Index

Note: Page references in italics refer to figures and tables

Aeronian 337, 338, 339 basin-related magmatism 13 Agly Massif, Pyrenees 230 Belvianes Syncline, Pyrenees 244 Alaric Anticline, Pyrenees 240, 241,242, 246 Belvianes- Syncline, Pyrenees 235 Alaric Depression, Pyrenees 245 Bess6de Massif, Pyrenees 230, 233 Alaric Massif, Pyrenees 231,236 Bess6de-Slavezines Anticlines, Pyrenees 242, 245 Alborz, Poland 144 Betic Cordillera, Spain 18, 29-51 Alpine deformation 160 External Subbetic 31, 50 Alpine Orogeny 137 geological setting 30-1 Ammonitico Rosso Formation, Spain 31, 32, 34, 39, Intermediate Units 30, 50 41, 43 Internal Betic Zones 30 Anagara Craton, Siberia 333,334 Internal Subbetic 31 Andean Patagonia, Chile 253-66 Middle Subbetic 31, 50 geochemistry 256-62 Prebetic Zone 30, 50 geological setting 253-5,254 rock stratigraphy 31-7 Nd-isotopes 262-4 Subbetic Zone 30, 31, 50 tectonic setting 264-6 syn-sedimentary deformations and structures 46-7 anisotropy of magnetic susceptibility (AMS) 206, tectonics and sedimentation 37-47 215-18,219-20 Bihor-Apuseni block, Poland 144 Antognola Formation, Italy 273,278 Birstonas Formation, 102 Apulia (Adri~Taurus) Platform 144 Bodzentyn Syncline, Poland 177 4~ geochronology 289-303 Bohemian Massif 143 arc-related basins 7-10 Bositra ('Posidonia') 145 Arroyo de Taibena Basin, Spain 34, 38, 41, 42, 43-4, Bossola Pass, Italy 214 46, 49, 50, 51 boundary basins 10 Avalonian Orogen 109 Bowen Basin, Australia 185, 187, 188, 190, 192, 195, Syncline, Pyrenees 233, 244 200, 201 Axial Zone 230, 233 Branisko Succession, Poland 146 Axial Zone Thrust 234, 245 Bronkowice Anticline, Poland 176-7 Brzeziny Syncline, Poland 167 back-arc basins 8, 9, 9, 10 Bucovino-Getic Plate, Poland 149 Bahia de la Lancha Formation, Chile 255,263 Thrust, Poland 245 Baltic Basin 19 Bukowa Formation, Poland 167 Baltic Silurian Succession 95-113 Bukowa G6ra Formation, Poland 177, 180 sequence-and cyclo-stratigraphy 102-9, 103 Bukowa Mountain, Poland 177 Baltica 101, 107, 108, 159 Bukowa Quarry, Poland 167, 177, 180 Barahona Formation, Spain 34, 37, 39, 41, 43, 44 Burunga Fault, Australia 187 basin classification 2-3, 3 C. centrifugus-M, riccartonensis 108 compartmentalization 20-1 Caledonian Deformation Front (CDF) 73, 97, 101, 112 modelling 19 Caledonian Orogen 109, 101, 111, 112 phase of development 21 Calpionellopsis 150 sediment budget within 21 Camarena Formation, Spain 32, 34, 34, 38, 39, 40, 41, tectonic and other controls 21 44, 46, 47, 49 tectonic response Cambrian Tesoffi Rift, Africa 5 type and preservation potential 17-18 Capas Blancas Formation, Spain 34, 34, 38, 39, 41, types, understanding 20 42, 44

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3869751/9781862394568_backmatter.pdf by guest on 30 September 2021 352 INDEX

