2017 Annual Report France Schlumberger Limited 5599 San Felipe Houston, Texas 77056 United States

Total Page:16

File Type:pdf, Size:1020Kb

2017 Annual Report France Schlumberger Limited 5599 San Felipe Houston, Texas 77056 United States Schlumberger Limited 42 rue Saint-Dominique 75007 Paris 2017 Annual Report France Schlumberger Limited 5599 San Felipe Houston, Texas 77056 United States 62 Buckingham Gate London SW1E 6AJ United Kingdom Parkstraat 83 2514 JG The Hague The Netherlands www.slb.com 14781schD1R2.indd 1 2/15/18 9:13 AM Board of Directors Corporate Officers Peter L.S. Currie 2, 4 Paal Kibsgaard Claudia Jaramillo Form 10-K President, Currie Capital LLC Chairman and Chief Executive Officer Vice President and The Schlumberger 2017 annual Palo Alto, California Treasurer report on Form 10-K filed with Simon Ayat the Securities and Exchange V. Maureen Kempston Darkes 1, 3 Executive Vice President Vijay Kasibhatla Commission is available without Former Group Vice President and Chief Financial Officer Director Mergers and charge. To obtain a copy, call General Motors Corporation Acquisitions (800) 997-5299 within North Detroit, Michigan Alexander C. Juden America and +1 (813) 774-5043 Secretary and General Counsel Guy Arrington outside North America. Paal Kibsgaard Vice President Operations Planning Alternatively, you can view and Chairman and Chief Executive Officer Ashok Belani and Resource Management print all of our SEC filings online Schlumberger Executive Vice President Technology at www.slb.com/ir or write to: Saul Laureles Vice President Investor Relations Nikolay Kudryavtsev 1, 3, 5 Jean-François Poupeau Director Corporate Legal and Schlumberger Limited Rector Executive Vice President Corporate Assistant Secretary 5599 San Felipe, 17th Floor Moscow Institute of Physics Engagement Houston, Texas, 77056. and Technology Eileen Hardell Moscow, Russia Patrick Schorn Assistant Secretary Duplicate Mailings Executive Vice President When a stockholder owns shares Helge Lund 1, 3 New Ventures Corporate Information in more than one account, or when Former Chief Executive Officer stockholders live at the same BG Group plc Aaron Gatt Floridia address, duplicate mailings may President Western Hemisphere Stockholder Information result. If you receive duplicate Michael E. Marks 1 Schlumberger’s common stock reports, you can help eliminate the Managing Partner Khaled Al Mogharbel is listed on the New York Stock added expense by requesting that Riverwood Capital, LLC President Eastern Hemisphere Exchange, trading symbol “SLB,” only one copy be sent. To elimi- Palo Alto, California and on the Euronext Paris, London, nate duplicate mailings, contact Stephane Biguet and SIX Swiss Stock Exchanges. Computershare Trust Company, Indra K. Nooyi 1, 2 Vice President Finance N.A., Stock Transfer Agent and Chairman and For quarterly earnings dividend Registrar. Chief Executive Officer Pierre Cheréque announcements and other informa- PepsiCo Vice President and Director of Taxes tion, please call (800) 997-5299 Nonprofit Community Purchase, New York from the United States and Canada, Development Programs Stephanie Cox or +1 (813) 774-5043 outside Schlumberger supports and Lubna S. Olayan 3, 4 Vice President Human Resources North America. You may also visit encourages a range of community Chief Executive Officer www.slb.com/ir. development programs—both local Olayan Financing Company Catherine MacGregor and global—many of which are Riyadh, Saudi Arabia President Drilling Group Stock Transfer Agent supported by employee volunteers. and Registrar We have chosen to focus on Leo Rafael Reif 2, 4, 5 Hinda Gharbi Computershare Trust Company, N.A. science, technology, engineering, President President Reservoir P.O. Box 30170 and mathematics (STEM) education Massachusetts Institute Characterization Group College Station, Texas 77842 and community health and safety. of Technology Cambridge, +1 (877) 745-9341 To learn more about these programs, Financial Performance Massachusetts Olivier Le Peuch +1 (781) 575-2707 please see the latest edition of the President Cameron Group Schlumberger Global Stewardship (Stated in millions, except per-share amounts) Tore I. Sandvold 3, 4 For Overnight Delivery: Report at www.slb.com. Year ended December 31 2017 2016 2015 Executive Chairman Abdellah Merad Computershare Trust Company, N.A. Sandvold Energy AS President Production Group 211 Quality Circle, Suite 210 World Wide Web Revenue $ 30,440 $ 27,810 $ 