Fall 2009 PHYS 172: Modern Mechanics

Total Page:16

File Type:pdf, Size:1020Kb

Fall 2009 PHYS 172: Modern Mechanics PHYS 172: Modern Mechanics Fall 2009 Lecture 16 - Multiparticle Systems; Friction in Depth Read 8.6 Exam #2: Multiple Choice: average was 56/70 Handwritten: average was 15/30 Total average was 71/100 Remember, we are using an absolute grading scale where the values for each grade are listed on the syllabus Typically, exam grades (500/820 points) are lower than homework, recitation, clicker, & labs grades Clicker Question #1 You get in a parked car and start driving. Assume that you travel a distance D in 10 seconds, with a constant acceleration a. Define the system to be the car plus the driver (you), whose total mass is M and acceleration a. Choose the correct statement for this system: A. The final total kinetic energy is Ktotal= MaD. B. The final translational kinetic energy is Ktrans= MaD. C. The total energy of the system changes by +MaD. D. The total energy of the system changes by -MaD.. E. The total energy of the system does not change. Clicker Question Discussion You get in a parked car and start driving. Assume that you travel a distance D in 10 seconds, with a constant acceleration a. Define the system to be the car plus the driver (you), whose total mass is M and acceleration a. Choose the correct statement for this system: A. The final total kinetic energy is Ktotal= MaD.No, this is just the translational K. There is also relative K (wheels, etc.) B. The final translational kinetic energy is Ktrans= MaD. Correct, use point particle system; force is friction applied by the road on the tires. C. The total energy of the system changes by +MaD. No, total energy will decrease; fuel is consumed. D. The total energy of the system changes by -MaD.No, there are other energy losses to Krelative and Q. E. The total energy of the system does not change. No, heat goes out the exhaust pipe (from burning fuel)…. Further Discussion The center of mass of this system is accelerating. Hence, Macm must be equal to the sum of all external forces. Friction is pushing the car! (Does friction always oppose the motion?) r dP uv r total F net,ext =M a = The force of friction from the road on the tires is Ma . total cm dt cm Throw a Baton This result says that the center of mass of a complex system moves as if all forces r dP were applied to the entire mass at that uv r total point. F net,ext =M totalacm = dt Throw a baseball, and you see parabolic motion. What happens if you throw a baton? 1D-11 Trajectory of the Center of Mass Center of Mass Motion - Review Which puck will move faster? r dP r tot ! M ar = F dt cm net,surr Both pucks move at same speed! HOWEVER: Hand #2 has to pull the string farther: W2 > W1. Where does this energy go? Rotational energy. The bottom spool is spinning. Point Particle vs Real Systems When we treat a real system as a point particle system: •The net external force acts on the Center of Mass •The change in the point particle’s translational kinetic energy is equal to the work done by the net external force in moving the CM through a displacement Δr, ie, f r !K = F " drr trans # ext cm i •The point particle system has no internal degrees of freedom. Therefore it cannot undergo a change of its internal energy - of any sort! Point Particle vs Real Systems In contrast, a real multiparticle system has internal degrees of freedom that may undergo a change of energy when the system is subjected to exertnal forces. The net external force does Work on the system given by: f r W = F ! drr ext " ext i Note that the displacement in the above expression is not that of the CM but that through which the net force acts. If an external force does not act through a displacement, it does no work on the real system! (Friction, for example.) In general, this work appears as changes in the real system’s translational kinetic energy and its internal energy. The internal energy may appear as rotational motion, potential energy, thermal energy…(yo-yo: p. 290) Clicker Question - Review Through what distance did the force act on the Point Particle system? A) 0.03 m B) 0.04 m C) 0.07 m D) 0.08 m E) 0.10 m Clicker Question - Review Which is the energy equation for the Point Particle system? A) ΔKtrans = F*(0.07 m) B) ΔKtrans = F*(0.08 m) C) ΔKtrans + ΔKvib + ΔUspring = F*(0.07 m) D) ΔKtrans + ΔKvib + ΔUspring = F*(0.08 m) Clicker Question - Review Through what distance did the force act on the Real system? A) 0.03 m B) 0.04 m C) 0.07 m D) 0.08 m E) 0.10 m Clicker Question #2 Which is the energy equation for the Real system? A) ΔKtrans = F*(0.07 m) B) ΔKtrans = F*(0.08 m) C) ΔKtrans + ΔKvib + ΔUspring = F*(0.07 m) D) ΔKtrans + ΔKvib + ΔUspring = F*(0.08 m) Clicker Questions Summary Real system: ΔKtrans + ΔKvib + ΔUspring = F*(0.08 m) Point particle system: ΔKtrans = F*(0.07 m) We thus conclude that ΔKvib + ΔUspring = F*(0.01 m) or, using our previous notation, ΔEinternal = F*(0.01 m) The point particle technique may seem strange, but it’s very powerful. How else could we find ΔEinternal? A Paradox Exert a constant force F and move the block a distance d at constant velocity. You do an amount of work Fd, and friction does an amount of work -Fd (because f=-F). Apparently the net work done on the block is zero. However, the block got