Capas Rojas ('Red Beds') Formation, Spain 33, 34, sedimentology ll9 26 34, 38, 39, 42, 43, 44, 45, 46, 47, 48 structural setting 128-30 Cappella della Valle, Italy 274 volcanism 126-8 carbonate compensation depth (CCD) 34, 49 Formation, Lithuania 104 Cardona Basin, Spain 316 Dyminy Anticline, Poland 163, 173, 178, 179 Cardona Formation, Spain 316,317 Dyminy High, Poland 172, 173, 176 Carpathian Keuper, Poland 145 Carpathian Thrust, Poland 148 East African Rift 3, 5 Carretero Formation, Spain 32, 34, 38, 40, 41,43, 47, East European Craton (EEC) 95, 96, 101,159, 336 48 East European Platform 117, 343 Cassinasco Formation, Italy 207 East Siberia Basin, Silurian sedimentation 321-47 Castagnola Formation, Italy 273, 276 chronostratigraphic scale 324 Ceno River Valley, Italy 276-7 Fischer plots Central Alps, exhumation and provenance 289-303 based on elementary cycles 326-8, 328, 343-7, Cerro Gordo, Spain 43 3467 characteristic remanent magnetization (ChRM) based on sediment thicknesses of chronozones 218-22, 221 328 9, 329 Ch~ciny Beds, Poland 179 indications of changes in the rate of crustal Ch~ciny Anticline, Poland 164, 173,174, 175, 179 subsidence 331-2 Chelm Mountain, Poland 177 indications of relative stability of sea-level 330-1 Cieszyn Beds, Poland 152 metamorphism rate in the lower crust 335-6, 335 Cimmerian continent 144 rates of crustal subsidence 325 Cimmerian Plates 143 sea-level changes estimates 336-41 Clarence Moreton Basin, Australia 185 thermal relaxation and changes in lithospheric climate, influence on sedimentation 17 forces 332 3 collision-accretion-related deformation 9 thickness of deposits 322 collisional foreland basins 12 variations in the dynamic topography 3334 compressional settings 12 Eastern Alpine Molasse Basin 301 compressive basins, synkinematic sedimentation and Eastern Andean Metamorphic Complex 254, 255, 307-18 263,264, 265,266 analogue models of compressive growth structures Eastern Avalonia 113 309-11 Eastern Gabar Basin, Spain 38, 39, 40, 42-3, 47, 49 geometries of natural compressive growth Eastern Piedmont Tertiary Basin, Italy 274-6 structures 308 Ebro Basin, Spain 316 influence of synkinematic sedimentation rate ECORS profile 245 311-15 Elbe Subgroup, Germany 76 type I models 311-12, 311 Emsian Zagdrze Formation, Poland 167 type II models 312-13 312 Enza River Valley, Italy 276-7,278 type III models 313-14, 313 Eo-Cimmerian Orogeny 144, 145 type IV models 314-15, 314, 315 Epiligurian piggy-back basins (EL) 271,273 Conglomerados Calcfireos del Puerto Formation, eustatic events 321 Spain 34, 34, 38, 41,42, 43, 44, 45, 46, 47, Exotic Andrusov Ridge, Poland 144 48, 49 extensional settings 3 12 conjugate convergent transfer zone 58 Contignaco Formation, Italy 273 Famennian Succession, Ukraine 122-4 Cordillera 153 Farah Block 144 Cortemilia Formation, Italy 207 Fardes Formation, Spain 32, 33, 34, 34, 39, 40, 41, 42, Cucugnan Anticline, Pyrenees 236 43, 44, 46, 47, 48, 49 Cucugnan Syncline, Pyrenees 244 fault bounded intra-arc basins 10 Cuone River Valley, Italy 274-6 fault segmentation 20 Czarn6w (Sluchowice) quarry 169, 178 Fennoscandian Sarmatian Platform l I 1 Czertezik Succession, Poland 146 flexural-rotation (rolling hinge) model 6 Czorsztyn Ridge, Poland 146, 147, 149, 150, 152, 153 fore-arc basins 8, 9-10, 9 Czorsztyn Succession, Poland 146 foreland basin systems 12 propagation of 229-48 DEKORP-BASIN 9601 profile 72 Franconian movements 75 Dethlingen Formation, Germany 76, 85-7, 87, 88, 89, Frasnian Succession, Ukraine 122-4 91 Fyn Mort Arkona High 74 Dniepr-Donets Basin (DDB), Ukraine 117 Dobrogea Rift, Poland 144 Gabardiella Anticline, Italy 316 Donbas Basin Formation, Ukraine 133 Gat~zice Syncline, Poland 163, 164 domino faulting 6 Galicia Bank 50 Donbas Basin fold belt, Ukraine 18, 117-34 Gavilfin Formation, Spain 31, 34, 34, 46, 49 geological background 119 Gesse Syncline, Pyrenees 233,234, 242

