Ancient Habitable Environments Preserved in the Rock Record

Total Page:16

File Type:pdf, Size:1020Kb

Ancient Habitable Environments Preserved in the Rock Record Ancient habitable environments preserved in the rock record Determining whether environmental and chemical conditions have ever been suitable to sustain life on Mars as we know it on Earth has been a focus of recent Mars missions. Significantly, the potential for habitable environments during a time window in Mars' ancient past (the Noachian- Hesperian transition) has now been identified at Yellowknife Bay in Gale crater by the Mars Science Laboratory (MSL) science team. This consensus is based upon comprehensive sedimentological, mineralogical, and geochemical observations, and includes: 1) unambiguous evidence for fluvial transport of coarse-grained sediments, in concert with 2) deltaic deposits confirming the presence of a standing body of water together with laminated mudstones – also indicative of quiescent water deposition; 3) clay mineral detection and lack of chemical precipitates, confirming high water/rock ratio exposure in low-salinity water of near-neutral pH; 4) the presence of key chemical elements used by biology, including native carbon; and 5) the detection of nutrients such as nitrates and energy sources for microbial metabolism such as minerals in various oxidation states. Estimates of sedimentation rates in standing water are used to infer that a hydrologic cycle involving precipitation, runoff, infiltration, groundwater migration, and evaporation would have persisted for perhaps millions of years. Together, these observations make a compelling case for site-specific habitable environments in Mars' ancient past, which will help inform life-search strategies moving forward. It has become apparent in recent years, from the results of extended missions on multiple ground-based and orbital platforms, that early aqueous environments varied considerably in character both spatially and temporally, potentially extending well beyond the Noachian-Hesperian transition. Conditions may have alternated between wet/neutral and dry/acidic, with water persisting in some regions significantly longer than others. Spectral signatures for clay minerals are detected in Noachian crustal rocks throughout both hemispheres, demonstrating abundant high water/rock ratios for those early environments. Environments conducive to phyllosilicate-producing, mineral-water interactions include both hydrothermal and low-temperature water systems. In addition to clay minerals, localized lacustrine sedimentary deposits have preserved carbonates, sulfates, and chlorides. An in-situ effort to study ancient aqueous alteration processes in the Noachian environment of the Endeavour crater rim, is being conducted by the Mars Exploration Rover (MER) Opportunity rover in concert with Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) spectroscopic analysis of altered rocks from orbit. This approach is helping to characterize the geologic and geochemical context for Noachian aqueous alteration processes across the globe. Considerable evidence of an ice-melt-based hydrology in the post-Noachian is found from orbit in the form of widespread, paleolake-associated, fresh shallow valleys throughout the mid latitudes of both hemispheres. Evidence argues for their formation during a period of global climate adjustment. History of the infilling of Gale crater and its exhumation to form Mount Sharp. A north-south transect of the current topography, featuring the high southern rim, the crater’s central peak at nearly equal elevation, the slightly lower false summit of Mount Sharp, and the much lower northern rim. The northern rim of Gale crater is assumed to have this lower elevation because it straddles the dichotomy boundary. The dotted box represents the part of the crater that is illustrated in (C) and (D). (B) Early infilling of the crater during the aqueous period. The dashed line represents the modern topography, and the solid line represents the original post-impact topography, derived from the profiles of other craters of similar size and with central peaks of similar height The infilling of the crater was driven by erosion of the northern rim and the central peak, which generated sediment that was transported downslope, fining along the way due to hydraulic segregation of grain size. Crater diameter-depth relationships suggest that an additional 1 to 2 km of crater-infilling strata (pattern with question marks) may lie beneath