35,475 Oslo, Norway College Station, Texas 77845 For information on Schlumberger Net income (loss) attributable to Schlumberger $ (1,505) $ (1,687) $ 2,072 Imran Kizilbash +1 (877) 745-9341 technology, services and solutions, Henri Seydoux 3, 4, 5 Vice President Schlumberger +1 (781) 575-2707 visit www.slb.com. For information $ (1.08) $ (1.24) $ 1.63 Diluted earnings (loss) per share Chairman and Venture Fund on career and job opportunities Cash dividends per share $ 2.00 $ 2.00 $ 2.00 Chief Executive Officer General stockholder at Schlumberger, visit Cash flow from operations $ 5,663 $ 6,261 $ 8,805 Parrot S.A. Simon Farrant information is available on www.careers.slb.com. Paris, France Vice President Investor Relations the Computershare website at www.computershare.com. * Mark of Schlumberger Miguel Galuccio 3, 5 Howard Guild Other company, product, and service names are the properties of their respective owners. Safety Performance Chairman and Chief Accounting Officer E-mail Alerts Chief Executive Officer To receive Schlumberger press 2017 2016 2015 Photography by John Hafemeister and Gary Year ended December 31 Vista Oil and Gas Kevin Fyfe releases and daily news, Ranos (cover, 3c, 13a); Stuart Conway (inside Combined Lost Time Injury Frequency (CLTIF)—Industry Recognized 0.90 0.90 0.95 Mexico City, Mexico Vice President sign up at www.slb.com/ir. front cover); Robert Seale (3a); Ken Childress Controller Operations (3d, 9); John Hafemeister (12); Ragnar Auto Accident Rate mile (AARm)—Industry Recognized 0.34 0.25 0.21 1 Member, Audit Committee Vikoeren (16). 2 Member, Compensation Committee 3 Member, Finance Committee 4 Member, Nominating and Governance Committee 5 Member, Science and Technology Committee 14781schD1R2.indd 2 2/14/18 5:18 PM Schlumberger is the world’s leading provider of technology for reservoir characterization, drilling, production, and processing to the oil and gas industry. Working in more than 85 countries and employing approximately 100,000 people who represent over 140 nationalities, Schlumberger supplies the industry’s most comprehensive range of products and services, from exploration through production, and integrated pore to pipeline solutions that optimize hydrocarbon recovery to deliver reservoir performance. Front Cover Contents Digital technology is helping the E&P industry make better Financial and Safety Performance Inside Front Cover use of all the data and expertise it possesses by getting the right 2 Letter to Shareholders information to the right people at the right time. Engineers will 5 Performed by Schlumberger be able to use digital well construction planning and operations 6 Digital Technology Integration software in the DELFI* cognitive E&P environment to enhance 8 Establish a New Way of Working collaboration and optimize the drilling process. For example, 8 System-Level Optimization the DrillPlan* digital well construction planning solution 11 Reduce Uncertainty, Accelerate Decision Making provides a new way of working for drilling engineers in the field 11 Increase Efficiency, Minimize Risks collaborating with domain experts at remote monitoring centers. 13 Decrease Cost per Barrel Inside Front Cover 16 Digitally Enable End-to-End Solutions The sun sets on an Integrated Production Services well 17 Annual Report on Form 10-K intervention plug and abandonment operation in Brunei. Directors, Officers, and Corporate Information Inside Back Cover 1 14781schD2R3.nar.indd 1 2/13/18 11:18 PM Letter to Shareholders In 2017, Schlumberger celebrated the 90th anniversary of the first well logging survey, which took place in the Pechelbronn oil field in France in September 1927. This log established the science of subsurface metrology and provided the impetus for the business venture that eventually became Schlumberger. Paal Kibsgaard Chairman and Chief Executive Officer Schlumberger full-year 2017 revenue of $30.4 billion increased 9% year on year. This reflects a full year of activity from the acquired Cameron businesses compared with only three quarters of activity in 2016. In addition to the impact of Cameron, revenue growth was driven by unconventional land resource developments in North America due to the recovery in activity combined with market share gains and improved pricing as the oil and gas industry began to emerge from the longest and deepest downturn in 30 years. Following two successive years of E&P investment cuts, operators increased their upstream spend in