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3869751/9781862394568_backmatter.pdf by guest on 30 September 2021 INDEX 353

Goodiwindi Event 200 Laskowa Quarry, Poland 177 Goondiwindi Fault, Australia 187 Lau events 107 grain-dating 19 Leichhardt Fault, Australia 187 Grajcarek Unit, Poland 153 Lepidodendron 122 Gruchawka, Poland 178 Lepontine Dome, Switzerland 291,296, 297 Grfineberg Formation, Germany 76 Lequio Formation, Italy 207 Gunnedah Basin, Australia 185 Ligurian Alps 224 Ligurian Ocean 145 Hannover Formation, Germany 76, 87, 89, 89, 90, 91 Ligurian-Penninic-Pieniny-MaguraOcean 149 highstand systems tracts (HST) 106 Liguro-Proven~al Basin 224, 225 Holy Cross Fault, Poland 160, 161,163 Linde events 107 zone 161,169, 173, 177, 178 Liquit~e Ofqui Fault Zone, Chile 255,265 Holy Cross Mountains, Poland 159-81 listric normal faults 6 differentiating Devonian, Variscan and Alpine Llandovery Succession 97, 102, 326,326 deformations 171 5 lowstand system tract (LST) 105 Alpine deformations 173 5 Ludlow Succession 97, 99, 102, 104, 107,338 balancing Variscan and Alpine deformations Lut Block, Poland 144 172-3 Luzon Central Valley 9 geology 161-2, 161,164 Lysogdry Unit, Poland 161,162, 163, 164, 169, 170, lithostratigraphic cross-section 163-4 171,173, 176, 177 main structures 165 palaeomagnetic analysis 164 magmatism, basin-related 13 strike-clip component 169-71 Magura Basin, Poland 148, 150, 153 structural cross-section 162-3 Magura Unit, Poland 144 structural indicators 176-80 Maimdn Formation, Spain 32 Variscan polyphase deformation 167 Maimon Unit, Spain 31, 34, 34 Itulina Succession, Poland 153 Matopolska Massif, Poland 161 Hunter Fault, Australia 187 Marmarosh Massif, Poland 148 Hydromedusae limnica 82, 83, 91 maximal flooding surface (MFS) 108 Meliata Ocean 144 Iberian Massif 30 Meliata-Halstatt Ocean 144, 147, 149 llerdian marine series 2364 l Michigan Basin l l, 333 Illinois Basin 11 micro-fault inversion 129 lnacovc~Kricevo Zone, Poland 147 Mid-Polish Trough 162 Inner Carpathian Belt 140 Miedziana Gdra Conglomerate, Poland 178 Insubric Line, Switzerland 290 Formation, Lithuania 104 intra-arc basins 8-9, 9, 10 Mirow Formation, Germany 76, 83-5, 85, 86, 89, 91 intracratonic rift basins 10 11 Formation, Lithuania 104 intrusion-accretion-related deformation 9 models of sedimentation 13 17 Ionian-Taurus Platform 144 in a compressional setting basin scale 14 15 Jaca Basin, Spain 308, 308, 315, 316 local scale 15-16 Jacionys Formation, Lithuania 102 in an extensional setting Jaworznia Quarry, Poland 177, 178-9 basin scale 13 Jura Formation, Lithuania 104 local scale 13-14 influence of climate 17 Kalmius Torets Depression, Ukraine 128 influence of sea-level change 17 Kapkazy Formation, Poland 167, 177, 180 sequence stratigraphic models 16 Karpinsky Swell 117 source area 16-17 Khant~Mansi Ocean, Southern Russia 333 Moesian Platform 145 Kielce Unit, Poland 161, 162, 164, 169, 170, 171, 173, Moesian-Eastern European Platform 144 176, 177, 178 Moesia-Rhodopes 145 Kielce-Lagdw, Poland (Central) Synclinorium 163 Mdjcza village, Poland 170 Kostomloty Beds, Poland 178 Molare Formation, Italy 207, 208 Kostomtoty Quarry, Poland 168, 177 Molasse Basin 56 Kowala Formation, Poland 178, 179 Monte Rosa Massif, Switzerland 297 Kowala Quarry, Poland 170, 179, 181 Moonie Fault, Australia 187, 189, 190, 191,192, 197, Krzemucha Quarry, Poland 177 198, 199, 200, 201 Mouthoumet Anticline, Pyrenees 246 La Muela Unit, Spain 31 Mouthoumet Duplex, Pyrenees 236, 246 La Sals Formation, Pyrenees 235 Mouthoumet Front, Pyrenees 236,240, 241,246 Lake Bogoria, Kenya 126 Mouthoumet High, Pyrenees 235,245 Lake General Carrera, Chile 255 Mouthoumet Massif, Pyrenees 231,233,235,236 Lapes Formation, Poland 104 Murazzano Formation, Italy 207