the present-day surface (figs. S9 and S10). (C) During the subsequent dry period, the bulk of Mount Sharp formed via accumulation of eolian facies, very generally defined. The mass of Mount Sharp exerted a gravitational force that caused compaction of previously deposited strata, resulting in rotation of those strata downward relative to the rigid central peak (figs. S7 and S8). (D) Wind-driven erosion resulted in the exhumation of the crater-filling strata. Curiosity landed on nearly the lowest point of the exhumation surface, where fluvial-deltaic deposits were exposed, and then drove uphill to the south and across a facies transition into lacustrine sediments of the Murray formation. Figure and caption from Grotzinger et al. (2015); see below. Relevant references: Crumpler, L. S., R. E. Arvidson, D. W. Mittlefehldt, B. L. Jolliff, W. H. Farrand, V. Fox, M. P. Golombek, and A. S. Team (2016), Opportunity, geologic and structural context of aqueous alteration in noachian outcrops, Marathon Valley and rim of Endeavour crater, LPSC XLVII, The Woodlands, TX, Abstract #2272. Ehlmann, B. L., and C. S. Edwards (2014), Mineralogy of the martian surface, Annual Review of Earth and Planetary Sciences, 42, 291-315, doi:10.1146/annurev-earth-060313-055024. Wilson, S. A., A. D. Howard, J. E. Moore, and J. A. Grant (2016), A cold-wet middle-latitude environment on Mars during the Hesparian-Amazonian transition: Evidence from northern Arabia valleys and paleolakes, Journal of Geophysical Research: Planets, 121(9), 1667-1694, doi:10.1002/2016JE005052. Grotzinger, J. P., et al. (2015), Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars, Science, 350(6257), doi:10.1126/science.aac7575. Szabo, T., G. Domokos, J. P. Grotzinger, and D. J. Jerolmack (2015), Reconstructing the transport history of pebbles on Mars, Nature Communications, 6, doi:10.1038/ncomms9366. Vasavada, A. R., et al. (2014), Overview of the Mars Science Laboratory mission: Bradbury Landing to Yellowknife Bay and beyond, Journal of Geophysical Research-Planets, 119(6), 1134-1161, doi:10.1002/2014je004622. Williams, R.M., Grotzinger, J.P., Dietrich, W.E., Gupta, S., Sumner, D.Y., Wiens, R.C., Mangold, N., Malin, M.C., Edgett, K.S., Maurice, S. and Forni, O. (2013), Martian fluvial conglomerates at Gale crater, Science, 340(6136), pp.1068-1072, DOI: 10.1126/science.1237317. Vaniman, D.T., Bish, D.L., Ming, D.W., Bristow, T.F., Morris, R.V., Blake, D.F., Chipera, S.J., Morrison, S.M., Treiman, A.H., Rampe, E.B. and Rice, M. (2014), Mineralogy of a mudstone at Yellowknife Bay, Gale crater, Mars. Science, 343(6169), DOI: 10.1126/science.1243480. .
Recommended publications
  • Mars Science Laboratory: Curiosity Rover Curiosity’S Mission: Was Mars Ever Habitable? Acquires Rock, Soil, and Air Samples for Onboard Analysis
    National Aeronautics and Space Administration Mars Science Laboratory: Curiosity Rover www.nasa.gov Curiosity’s Mission: Was Mars Ever Habitable? acquires rock, soil, and air samples for onboard analysis. Quick Facts Curiosity is about the size of a small car and about as Part of NASA’s Mars Science Laboratory mission, Launch — Nov. 26, 2011 from Cape Canaveral, tall as a basketball player. Its large size allows the rover Curiosity is the largest and most capable rover ever Florida, on an Atlas V-541 to carry an advanced kit of 10 science instruments. sent to Mars. Curiosity’s mission is to answer the Arrival — Aug. 6, 2012 (UTC) Among Curiosity’s tools are 17 cameras, a laser to question: did Mars ever have the right environmental Prime Mission — One Mars year, or about 687 Earth zap rocks, and a drill to collect rock samples. These all conditions to support small life forms called microbes? days (~98 weeks) help in the hunt for special rocks that formed in water Taking the next steps to understand Mars as a possible and/or have signs of organics. The rover also has Main Objectives place for life, Curiosity builds on an earlier “follow the three communications antennas. • Search for organics and determine if this area of Mars was water” strategy that guided Mars missions in NASA’s ever habitable for microbial life Mars Exploration Program. Besides looking for signs of • Characterize the chemical and mineral composition of Ultra-High-Frequency wet climate conditions and for rocks and minerals that ChemCam Antenna rocks and soil formed in water, Curiosity also seeks signs of carbon- Mastcam MMRTG • Study the role of water and changes in the Martian climate over time based molecules called organics.