North America by more than 30% in 2017. The increase in oil price afforded by the OPEC agreement gave US producers a means to increase their investment in tight oil. However, apprehension related to growing US supply, and uncertainty surrounding the duration of OPEC- and Russia-led production cuts held international spending to a level 3% below 2016. During 2017, the outlook improved for international markets, evidenced by a significant increase in the sanctioning of new projects. The number of final investment decisions tripled in 2017 compared with 2016, with 75% of the new projects planned for shallow and deepwater offshore environments. After starting the year at $55 per barrel, Brent prices fell to $44 in June and then recovered to $67 by the end of the year. The price increase resulted from 2017 demand growth of 1.5 million barrels
Recommended publications
  • Start Time End Time Speaker Company Talk Title 09:00 09:30 Registration
    Start End Speaker Company Talk Title time time 09:00 09:30 Registration Michael 09:30 09:40 LPS Welcome & Introduction O'Keefe Kevin Independent 1 09:40 10:15 What is Advanced Formation Evaluation? Corrigan Consultant Rockflow Shaly sand evaluation in the total & effective 2 10:15 10:45 Roddy Irwin Resources LTD porosity systems: Know the difference! 10:45 11:15 Break 3 11:15 11:45 Iain Whyte Tullow Oil Resistivity in thin beds…some case studies Michel A review of low-resistivity & low-resistivity 4 11:45 12:15 Schlumberger Claverie contrast pay with focus on Africa Baker Using fractals to determine a reservoir's 5 12:15 12:45 Steve Cuddy Hughes/SPE hydrocarbon distribution 12:45 13:45 Lunch Joint Interpretation of Magnetic Resonance - and Geoff Page & Baker Hughes 6 13:45 14:30 Resistivity-based fluid volumetrics: A framework Holger Thern / SPWLA for petrophysical evaluation Richard Retired 7 14:30 15:00 The problem of the high permeability streak Dawe Consultant 15:00 15:30 Break Leicester Shale gas petrophysics; key parameters, 8 15:30 16:00 Mike Lovell University assumptions, and uncertainties Improved cased-hole formation evaluation: the Chiara 9 16:00 16:30 Schlumberger value of new fast neutron cross-section Cavelleri measurements & high definition spectroscopy Independent Getting More from Less - Using legacy data and 10 16:30 17:00 TBA Consultant sparse data sets Michael 17:00 17:10 LPS Closing Comments O'Keefe 17:10 onwards Refreshments Important notice: The statements and opinions expressed in this presentation are those of the author(s) and should not be construed as an official action or opinion of the London Petrophysical Society (LPS).
    [Show full text]
  • Deep Borehole Placement of Radioactive Wastes a Feasibility Study
    DEEP BOREHOLE PLACEMENT OF RADIOACTIVE WASTES A FEASIBILITY STUDY Bernt S. Aadnøy & Maurice B. Dusseault Executive Summary Deep Borehole Placement (DBP) of modest amounts of high-level radioactive wastes from a research reactor is a viable option for Norway. The proposed approach is an array of large- diameter (600-750 mm) boreholes drilled at a slight inclination, 10° from vertical and outward from a central surface working site, to space 400-600 mm diameter waste canisters far apart to avoid any interactions such as significant thermal impacts on the rock mass. We believe a depth of 1 km, with waste canisters limited to the bottom 200-300 m, will provide adequate security and isolation indefinitely, provided the site is fully qualified and meets a set of geological and social criteria that will be more clearly defined during planning. The DBP design is flexible and modular: holes can be deeper, more or less widely spaced, at lesser inclinations, and so on. This modularity and flexibility allow the principles of Adaptive Management to be used throughout the site selection, development, and isolation process to achieve the desired goals. A DBP repository will be in a highly competent, low-porosity and low-permeability rock mass such as a granitoid body (crystalline rock), a dense non-reactive shale (chloritic or illitic), or a tight sandstone. The rock matrix should be close to impermeable, and the natural fractures and bedding planes tight and widely spaced. For boreholes, we recommend avoiding any substance of questionable long-term geochemical stability; hence, we recommend that surface casings (to 200 m) be reinforced polymer rather than steel, and that the casing is sustained in the rock mass with an agent other than standard cement.