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3869751/9781862394568_backmatter.pdf by guest on 30 September 2021 354 INDEX

Nakuru junction, Africa 5 Northern Basin, Spain 36, 37, 38-41, 46 natural remanent magnetization (NMR) 206 Northern Calcareous Alps 144 NE German Basin (NEGB) 71-91 Nozdrovice Breccia, Poland 153 braided plain environment 76 7 NRM analysis 218-22,221 ephemeral stream floodplain environment 77-80 distal fluvial facies association 78-80, 80 Oliana Basin, Italy 316 medial fluvial facies association 77 8, 79 O16 Callfis Basin, Italy 316 proximal fluvial facies association 77, 78 Oravicum 146 facies interpretation 76-87 Osterwald Phase, Poland 153 geological map 74 Ostrdwka Quarry, Poland 170, 179-80 location 72 mudflat environment 80~1 Pagegiai Formation, Lithuania 104 Playa lake environment 82 palaeostress analysis 129, 215,216 regional geology 73-6 Palaeotethys Ocean 143 regional Permian stratigraphy 75 Palassou Formation, Pyrenees 241-2 sand flat environment 81-2 PALEOMAP software 138, 140, 142 Upper Rotliegend II palaeogeography and basin Panaro River Valley, Italy 277-9 evolution 82-7 Pantano Formation, Italy 276 Neo-Cimmerian movements 137 Panthalassan Ocean 185 Neotethys Ocean 143, 144 Paprieniai Formation, Lithuania 102 Formation, Lithuania 104 Parchim Formation, Germany 76, 82, 83, 84, 89, 91 Nevezis Formation, Lithuania 102 Pechelbronn Beds, Upper Rhine Graben 55-68 New England Orogen (NEO) 185 Peel Fault, Australia 187, 189, 197, 198, 199, 201 aeromagnetic data 193 7, 194-5 Penninic Combin Zone, Switzerland 297 age control 198 Penninic Ocean 146 geophysical data 188.-97 peripheral foreland basins 12 gravity data 193, 197, 196, 197 PETROSYS software 190 seismic reflection data 189-93 Piedmont-Ligurian Basin 271 tectonic evolution 187-8 Piedmont Tertiary Basin (PTB) 271,273,274, 277 NGP Caledonides 112 Pieniny Klippen Belt (PKB) 137, 138, 140, 144, 145, Niedzica Succession, Poland 146 146, 150-2, 153 Niewachldw Anticline, Poland 173, 175, 177 Pieniny Klippen Belt Basin 