    [Show full text]
  • EGU2015-6247, 2015 EGU General Assembly 2015 © Author(S) 2015
    Geophysical Research Abstracts Vol. 17, EGU2015-6247, 2015 EGU General Assembly 2015 © Author(s) 2015. CC Attribution 3.0 License. From Kimberley to Pahrump_Hills: toward a working sedimentary model for Curiosity’s exploration of strata from Aeolis Palus to lower Mount Sharp in Gale crater Sanjeev Gupta (1), David Rubin (2), Katie Stack (3), John Grotzinger (4), Rebecca Williams (5), Lauren Edgar (6), Dawn Sumner (7), Melissa Rice (8), Kevin Lewis (9), Michelle Minitti (5), Juergen Schieber (10), Ken Edgett (11), Ashwin Vasawada (3), Marie McBride (11), Mike Malin (11), and the MSL Science Team (1) Imperial College London, London, United Kingdom ([email protected]), (2) UC, Santa Cruz, CA, USA, (3) Jet Propulsion Laboratory, Pasadena, CA, USA, (4) California Institute of Technology, Pasadena, CA, USA, (5) Planetary Science INstitute, Tucson, AZ, USA, (6) USGS, Flagstaff, AZ, USA, (7) UC, Davis, CA, USA, (8) Western Washington University, Bellingham, WA, USA, (9) Johns Hopkins University, Baltimore, Maryland, USA, (10) Indiana University, Bloomington, Indiana, USA, (11) Malin Space Science Systems, San Diego, CA, USA In September 2014, NASA’s Curiosity rover crossed the transition from sedimentary rocks of Aeolis Palus to those interpreted to be basal sedimentary rocks of lower Aeolis Mons (Mount Sharp) at the Pahrump Hills outcrop. This transition records a change from strata dominated by coarse clastic deposits comprising sandstones and conglomerate facies to a succession at Pahrump Hills that is dominantly fine-grained mudstones and siltstones with interstratified sandstone beds. Here we explore the sedimentary characteristics of the deposits, develop depositional models in the light of observed physical characteristics and develop a working stratigraphic model to explain stratal relationships.
    [Show full text]
  • David Vaniman, Steve Chipera, Patricia Craig Calendar Year 2018 I
    David Vaniman, Steve Chipera, Patricia Craig Calendar Year 2018 I. Report on research For calendar year 2018, focus remained on the Mars Science Laboratory (MSL) mission. Vaniman’s involvement with MSL continued in roles with two instruments, the CheMin X-ray diffraction (XRD) and X-ray florescence (XRF) instrument and, to lesser extent, the ChemCam laser-induced breakdown spectroscopy (LIBS) and remote micro-imager (RMI) instrument. Chipera and Craig are involved with the CheMin instrument. (1) Research at the MSL Gale Crater Field Site on Mars (1a) CheMin Instrument on MSL. David Vaniman is a Co-I on the CheMin instrument for Mars Science Laboratory (MSL); the PI is Tom Bristow of NASA Ames. This report also covers Steve Chipera, who is a Co-I for the CheMin instrument, and Patricia Craig, who is a Postdoctoral Research Scientist for the CheMin team. Steve Chipera works through PSI as a Senior Research Associate for the MSL mission and reports to Dave Vaniman. Patricia Craig, who is a Postdoctoral Research Scientist at PSI, also reports to Dave Vaniman. Vaniman has tactical, data analysis, and Planetary data System (PDS) reporting roles for MSL. Steve Chipera has a data analysis role and Patricia Craig has both tactical and data analysis roles for MSL. As members of the CheMin Science Team tasked with operations, Vaniman’s and Craig’s tactical participation included operations in the role of combined Payload Uplink Lead and Payload Downlink Lead (PUDL). With Dick Morris (NASA-JSC) and Mike Wilson (NASA-Ames), Vaniman completed three additional rounds of data delivery for the Planetary Data System (PDS), one on February 16, 2018 (PDS release #17), one on June 29, 2018 (PDS release #18), and one on November 2, 2018 (PDS release #19).