    [Show full text]
  • Real Time Petrophysical Data Analysis for Well Completions
    Real Time Petrophysical Data Analysis for Well Completions Installed in Oil Fields in the Amazon Basin in Ecuador Ivan Vela, Oscar Morales and Fabricio Sierra, Petroamazonas, Ecuador, and Francisco Porturas, Halliburton, Brasil. Copyright 2013, SBGf - S ociedade Brasileira de Geofísica its interpretation is a unique source of information of rock and fluid properties for a final calibration of predicted This paper was prepared f or presentati on during the 13th I nternational Congress of the Brazilian G eophysical S ociet y held in Rio de Janeiro, Brazil, A ugust 26-29, 2013. m odels , base cas es as an aid to install an efficient completion hardware. Contents of this paper were reviewed by the T echnic al Committee of the 13th International Congress of the Brazilian G eophysical Soci et y and do not nec essaril y represent any position of the SBG f, its officers or members. Electronic reproduction or Depending on the well geometry, wells are com pleted storage of any part of this paper f or commercial purpos es without the written consent of the Brazilian G eophysical Soci et y is pr ohibit ed. with a variety of completion equipment, from conventional ____________________________________________________________________________ slotted liners, to standalone screens (SAS) and only Abstract recently with ICDs and Autonomous Inflow Control Devices (AICDs) and or Interval Control Valves (ICVs), Petrophysical interpretation of Logging While Drilling usually incorporating some level of compartmentalization (LWD) data, acquired real time or later downloaded and zonal isolation with swellable packers. from memory data, is applied to estimate valuable reservoir rock and fluid properties.
    [Show full text]
  • Petroleum Engineering (PETE) | 1
    Petroleum Engineering (PETE) | 1 PETE 3307 Reservoir Engineering I PETROLEUM ENGINEERING Fundamental properties of reservoir formations and fluids including reservoir volumetric, reservoir statics and dynamics. Analysis of Darcy's (PETE) law and the mechanics of single and multiphase fluid flow through reservoir rock, capillary phenomena, material balance, and reservoir drive PETE 3101 Drilling Engineering I Lab mechanisms. Preparation, testing and control of rotary drilling fluid systems. API Prerequisites: PETE 3310 and PETE 3311 recommended diagnostic testing of drilling fluids for measuring the PETE 3310 Res Rock & Fluid Properties physical properties of drilling fluids, cements and additives. A laboratory Introduction to basic reservoir rock and fluid properties and the study of the functions and applications of drilling and well completion interaction between rocks and fluids in a reservoir. The course is divided fluids. Learning the rig floor simulator for drilling operations that virtually into three sections: rock properties, rock and fluid properties (interaction resembles the drilling and well control exercises. between rock and fluids), and fluid properties. The rock properties Corequisites: PETE 3301 introduce the concepts of, Lithology of Reservoirs, Porosity and PETE 3110 Res Rock & Fluid Propert Lab Permeability of Rocks, Darcy's Law, and Distribution of Rock Properties. Experimental study of oil reservoir rocks and fluids and their interrelation While the Rock and Fluid Properties Section covers the concepts of, applied
    [Show full text]
  • Bore Hole Ebook, Epub
    BORE HOLE PDF, EPUB, EBOOK Joe Mellen,Mike Jay | 192 pages | 25 Nov 2015 | Strange Attractor Press | 9781907222399 | English | Devizes, United Kingdom Bore Hole PDF Book Drillers may sink a borehole using a drilling rig or a hand-operated rig. Search Reset. Another unexpected discovery was a large quantity of hydrogen gas. Accessed 21 Oct. A borehole may be constructed for many different purposes, including the extraction of water , other liquids such as petroleum or gases such as natural gas , as part of a geotechnical investigation , environmental site assessment , mineral exploration , temperature measurement, as a pilot hole for installing piers or underground utilities, for geothermal installations, or for underground storage of unwanted substances, e. Forces Effective stress Pore water pressure Lateral earth pressure Overburden pressure Preconsolidation pressure. Cancel Report. Closed Admin asked 1 year ago. Help Learn to edit Community portal Recent changes Upload file. Is Singular 'They' a Better Choice? Keep scrolling for more. Or something like that. We're gonna stop you right there Literally How to use a word that literally drives some pe Diameter mm Diameter mm Diameter in millimeters mm of the equipment. Drilling for boreholes was time-consuming and long. Whereas 'coronary' is no so much Put It in the 'Frunk' You can never have too much storage. We truly appreciate your support. Fiberscope 0 out of 5. Are we missing a good definition for bore-hole? Gold 0 out of 5. Share your knowledge. We keep your identity private, so you alone decide when to contact each vendor. Oil and natural gas wells are completed in a similar, albeit usually more complex, manner.