145, 149 Nikolaevka village, Ukraine 119-20 Pieniny Klippen Belt Ocean 150 Nizza River Valley, Italy 276-7 Pieniny Klippen BelbMagura Ocean 147, 148, 150 non-extensional back-arc basins 10 Pieniny-Magura Basin 146, 149 North Alpine Foreland Basin (NAFB) 290, 291 Pieniny Succession, Poland 146 4~ geochronology 292-6 Pindos Ocean 144 mica chemistry 296-7 PLATES software 138, 139, 140, 142 paleo-cooling 298-301, 299300 Playa Lake 82 sources for Tertiary micas 297-8 Po Plain 205,224, 225 sources for Variscan micas 301-2 Podhale Flysch, Poland 140 North American Craton 16, 323 Podwignidwka Quarry, Poland 177 North German-Polish (NGP) Caledonides 100 Polish Basin 74 North Pyrenean Fault (NPF) 230, 233 Polish Carpathians 137-53 North Pyrenean Frontal Thrust (NPFT) 230, 233, Early Jurassic 144-5, 145 235,244 Late Jurassic 147-8, 147, 148 North Pyrenean Massifs 230 mapping methodology 138-42 North Pyrenean Zone 230, 231,233, 236, 245 Middle Jurassic 145-6, 146 North Sea Basin 56 sedimentation record of Early Cretaceous Neo- Northern Apennines 269-85 Cimmerian movements 150-3 geological setting 271 Magura Basin 153 palaeotectonic scheme 271 Pieniny Klippen Belt 150-2 petrofacies 280-3 Silesian Unit 152-3 space and time distribution of HP/LT 283-4 Triassic 142-4, 142, 143 stratigraphy of Middle Eocene-Lower Miocene Polish-Danish Aulacogen 144 piggy-back sediments 271-3,273 Pomerania 110, l 11 stratigraphy/petrography of Upper Prabade Formation 104 Rupelian-Burdigalian coarse-grained Precambrian Baltic Shield 73 bodies 273-80 Priazov Massif, Ukraine 117, 118, 119, 126, 132, 133 Eastern Emilia Apennines and Montefeltro area Pridoli Succession 97, 100, 102, 104, 107, 108, 337, 277-9 338, 339 Eastern Piedmont Tertiary Basin 274-6 Pripyat Trough, Ukraine 117 Western Emilia Apennines 276-7 Pripyat-Dniepr-Donets system, Ukraine 130 tectonic sketch map 270 Pyrenean foreland basin systems

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3869751/9781862394568_backmatter.pdf by guest on 30 September 2021 INDEX 355