    [Show full text]
  • Curiosity's First Six Months on Mars
    NASA/JPL-Caltech/MSSS Curiosity's First Six Months on Mars: Noah Warner Tactical Uplink Lead Jet Propulsion Laboratory from touchdown to drilling rocks California Institute of Technology February 12, 2013 Curiosity landed on Mars August 5, 2012 (PDT) The HiRISE camera on the Mars Reconnaissance Orbiter took this action shot of Curiosity descending on the parachute! Touchdown with the Sky Crane Landing System Curiosity’s primary scientific goal is to explore and quantitatively assess a local region on Mars’ surface as a potential habitat for life, past or present • Biological potential • Geology and geochemistry • Role of water • Surface radiation NASA/JPL-Caltech Curiosity’s Science Objectives NASA/JPL-Caltech NASA/JPL-Caltech/ESA/DLR/FU Berlin/MSSS Target: Gale Crater and Mount Sharp ChemCam REMOTE SENSING Mastcam Mastcam (M. Malin, MSSS) - Color and telephoto imaging, video, atmospheric opacity RAD ChemCam (R. Wiens, LANL/CNES) – Chemical composition; REMS remote micro-imaging DAN CONTACT INSTRUMENTS (ARM) MAHLI (K. Edgett, MSSS) – Hand-lens color imaging APXS (R. Gellert, U. Guelph, Canada) - Chemical composition ANALYTICAL LABORATORY (ROVER BODY) MAHLI APXS SAM (P. Mahaffy, GSFC/CNES/JPL-Caltech) - Chemical and isotopic composition, including organics Brush MARDI Drill / Sieves CheMin (D. Blake, ARC) - Mineralogy Scoop Wheel Base: 2.8 m ENVIRONMENTAL CHARACTERIZATION Height of Deck: 1.1 m MARDI (M. Malin, MSSS) - Descent imaging Ground Clearance: 0.66 m REMS (J. Gómez-Elvira, CAB, Spain) - Meteorology / UV Height of Mast: 2.2 m RAD
    [Show full text]
  • Windblown Sandstones Cemented by Sulfate and Clay Minerals in Gale
    PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Wind-blown sandstones cemented by sulfate 10.1002/2013GL059097 and clay minerals in Gale Crater, Mars Key Points: R. E. Milliken1, R. C. Ewing2, W. W. Fischer3, and J. Hurowitz4 • Lower Mt. Sharp in Gale Crater exhibits evidence for wind-blown 1Department of Geological Sciences, Brown University, Providence, Rhode Island, USA, 2Department of Geology and sandstones 3 • Preserved dune topography is indicative Geophysics, Texas A&M University, College Station, Texas, USA, Division of Geological and Planetary Sciences, California 4 of specific environmental conditions Institute of Technology, Pasadena, California, USA, Department of Geosciences, Stony Brook University, Stony Brook, New • Some preserved dunes contain clays, York, USA possibly as authigenic cements Abstract Gale Crater contains Mount Sharp, a ~5 km thick stratigraphic record of Mars’ early environmental Supporting Information: • Figures SA1–SA8, Tables S1, and S2 history. The strata comprising Mount Sharp are believed to be sedimentary in origin, but the specific • Readme depositional environments recorded by the rocks remain speculative. We present orbital evidence for the occurrence of eolian sandstones within Gale Crater and the lower reaches of Mount Sharp, including Correspondence to: preservation of wind-blown sand dune topography in sedimentary strata—a phenomenon that is rare on Earth R. E. Milliken, [email protected] and typically associated with stabilization, rapid sedimentation, transgression, and submergence of the land surface. The preserved bedforms in Gale are associated with clay minerals and elsewhere accompanied by typical dune cross stratification marked by bounding surfaces whose lateral equivalents contain sulfate salts. Citation: Milliken, R. E., R. C. Ewing, W.