hotter. How can the block get hotter if no work was done on it? Reading Question - Sec. 8.6 Regarding the paradox: A. This paradox cannot be resolved. B. There is no paradox, because the block does not actually get hotter. C. It’s not actually possible to have the frictional force exactly equal the force pulling the block. D. Friction must somehow not be doing the same amount of work as the force pulling the block. E. None of the above. How can the block get hotter if no work was done on it? Analysis of Point Particle System Point Particle System: All external forces are applied to the center of mass; correctly describes the motion of the center of mass. !Ktranslational = (F " f )d Since v=constant, no change in K, so: r r F = f Can this tell us anything about internal motions of the system? Analysis of the Real System !Ktrans + !Ethermal = Fd + W friction For simplicity, assume Q=0. !Ethermal = Fd + W friction Since ΔK=0. Since this is the real system, not the point particle system, forces do not all act at the same point, and they do not have to act over the same distance: !Ethermal = Fd " fdeffective # 0 We must have F=-f, but not d=deff! A Model for Friction Actual work done by friction forces: KEY ISSUE - The point of contact where the friction force is applied moves a shorter distance than the distance the block moves. This means friction does less work than expected. A More Realistic Model Instead of teeth stuck on each other, let them drag on opposite surfaces. Each then applies force F/2. When the top block moves by d, one tooth moves by d, while the other one just bends, meaning no displacement at the contact. Only one tooth does work across the distance d, with a force F/2, so only half of the expected amount of work is done. 2 Identical Blocks Consider 2 identical blocks as shown. Lower block is fixed. Total work done on the system (2 blocks) is just Fd (top block displacement d). Divide the increased thermal energy between the two blocks: !Eth,1 + !Eth,2 = Fd Fd !E = = Fd " Fd th,1 2 eff Hence, deff = d / 2 In this simple model, friction only does half the expected work. The remaining work done by the external force goes into thermal energy..
Recommended publications
  • Elementary Particles: an Introduction
    Elementary Particles: An Introduction By Dr. Mahendra Singh Deptt. of Physics Brahmanand College, Kanpur What is Particle Physics? • Study the fundamental interactions and constituents of matter? • The Big Questions: – Where does mass come from? – Why is the universe made mostly of matter? – What is the missing mass in the Universe? – How did the Universe begin? Fundamental building blocks of which all matter is composed: Elementary Particles *Pre-1930s it was thought there were just four elementary particles electron proton neutron photon 1932 positron or anti-electron discovered, followed by many other particles (muon, pion etc) We will discover that the electron and photon are indeed fundamental, elementary particles, but protons and neutrons are made of even smaller elementary particles called quarks Four Fundamental Interactions Gravitational Electromagnetic Strong Weak Infinite Range Forces Finite Range Forces Exchange theory of forces suggests that to every force there will be a mediating particle(or exchange particle) Force Exchange Particle Gravitational Graviton Not detected so for EM Photon Strong Pi mesons Weak Intermediate vector bosons Range of a Force R = c Δt c: velocity of light Δt: life time of mediating particle Uncertainity relation: ΔE Δt=h/2p mc2 Δt=h/2p R=h/2pmc So R α 1/m If m=0, R→∞ As masses of graviton and photon are zero, range is infinite for gravitational and EM interactions Since pions and vector bosons have finite mass, strong and weak forces have finite range. Properties of Fundamental Interactions Interaction
    [Show full text]
  • Chapter 5 the Relativistic Point Particle
    Chapter 5 The Relativistic Point Particle To formulate the dynamics of a system we can write either the equations of motion, or alternatively, an action. In the case of the relativistic point par- ticle, it is rather easy to write the equations of motion. But the action is so physical and geometrical that it is worth pursuing in its own right. More importantly, while it is difficult to guess the equations of motion for the rela- tivistic string, the action is a natural generalization of the relativistic particle action that we will study in this chapter. We conclude with a discussion of the charged relativistic particle. 5.1 Action for a relativistic point particle How can we find the action S that governs the dynamics of a free relativis- tic particle? To get started we first think about units. The action is the Lagrangian integrated over time, so the units of action are just the units of the Lagrangian multiplied by the units of time. The Lagrangian has units of energy, so the units of action are L2 ML2 [S]=M T = . (5.1.1) T 2 T Recall that the action Snr for a free non-relativistic particle is given by the time integral of the kinetic energy: 1 dx S = mv2(t) dt , v2 ≡ v · v, v = . (5.1.2) nr 2 dt 105 106 CHAPTER 5. THE RELATIVISTIC POINT PARTICLE The equation of motion following by Hamilton’s principle is dv =0. (5.1.3) dt The free particle moves with constant velocity and that is the end of the story.