interpretation Silurian Baltic Basin 95-113 Eocene 245-7 geodynamic evolution 100-1 late Cretaceous and Palaeocene 242 5 geological setting 97-101 Palassou Formation 246-7 location 96 loading/unloading cycles 248 sequence architecture and cyclicity 106-9 regional setting 230, 231 stratigraphy 97-100, 99 relationship between tectonics and deposition systems tracts within 104-6 23342 Simplon Fault, Switzerland 291,296 Eocene cycle 23642 Siviez Mischabel Nappe, Switzerland 297 Ilerdian marine series 236-41 Sloss sequences 16 Palassou Formation 241-2 Solenomeris 241,246 late Cretaceous and Palaeocene 233-6 Sorgenfrei Tornquist Zone (STZ) 73 stratigraphy 230-3,232 South Caspian Microcontinent 144 structure 233 South Pamir Block 144 thrust-wedge advance and foreland basin South Pyrenean Zone 230 propagation 247-8 Southern Penninic Ocean 145 underfilled/overfilled transition 248 Southern Permian Basin 73, 76 Stramberk Limestones, Poland 150 Radiolaritas del Charco Formation, Spain 32, 34, 39, strike-slip basins 11-12 41, 43, 46, 47, 48, 49 Stringocephalus 179 Radkowice Quarry, Poland 179 Styla Block, Ukraine 126, 132, 133 Rambla Seca Basin (RSB), Spain 34, 38, 41-2, 46, 48 Styla Horst, Ukraine 119 Ranzano Formation, Spain 273, 276, 277, 283 Styla Quarry, Ukraine 119 Rennes-les-Bains Syncline, Pyrenees 235 sub-Pyrenean Zones 230, 231,233,235, 236 Reno River Valley, Italy 277-9 superfaults 3 retro-arc foreland basins 12 Surat Basin, Australia 185, 187, 189, 190, 195, 197, Rhine Graben, Germany 19 198, 200 Rhuddanian 337, 338,339 Stiria Basin, Spain 316 Ridge Basin, California 12 Sutkai Reef Belt, Lithuania 104, 112 rift basins 5-7 Swisse Molasse Basin 294, 297-8, 302 Ringkobing High 74 synkinematic sedimentation, compressive basins and Rio Deseado Massif, Chile 266 307-18 Rio Freddo Deformation Zone (RFDZ) 224 Rio Lficteo Formation, Chile 255 Tablelands Complex assemblage, Australia 185, 187 Rocchette Formation, Italy 207 Complex, Pyrenees 242 Rocky Creek Syncline, Australia 200 Talairan Syncline, Pyrenees 242 Rotliegend, NE German Basin 71-91 Tamworth Belt, Queensland, 185-201,186, 189, 191, Rupel Clay, Germany 57, 6l 192, 195 Rusne Formation, Lithuania 104 back-arc basin 187 Rzepka Beds, Poland 179 deformation 187 fault geometry 187 Saalian movements 76 fore-arc basin 187 Saalian Unconformity 76 magmatic arc 185 Massif, Pyrenees 230 Taroom Trough, Australia 192 Savio River Valleys, Italy 277-9 Teisseyre-Tornquist Zone (TTZ) 73, 95, 96, 97, 111, Scandinavian Caledonides 109 112 sea-level change, influence on sedimentation l 7 Telychian Succession, Siberia 337, 338,339 Secchia River Valley, Italy 276-7,279 TENSOR program 212 sedimentation terrane hypothesis 159 influence of climate 17 Tertiary Piedmont Basin (TPB), Italy 205-25 influence of sea-level change 17 evolution 2234 models of 13-17 geological setting 2067 SEDPAK 21 magnetic anisotropy 215-18,219-20 sequence analysis 19 NRM analysis 218-22,221 Serbo-Macedonian Block 145 regional context 224 Serrata de Gabar, Spain 38, 40 sedimentological and structural evolution 207 Serrata de Guadalupe, Spain 38, 40, 41, 46 structural studies 211-15 Serre de Lacal Formation, Pyrenees 235 subsidence analysis 207-10, 209, 210-11 Sierra del Gigante, Spain 46 tectonic map 206 Sierra del Pericay, Spain 31, 4 I, 44, 47 Tethyan Ocean 76 Sierra Larga, Spain 41, 43, 44, 47 Tisa (Bihor-Apuseni) block, Poland 144 Silesian Basin 147, 148, 149 Torino Hill, Italy 224 Silesian Ridge 148, 150, 152 Tornquist Zone (TZ) 73 Silesian Unit 137, 152-3 Tournaisian Succession, Ukraine 122-4

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3869751/9781862394568_backmatter.pdf by guest on 30 September 2021 356 INDEX