    [Show full text]
  • Composition of Mars, Michelle Wenz
    The Composition of Mars Michelle Wenz Curiosity Image NASA Importance of minerals . Role in transport and storage of volatiles . Ex. Water (adsorbed or structurally bound) . Control climatic behavior . Past conditions of mars . specific pressure and temperature formation conditions . Constrains formation and habitability Curiosity Rover at Mount Sharp drilling site, NASA image Missions to Mars . 44 missions to Mars (all not successful) . 21 NASA . 18 Russia . 1 ESA . 1 India . 1 Japan . 1 joint China/Russia . 1 joint ESA/Russia . First successful mission was Mariner 4 in 1964 Credit: Jason Davis / astrosaur.us, http://utprosim.com/?p=808 First Successful Mission: Mariner 4 . First image of Mars . Took 21 images . No evidence of canals . Not much can be said about composition Mariner 4, NASA image Mariner 4 first image of Mars, NASA image Viking Lander . First lander on Mars . Multispectral measurements Viking Planning, NASA image Viking Anniversary Image, NASA image Viking Lander . Measured dust particles . Believed to be global representation . Computer generated mixtures of minerals . quartz, feldspar, pyroxenes, hematite, ilmenite Toulmin III et al., 1977 Hubble Space Telescope . Better resolution than Mariner 6 and 7 . Viking limited to three bands between 450 and 590 nm . UV- near IR . Optimized for iron bearing minerals and silicates Hubble Space Telescope NASA/ESA Image featured in Astronomy Magazine Hubble Spectroscopy Results . 1994-1995 . Ferric oxide absorption band 860 nm . hematite . Pyroxene 953 nm absorption band . Looked for olivine contributions . 1042 nm band . No significant olivine contributions Hubble Space Telescope 1995, NASA Composition by Hubble . Measure of the strength of the absorption band . Ratio vs.
    [Show full text]
  • The Light-Toned Yardang Unit, Mount Sharp, Gale Crater, Mars Spotted by the Long Distance Remote Micro-Imager of Chemcam (Msl Mission)
    49th Lunar and Planetary Science Conference 2018 (LPI Contrib. No. 2083) 1222.pdf THE LIGHT-TONED YARDANG UNIT, MOUNT SHARP, GALE CRATER, MARS SPOTTED BY THE LONG DISTANCE REMOTE MICRO-IMAGER OF CHEMCAM (MSL MISSION). G. Dromart1, L. Le 2 3 4 5 2 2 5 6 1 Deit , W. Rapin , R.B. Anderson , O. Gasnault , S. Le Mouélic , N. Mangold , S. Maurice , R.C. Wiens . LGL TPE (Univ. Lyon, France - [email protected]), 2Univ. Nantes, LPG, UMR 6112, Nantes, France, 3GPS-Caltech, Pasadena, USA 4USGF, Los Alamos, USA, 5IRAP, Toulouse, France, 6LALN, Los Alamos, USA. Introduction: The landforms referred to as yardangs and possibly angular beds [5]. We report here the result are defined according to their erosion patterns, i.e. of a re-inspection of this LD RMI mosaic and discuss elongated, asymmetric sharp-edged spurs sculpted by environments and mechanisms that favored the deposi- abrasion and deflation processes [1]. The Light-Toned tion and preservation of the LTYu. Unit (LTYu), also referred to as Coarse yardangs unit The Long Distance Remote Micro-Imager: The (Cyu) [2], is one of the five geological units that com- LD RMI images were captured by ChemCam, a remote pose the central Mount Sharp, and was emplaced at the sensing instrument currently operating onboard the E.-L. Hesperian transition [2]. From orbit (Fig. 1) the NASA Mars Science Laboratory (MSL) rover, which LTYu displays a general lens-shape. The LTYu lies determines at distance, the morphological type and between -3900 and -2200 m in elevation, in clear un- composition of rocks and soils [7].