    [Show full text]
  • Geo V18i2 with Covers in Place.Indd
    VOL. 18, NO. 2 – 2021 GEOSCIENCE & TECHNOLOGY EXPLAINED GEO EDUCATION Geoscientists for the Energy Transition INDUSTRY ISSUES Gas Flaring EXPLORATION Alaska Anxiously Awaits its Fate GEOPHYSICS Nimble Nodes ENERGY TRANSITION Increasing Energy While Decreasing Carbon geoexpro.com GEOExPro May 2021 1 Previous issues: www.geoexpro.com Contents Vol. 18 No. 2 This issue of GEO ExPro focuses on North GEOSCIENCE & TECHNOLOGY EXPLAINED America; New Technologies and the Future for Geoscientists. 30 West Texas! Land of longhorn cattle, 5 Editorial mesquite, and fiercely independent ranchers. It also happens to be the 6 Regional Update: The Third Growth location of an out-of-the-way desert gem, Big Bend National Park. Gary Prost Phase of the Haynesville Play takes us on a road trip and describes the 8 Licencing Update: PETRONAS geology of this beautiful area. Launches Malaysia Bid Round, 2021 48 10 A Minute to Read The effects of contourite systems on deep water 14 Cover Story: Gas Flaring sediments can be subtle or even cryptic. However, in recent years 20 Seismic Foldout: The Greater Orphan some significant discoveries and Basin the availability of high-quality regional scale seismic data, 26 Energy Transition: Critical Minerals has drawn attention to the from Petroleum Fields frequent presence of contourite dominated bedforms. 30 GEO Tourism: Big Bend Country 34 Energy Transition Update: Increasing Energy While Decreasing Carbon 36 Hot Spot: North America 52 Seismic node systems developed in the past 38 GEO Education: Geoscientists for the decade were not sufficiently compact to efficiently Energy Transition acquire dense seismic in any environment. To answer this challenge, BP, in collaboration 42 Seismic Foldout: Ultra-Long Offsets with Rosneft and Schlumberger, developed a new nimble node system, now being developed Signal a Bright Future for OBN commercially by STRYDE.
    [Show full text]
  • Facts About Alberta's Oil Sands and Its Industry
    Facts about Alberta’s oil sands and its industry CONTENTS Oil Sands Discovery Centre Facts 1 Oil Sands Overview 3 Alberta’s Vast Resource The biggest known oil reserve in the world! 5 Geology Why does Alberta have oil sands? 7 Oil Sands 8 The Basics of Bitumen 10 Oil Sands Pioneers 12 Mighty Mining Machines 15 Cyrus the Bucketwheel Excavator 1303 20 Surface Mining Extraction 22 Upgrading 25 Pipelines 29 Environmental Protection 32 In situ Technology 36 Glossary 40 Oil Sands Projects in the Athabasca Oil Sands 44 Oil Sands Resources 48 OIL SANDS DISCOVERY CENTRE www.oilsandsdiscovery.com OIL SANDS DISCOVERY CENTRE FACTS Official Name Oil Sands Discovery Centre Vision Sharing the Oil Sands Experience Architects Wayne H. Wright Architects Ltd. Owner Government of Alberta Minister The Honourable Lindsay Blackett Minister of Culture and Community Spirit Location 7 hectares, at the corner of MacKenzie Boulevard and Highway 63 in Fort McMurray, Alberta Building Size Approximately 27,000 square feet, or 2,300 square metres Estimated Cost 9 million dollars Construction December 1983 – December 1984 Opening Date September 6, 1985 Updated Exhibit Gallery opened in September 2002 Facilities Dr. Karl A. Clark Exhibit Hall, administrative area, children’s activity/education centre, Robert Fitzsimmons Theatre, mini theatre, gift shop, meeting rooms, reference room, public washrooms, outdoor J. Howard Pew Industrial Equipment Garden, and Cyrus Bucketwheel Exhibit. Staffing Supervisor, Head of Marketing and Programs, Senior Interpreter, two full-time Interpreters, administrative support, receptionists/ cashiers, seasonal interpreters, and volunteers. Associated Projects Bitumount Historic Site Programs Oil Extraction demonstrations, Quest for Energy movie, Paydirt film, Historic Abasand Walking Tour (summer), special events, self-guided tours of the Exhibit Hall.