    [Show full text]
  • Theory of More Than Everything1
    Universally of Marineland Alimentary Gastronomy Universe of Murray Gell-Mann Elementary My Dear Watson Unified Theory of My Elementary Participles .. ^ n THEORY OF MORE THAN EVERYTHING1 V. Gates, Empty Kangaroo, M. Roachcock, and W.C. Gall 2 Compartment of Physiques and Astrology Universally of Marineland, Alleged kraP, MD ABSTRACT We derive a theory which, after spontaneous, dynamical, and ad hoc symmetry breaking, and after elimination of all fields except a set of zero measure, produces 10-dimensional superstring theory. Since the latter is a theory of only everything, our theory describes much more than everything, and includes also anything, something, and nothing. (More text should go here. So sue me.) 1Work supported by little or no evidence. 2Address after September 1, 1988: ITP, SHIITE, Roc(e)ky Brook, NY Uniformity of Modern Elementary Particle Physics Unintelligibility of Many Elementary Particle Physicists Universal City of Movieland Alimony Parties You Truth is funnier than fiction | A no-name moose1] Publish or parish | J.C. Polkinghorne Gimme that old minimal supergravity. Gimme that old minimal supergravity. It was good enough for superstrings. 1 It's good enough for me. ||||| Christian Physicist hymn1 2 ] 2. CONCLUSIONS The standard model has by now become almost standard. However, there are at least 42 constants which it doesn't explain. As is well known, this requires a 42 theory with at least @0 times more particles in its spectrum. Unfortunately, so far not all of these 42 new levels of complexity have been discovered; those now known are: (1) grandiose unification | SU(5), SO(10), E6,E7,E8,B12, and Niacin; (2) supersummitry2]; (3) supergravy2]; (4) supursestrings3−5].
    [Show full text]
  • Gravitational Field of Massive Point Particle in General Relativity
    Gravitational Field of Massive Point Particle in General Relativity P. P. Fiziev∗ Department of Theoretical Physics, Faculty of Physics, Sofia University, 5 James Bourchier Boulevard, Sofia 1164, Bulgaria. and The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34014 Trieste, Italy. Utilizing various gauges of the radial coordinate we give a description of static spherically sym- metric space-times with point singularity at the center and vacuum outside the singularity. We show that in general relativity (GR) there exist a two-parameters family of such solutions to the Einstein equations which are physically distinguishable but only some of them describe the gravitational field of a single massive point particle with nonzero bare mass M0. In particular, we show that the widespread Hilbert’s form of Schwarzschild solution, which depends only on the Keplerian mass M < M0, does not solve the Einstein equations with a massive point particle’s stress-energy tensor as a source. Novel normal coordinates for the field and a new physical class of gauges are proposed, in this way achieving a correct description of a point mass source in GR. We also introduce a gravi- tational mass defect of a point particle and determine the dependence of the solutions on this mass − defect. The result can be described as a change of the Newton potential ϕN = GN M/r to a modi- M − 2 0 fied one: ϕG = GN M/ r + GN M/c ln M and a corresponding modification of the four-interval. In addition we give invariant characteristics of the physically and geometrically different classes of spherically symmetric static space-times created by one point mass.
