1) or, equivalently, E h f = ,= . (1.2) h p In expressions (1.1) we start off with what we traditionally considered to be solely a wave—an electromagnetic (EM) wave, for example—and we associate its wave characteristics f and (frequency and wavelength) with the corpuscular charac- teristics E and p (energy and momentum) of the corresponding particle. Conversely, in expressions (1.2), we begin with what we once regarded as purely a particle—say, an electron—and we associate its corpuscular characteristics E and p with the wave characteristics f and of the corresponding wave.