    [Show full text]
  • Wireline Logging
    Petrophysics MSc Course Notes Wireline Logging 5. WIRELINE LOGGING 5.1 What is a Wireline Log A log is a continuous recording of a geophysical parameter along a borehole. GAMMA RAY (GR) Wireline logging is a conventional form of logging that employs a measurement tool 0 API UNITS 100 suspended on a cable or wire that suspends the tool and carries the data back to the 620 surface. These logs are taken between drilling episodes and at the end of drilling. Recent developments also allow some measurements to be made during drilling. The tools required to make these measurements are attached to the drill string behind the bit, and do not use a wire relying 630 instead on low band-width radio communication of data through the conductive drilling mud. Such data is called MWD (measurement while drilling) for simple drilling data, and LWD (logging while drilling) for measurements analogous 640 to conventional wireline measurements. MWD and LWD will not be covered by this course, although the logs that are produced in this way have very similar characteristics, even though they have been obtained in a completely different way. 650 Figure 5.1 shows a typical wireline log. In this case it is a log that represents the natural gamma radioactivity of a formation. Note that depth is arranged vertically in feet or metres, and the header contains the name of the log curve and the range. This example shows a single track of data. Note also that 660 no data symbols are shown on the curve. Symbols are retained to represent discrete core data by convention, while continuous measurements, such as logs, are represented by smooth curves.
    [Show full text]
  • DRILLING and TESTING GEOTHERMAL WELLS a Presentation for the World Bank July 2012 Geothermal Training Event  Geothermal Resource Group, Inc
    DRILLING AND TESTING GEOTHERMAL WELLS A Presentation for The World Bank July 2012 Geothermal Training Event Geothermal Resource Group, Inc. was founded in 1992 to provide drilling engineering and supervision services to geothermal energy operators worldwide. Since it’s inception, GRG has grown to include a variety of upstream geothermal services, from exploration management to resource assessment, and from drilling project management to reservoir engineering. GRG’s permanent and contract supervisory staff is among the most active consulting firms, providing services to nearly every major geothermal operation worldwide. Services and Expertise: Drilling Engineering Drilling Supervision Exploration Geosciences Reservoir Engineering Resource Assessment Project Management Upstream Production Engineering Training Worldwide Experience: United States, Canada, and Mexico Latin America – Nicaragua, El Salvador, and Chile Southeast Asia – Philippines and Indonesia New Zealand Kenya Tu r key Caribbean EXPLORATION PROCESS The exploration process is the initial phase of the project, where the resource is identified, qualified, and delineated. It is the longest phase of the project, taking years or even decades, and it is invariably the most poorly funded. EXPLORATION PROCESS Begins with identification of a potential resource Visible System – identified by surface manifestations, either active or inactive Blind System – identified by the structural setting, geophysical explorations, or by other indicators such as water and mining exploration drilling. EXPLORATION PROCESS Primary personnel Geoscientists Geologists – structural mapping, field reconnaissance, conceptual geological models Geochemists – geothermometry, water & gas chemistry Geophysicists – geophysical exploration, structural modeling Engineers Drilling Engineers – well design, rock mechanics, economic oversight Reservoir Engineers – reservoir modeling, well testing, economic evaluation, power phase determination EXPLORATION METHODS Pre-exploration research.