    [Show full text]
  • “WHAT IS an ELECTRON?” Contents 1. Quantum Mechanics in A
    \WHAT IS AN ELECTRON?" OR PARTICLES AS REPRESENTATIONS ROK GREGORIC Abstract. In these informal notes, we attempt to offer some justification for the math- ematical physicist's answer: \A certain kind of representation.". This requires going through some reasonably basic physical ideas, such as the barest basics of quantum mechanics and special relativity. Contents 1. Quantum Mechanics in a Nutshell2 2. Symmetry7 3. Toward Particles 11 4. Special Relativity in a Nutshell 14 5. Spin 21 6. Particles in Relativistic Quantum Mechaniscs 25 0.1. What these notes are. This are higly informal notes on basic physics. Being a mathematician-in-training myself, I am afraid I am incapable of writing for any other audience. Thus these notes must fall into the unfortunate genre of \physics for math- ematicians", an idiosyncracy on the level of \music for the deaf" or \visual art for the blind" - surely possible in some fashion, but only after overcoming substantial technical obstacles, and even then likely to be accussed by the cognoscenti of \missing the point" of the original. And yet we beat on, boats against the current, . 0.2. How they came about. As usual, this write-up began its life in the form of a series of emails to my good friend Tom Gannon. Allow me to recount, only a tinge apocryphally, one major impetus for its existence: the 2020 New Year's party. Hosted at Tom's apartment, it featured a decent contingent of UT math department's grad student compartment. Among others in attendence were Ivan Tulli, a senior UT grad student working on mathematics inperceptably close to theoretical physics, and his wife Anabel, a genuine experimental physicist from another department, in town to visit her husband.
    [Show full text]
  • Chapter 11 the Relativistic Quantum Point Particle
    Chapter 11 The Relativistic Quantum Point Particle To prepare ourselves for quantizing the string, we study the light-cone gauge quantization of the relativistic point particle. We set up the quantum theory by requiring that the Heisenberg operators satisfy the classical equations of motion. We show that the quantum states of the relativistic point particle coincide with the one-particle states of the quantum scalar field. Moreover, the Schr¨odinger equation for the particle wavefunctions coincides with the classical scalar field equations. Finally, we set up light-cone gauge Lorentz generators. 11.1 Light-cone point particle In this section we study the classical relativistic point particle using the light-cone gauge. This is, in fact, a much easier task than the one we faced in Chapter 9, where we examined the classical relativistic string in the light- cone gauge. Our present discussion will allow us to face the complications of quantization in the simpler context of the particle. Many of the ideas needed to quantize the string are also needed to quantize the point particle. The action for the relativistic point particle was studied in Chapter 5. Let’s begin our analysis with the expression given in equation (5.2.4), where an arbitrary parameter τ is used to parameterize the motion of the particle: τf dxµ dxν S = −m −ηµν dτ . (11.1.1) τi dτ dτ 249 250 CHAPTER 11. RELATIVISTIC QUANTUM PARTICLE In writing the above action, we have set c =1.Wewill also set =1when appropriate. Finally, the time parameter τ will be dimensionless, just as it was for the relativistic string.
    [Show full text]
  • Neutron Star Equation of State Via Gravitational Wave Observations
    Neutron star equation of state via gravitational wave observations C Markakis1, J S Read2, M Shibata3, K Uryu¯ 4, J D E Creighton1, J L Friedman1, and B D Lackey1 1 Department of Physics, University of Wisconsin–Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA 2 Max-Planck-Institut fur¨ Gravitationsphysik, Albert-Einstein-Institut, Golm, Germany 3 Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan 4 Department of Physics, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan Abstract. Gravitational wave observations can potentially measure properties of neutron star equations of state by measuring departures from the point-particle limit of the gravitational waveform produced in the late inspiral of a neutron star binary. Numerical simulations of inspiraling neutron star binaries computed for equations of state with varying stiffness are compared. As the stars approach their final plunge and merger, the gravitational wave phase accumulates more rapidly if the neutron stars are more compact. This suggests that gravitational wave observations at frequencies around 1 kHz will be able to measure a compactness parameter and place stringent bounds on possible neutron star equations of state. Advanced laser interferometric gravitational wave observatories will be able to tune their frequency band to optimize sensitivity in the required frequency range to make sensitive measures of the late-inspiral phase of the coalescence. 1. Introduction In numerical simulations of the late inspiral and merger of binary neutron-star systems, one commonly specifies an equation of state for the matter, perform a numerical simulation and extract the gravitational waveforms produced in the inspiral.