Trakai beds, Lithuania 104 Verkne Formation, Lithuania 103 transgressive system tracts (TST) 106 Vetto-Carpineti Syncline, Italy 276 transpression 233 Vienna Basin 137 transrotational basins 12 Vievis Formation, Lithuania 104 transtensional basins 12 Vilanova Basin, Spain 316 Transylvania Basin 205 Villavernia-Varzi-Line (VVL), Italy 224 Transylvanian-Vardar Ocean 146 Virgation des Corbi6res, Spain 230 Trzuskawica Quarry, Poland 179 Vis6an Succession, Ukraine 124-6 Tulcumba Ridge, Australia 200 Visone Formation, Italy 207 volcanic arcs 9 Ukrainian Craton 117 volcano bounded intra-arc basins 10 Ultrapieninic unit, Poland 146 Voltri Massif, Italy 282 Upper Rhine Graben, Pechelbronn Beds 55 68 Voronezh Massif, Ukraine 117, 119 applied stratigraphic principles 57-8 base-level cycles and spatial variation 61 5 Wadati-Benioff zone 9 correlation of base-level cycles 65-8 Welsh Basin 9 cycle hierarchy 59-61 Wenlock Succession 97, 98, 102, 106 7, 326, 327, lithostratigraphic chart 56 338 location 56 Western Emilia Apennines 276 7 regional geology and study area 55 7 Wietrznia Quarry, Poland 163, 171, 178, 180-1 tectonic framework 58 9 Williston Basin, North America 11 transfer zone 58, 59, 60 Wignidwka Duma Quarry, Poland 177 Upper Unconformable Formations, Spain 34 Wignidwka Mata Quarry, Poland 177 upper-plate faulting 8 Wignidwka Quarry, Poland 177 Utrillas Formation, Spain 50 Wojciechowice Formation, Poland 177

Vahicum 146 Yarrol Belt, Poland 185, 186, 187 Val Gorrini Thrust (VGT), Italy 207 Yuzhni Fault, Ukraine 119, 128, 130, 132, 134 Vardar Ocean 144, 147 Vardar-Transylvanian Ocean 144, 149 Zachetmie Quarry, Poland 177 Varisican Deformation Front (VDF) 73, 160, 181 Zagdrze Formation, Poland 177 Variscan Orogen 143, 179, 301 Zarzilla de Ramos Basin, Spain 38, 43, 44, 46, 49 Variscan Succession of Poland 18 Zechstein Sea 76 Vassilievka Fault, Ukraine 119, 128, 132 Ztatna Unit, Poland 146 Ventspils Formation, Lithuania 104

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3869751/9781862394568_backmatter.pdf by guest on 30 September 2021 Tracing Tectonic Deformation Using the Sedimentary Record

Edited by 1". McCann and A. Saintot

The study of sediments and sedimentary basins in terms of their tectonic environment requires a multidisciplinary approach and has increasingly drawn both techniques and objectives from fields outside sedimentology. The application of I -j different theoretical, experimental and empirical resources provided by structural geology, geochemistry, geophysics, scale .o modelling, and field geology, complement sedimentological methods, with the combined aim of achieving a deeper Y' understanding of the origins, evolution and significance of sedimentary sequences in terms of their tectonic history.

Studies presented in this volume range across a wide spectrum from the analysis of sedimentary sequence architecture at basin scale down to the chemical properties of individual grains, and include studies from a range of tectonic settings.

The volume will be of interest to those involved with, or contemplating, studies involving the linkages between tectonics and sedimentation, as well as a wider audience to whom the results of such studies may provide fresh insight.

Visit our online bookshop: http://bookshop.geolsoc.org.uk

Geological Society web site: http://www.geolsoc.org.uk

Cover illustration: ISBN 1-86239-129-7 Upper Jurassicconglomerates of the Southern Demerdji Mountains, Crimea, Ukraine.This sequenceunconformably overlies Middle Jurassicstrata. Furtherto the south, a N-dipping Tethys subductionzone has been proposed. However, the precise geodynamicsetting of the region remainsunclear. II!H[IU!!IIUIJ[IUU!III(photo by A. Saintot)

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3869751/9781862394568_backmatter.pdf by guest on 30 September 2021