    [Show full text]
  • Model Petroleum Engineering Curriculum
    The SPE Model Petroleum Engineering Curriculum – What it is and what it isn’t The model petroleum engineering curriculum is intended as an aid to universities worldwide that want to start new petroleum engineering programs. It is not intended to be a “standard” curriculum, in that no petroleum engineering curriculum would have all of the course listed here. Any petroleum engineering curriculum should educate students in fundamental mathematics and science, humanities and liberal arts, engineering science, and the foundational course in petroleum engineering. Most curricula will include some more specialized petroleum engineering courses, like those listed in the model curriculum as petroleum engineering electives. No Bachelor’s of Science level degree program could include all of the courses shown in the elective list. The SPE model curriculum includes all of the educational areas needed to create a specific petroleum engineering curriculum. Every petroleum engineering curriculum in the world is unique, none are exactly the same. Many countries or regions have course requirements that do not appear anywhere else in the world. In the United States, there are significant variations in curricula, with some programs having emphases on particular areas of petroleum engineering that are different from other programs. This model curriculum can be used to construct a unique degree program for new programs, with the particular courses included based on the particular needs of that university, or that country. Model Petroleum Engineering Curriculum
    [Show full text]
  • Drilling Engineering Laboratory Manual
    KING FAHD UNIVERSITY OF PETROLEUM & MINERALS Department of Petroleum Engineering PETE 203: DRILLING ENGINEERING LABORATORY MANUAL APRIL 2003 PREFACE The purpose of this manual is two fold: first to acquaint the Drilling Engineering students with the basic techniques of formulating, testing and analyzing the properties of drilling fluid and oil well cement, and second, to familiarize him with practical drilling and well control operations by means of a simulator. To achieve this objective, the manual is divided into two parts. The first part consists of seven experiments for measuring the physical properties of drilling fluid such as mud weight (density), rheology (viscosity, gel strength, yield point) sand content, wall building and filtration characteristics. There are also experiment for studying the effects of, and treatment techniques for, common contaminants on drilling fluid characteristics. Additionally, there are experiments for studying physical properties of Portland cement such as free water separation, normal and minimum water content and thickening time. In the second part, there are five laboratory sessions that involve simulated drilling and well control exercises. They involve the use of the DS-100 Derrick Floor Simulator, a full replica of an actual drilling rig with fully operations controls, which allow the student to become completely absorbed in the exercises as he would in an actual drilling operation. The simulator has realistic drilling rig responses that are synchronized to specific events, like rate of penetration, rotary table motion, and actual rig sounds such as accumulator recharge, break drawworks, etc. It is hoped that the material in this manual will effectively supplement the theory aspect presented in the main course.
    [Show full text]
  • Schlumberger N.V. Annual Report 2018
    Schlumberger N.V. Annual Report 2018 Form 10-K (NYSE:SLB) Published: January 24th, 2018 PDF generated by stocklight.com UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 Form 10-K (Mark One) ☑ ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the fiscal year ended December 31, 2017 OR ☐ TRANSITION REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the transition period from __________ to __________ Commission File Number 1-4601 Schlumberger N.V. (Schlumberger Limited) (Exact name of registrant as specified in its charter) Curaçao 52-0684746 (State or other jurisdiction of incorporation or organization) (IRS Employer Identification No.) 42, rue Saint-Dominique Paris, France 75007 5599 San Felipe, 17th Floor Houston, Texas, United States of America 77056 62 Buckingham Gate, London, United Kingdom SW1E 6AJ Parkstraat 83, The Hague, The Netherlands 2514 JG (Addresses of principal executive offices) (Zip Codes) Registrant’s telephone number in the United States, including area code, is: (713) 513-2000 Securities registered pursuant to Section 12(b) of the Act: Title of each class Name of each exchange on which registered Common Stock, par value $0.01 per share New York Stock Exchange Euronext Paris The London Stock Exchange SIX Swiss Exchange Securities registered pursuant to Section 12(g) of the Act: None Indicate by check mark if the registrant is a well-known seasoned issuer, as defined in Rule 405 of the Securities Act. YES ☑ NO ☐ Indicate by check mark if the registrant is not required to file reports pursuant to Section 13 or Section 15(d) of the Act.
    [Show full text]