    [Show full text]
  • What Is a Photon? Foundations of Quantum Field Theory
    What is a Photon? Foundations of Quantum Field Theory C. G. Torre June 16, 2018 2 What is a Photon? Foundations of Quantum Field Theory Version 1.0 Copyright c 2018. Charles Torre, Utah State University. PDF created June 16, 2018 Contents 1 Introduction 5 1.1 Why do we need this course? . 5 1.2 Why do we need quantum fields? . 5 1.3 Problems . 6 2 The Harmonic Oscillator 7 2.1 Classical mechanics: Lagrangian, Hamiltonian, and equations of motion . 7 2.2 Classical mechanics: coupled oscillations . 8 2.3 The postulates of quantum mechanics . 10 2.4 The quantum oscillator . 11 2.5 Energy spectrum . 12 2.6 Position, momentum, and their continuous spectra . 15 2.6.1 Position . 15 2.6.2 Momentum . 18 2.6.3 General formalism . 19 2.7 Time evolution . 20 2.8 Coherent States . 23 2.9 Problems . 24 3 Tensor Products and Identical Particles 27 3.1 Definition of the tensor product . 27 3.2 Observables and the tensor product . 31 3.3 Symmetric and antisymmetric tensors. Identical particles. 32 3.4 Symmetrization and anti-symmetrization for any number of particles . 35 3.5 Problems . 36 4 Fock Space 38 4.1 Definitions . 38 4.2 Occupation numbers. Creation and annihilation operators. 40 4.3 Observables. Field operators. 43 4.3.1 1-particle observables . 43 4.3.2 2-particle observables . 46 4.3.3 Field operators and wave functions . 47 4.4 Time evolution of the field operators . 49 4.5 General formalism . 51 3 4 CONTENTS 4.6 Relation to the Hilbert space of quantum normal modes .
    [Show full text]
  • Neutron Physics a Revision of I. Halpern's Notes on E. Fermi's Lectures in 1945
    , ‘.. iJNCLASSIFIED . x COMMISSION UNITED STATES ATOMIC ENERGY . 1 I~,., ,#AECD-2664 NEUTRON PHYSICS A Revision of I. Halpern’s Notes on E. Fermi’s Lectures in 1945 BY J. G. Beckerley October 16, 1951 [TIS Issuance Date] Atomic Energy Commission New York Operations : ‘t to TIC ;iiiii *=c; :LTechnical Information Service, Oak Ridge, Tennessee . _ .._ U,NCLASSlFIEB DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. l auaum3op leu!Spo alqel!ene waq aqi LLIOJJpa%IpoJd we sa6euq l S$anpOJd a6euy y.~o~$aala u! alq!6all! aq Aeur Umunaop !+!I.@JO suo!~od tfmmmsia Issuance of this document does not constitute authority for declassification of classified copies of the same or similar content and title and by the same author. PRINTEDINUSA PRICE 35 CENTS AEC,Oak Ridge,Tenn.,g-l-49--2500-A2327 Reprlnted,AEC,Oak Ridge,Tenn.,l.o-16-51--300~WI4541 a-934 PREFACE In the Fall of 1945 a course in Neutron Physics was given by Professor Fermi as part of the program of the Los Alamos University.
    [Show full text]
  • ELEMENTARY PARTICLES in PHYSICS 1 Elementary Particles in Physics S
    ELEMENTARY PARTICLES IN PHYSICS 1 Elementary Particles in Physics S. Gasiorowicz and P. Langacker Elementary-particle physics deals with the fundamental constituents of mat- ter and their interactions. In the past several decades an enormous amount of experimental information has been accumulated, and many patterns and sys- tematic features have been observed. Highly successful mathematical theories of the electromagnetic, weak, and strong interactions have been devised and tested. These theories, which are collectively known as the standard model, are almost certainly the correct description of Nature, to first approximation, down to a distance scale 1/1000th the size of the atomic nucleus. There are also spec- ulative but encouraging developments in the attempt to unify these interactions into a simple underlying framework, and even to incorporate quantum gravity in a parameter-free “theory of everything.” In this article we shall attempt to highlight the ways in which information has been organized, and to sketch the outlines of the standard model and its possible extensions. Classification of Particles The particles that have been identified in high-energy experiments fall into dis- tinct classes. There are the leptons (see Electron, Leptons, Neutrino, Muonium), 1 all of which have spin 2 . They may be charged or neutral. The charged lep- tons have electromagnetic as well as weak interactions; the neutral ones only interact weakly. There are three well-defined lepton pairs, the electron (e−) and − the electron neutrino (νe), the muon (µ ) and the muon neutrino (νµ), and the (much heavier) charged lepton, the tau (τ), and its tau neutrino (ντ ). These particles all have antiparticles, in accordance with the predictions of relativistic quantum mechanics (see CPT Theorem).
    [Show full text]
  • Arxiv:1908.06423V4 [Hep-Th] 4 Sep 2020 Dimensional Space
    QUANTUM MECHANICS OF PARTICLE ON A TORUS KNOT: CURVATURE AND TORSION EFFECTS APREPRINT Dripto Biswas Subir Ghosh School of Physical Sciences Physics and Applied Mathematics Unit National Institute of Science Education and Research Indian Statistical Institute, Kolkata Odisha, India West Bengal, India [email protected] [email protected] September 7, 2020 ABSTRACT Constraints play an important role in dynamical systems. However, the subtle effect of constraints in quantum mechanics is not very well studied. In the present work we concentrate on the quantum dynamics of a spin-less, point particle moving on a non-trivial torus knot. We explicitly take into account the role of curvature and torsion, generated by the constraints that keep the particle on the knot. We exploit the "Geometry Induced Potential (GIP) approach" to construct the Schrodinger equation for the dynamical system, obtaining thereby new results in terms of particle energy eigenvalues and eigenfunctions. We compare our results with existing literature that completely ignored the contributions of curvature and torsion. In particular, we explicitly show how the "knottedness" of the path influences the results. In the process we have revealed a (possibly un-noticed) "topological invariant". Keywords Torus Knot · Geometry-Induced Potential(GIP) · Curvature · Torsion · Winding Number · Hill Equation · Mathieu Equation 1 Introduction In recent times, theoretical development in quantum physics on curved low-dimensional spaces has attracted a lot attention mainly due to the improved expertise in synthesizing low-dimensional nanostructures with curved geometries [1–5]. The approach of De Witt [6] was to directly consider the quantum particle motion in curved n- arXiv:1908.06423v4 [hep-th] 4 Sep 2020 dimensional space.
    [Show full text]
  • Symmetries of the Point Particle
    UPPSALA UNIVERSITY BACHELOR THESIS 15 HP Symmetries of the Point Particle Author: Alexander Söderberg Supervisors: Ulf Lindström Subject Reader: Maxim Zabzine June 23, 2014 Abstract: We study point particles to illustrate the various symmetries such as the Poincaré group and its non-relativistic version. In order to find the Noether charges and the Noether currents, which are conserved under physical symme- tries, we study Noether’s theorem. We describe the Pauli-Lubanski spin vector, which is invariant under the Poincaré group and describes the spin of a particle in field theory. By promoting the Pauli-Lubanski spin vector to an operator in the quantized theory we will see that it describes the spin of a particle. Moreover, we find an action for a smooth spinning bosonic particle by compactifying one string dimension together with one embedding dimension. As with the Pauli- Lubanski spin vector, we need to quantize this action to confirm that it is the action for a smooth spinning particle. Sammanfattning: Vi studerar punktpartiklar för att illustrera olika symemtrier som t.ex. Poincaré gruppen och dess icke-relativistiska version. För att hitta de Noether laddningar och Noether strömmar, vilka är bevarade under symmetrier, studerar vi Noether’s sats. Vi beskriver Pauli-Lubanksi spin vektorn, vilken har en invarians under Poincaré gruppen och beskriver spin hos en partikel i fältteori. Genom att låta Pauli-Lubanski spin vektorn agera på ett tillstånd i kvantfältteori ser vi att den beskriver spin hos en partikel. Dessutom finner vi en verkan för en spinnande partikel genom att kompaktifiera en bosonisk sträng dimension till- sammans med en inbäddad dimension.
    [Show full text]