    [Show full text]
  • Confidence Hills Mineralogy and Chemin Results from Base of Mt
    CONFIDENCE HILLS MINERALOGY AND CHEMIN RESULTS FROM BASE OF MT. SHARP, PAHRUMP HILLS, GALE CRATER, MARS. P.D. Cavanagh1, D.L. Bish1, D.F. Blake2, D.T. Vaniman3, R.V. Morris4, D.W. Ming4, E.B. Rampe4, C.N. Achilles1, S.J. Chipera5, A.H. Treiman6, R.T. Downs7, S.M. Morrison7, K.V. Fendrich7, A.S. Yen8, J. Grotzinger9, J.A. Crisp8, T.F. Bristow2, P.C. Sarrazin10, J.D. Farmer11, D.J. Des Ma- rais2, E.M. Stolper9, J.M. Morookian8, M.A. Wilson2, N. Spanovich8, R.C. Anderson8 and the MSL Science Team. 1Indiana University ([email protected]), 2NASA Ames Research Center, 3PSI, 4NASA Johnson Space Center, 5CHK Energy, 6LPI, 7Univ. of Arizona, 8JPL/Caltech, 9Caltech., 10in Xitu, Inc., 11Arizona State Univ. Introduction: The Mars Science Laboratory using data for a beryl:quartz standard measured on (MSL) rover Curiosity recently completed its fourth Mars. In addition, contributions from the Mylar sample drill sampling of sediments on Mars. The Confidence holder and the Al light-shield were explicitly included Hills (CH) sample was drilled from a rock located in and refined independently. the Pahrump Hills region at the base of Mt. Sharp in Analysis and Operations: In contrast to other Gale Crater. The CheMin X-ray diffractometer com- sample analyses performed with CheMin, the CH sam- pleted five nights of analysis on the sample, more than ple was analyzed over five nights during sols 765, 771, previously executed for a drill sample, and the data 776, 778 and 785, for a total of ~37.5 hours of integra- have been analyzed using Rietveld refinement and full- tion time.
    [Show full text]
  • Mineralogy and Fluvial History of the Watersheds of Gale, Knobel
    PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Mineralogy and fluvial history of the watersheds 10.1002/2014GL062553 of Gale, Knobel, and Sharp craters: A regional Key Points: context for the Mars Science Laboratory • Olivine- and Fe/Mg phyllosilicate-bearing bedrock throughout the watersheds Curiosity’s exploration • Watershed Fe/Mg phyllosilicates different from Mount Sharp Bethany L. Ehlmann1,2 and Jennifer Buz1 • Intermittent, increasingly localized fl Hesperian/Amazonian uvial activity 1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA, 2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA Supporting Information: • Figure S1 Abstract A 500 km long network of valleys extends from Herschel crater to Gale, Knobel, and Sharp craters. Correspondence to: The mineralogy and timing of fluvial activity in these watersheds provide a regional framework for deciphering B. L. Ehlmann, the origin of sediments of Gale crater’s Mount Sharp, an exploration target for the Curiosity rover. Olivine-bearing [email protected] bedrock is exposed throughout the region, and its erosion contributed to widespread olivine-bearing sand dunes. Fe/Mg phyllosilicates are found in both bedrock and sediments, implying that materials deposited in Citation: Gale crater may have inherited clay minerals, transported from the watershed. While some topographic lows Ehlmann, B. L., and J. Buz (2015), Mineralogy and fluvial history of the watersheds of of the Sharp-Knobel watershed host chloride salts, the only salts detected in the Gale watershed are sulfates Gale, Knobel, and Sharp craters: A regional within Mount Sharp, implying regional or temporal differences in water chemistry. Crater counts indicate context for the Mars Science Laboratory progressively more spatially localized aqueous activity: large-scale valley network activity ceased by the early ’ Curiositysexploration,Geophys.
    [Show full text]
  • Planets Solar System Paper Contents
    Planets Solar system paper Contents 1 Jupiter 1 1.1 Structure ............................................... 1 1.1.1 Composition ......................................... 1 1.1.2 Mass and size ......................................... 2 1.1.3 Internal structure ....................................... 2 1.2 Atmosphere .............................................. 3 1.2.1 Cloud layers ......................................... 3 1.2.2 Great Red Spot and other vortices .............................. 4 1.3 Planetary rings ............................................ 4 1.4 Magnetosphere ............................................ 5 1.5 Orbit and rotation ........................................... 5 1.6 Observation .............................................. 6 1.7 Research and exploration ....................................... 6 1.7.1 Pre-telescopic research .................................... 6 1.7.2 Ground-based telescope research ............................... 7 1.7.3 Radiotelescope research ................................... 8 1.7.4 Exploration with space probes ................................ 8 1.8 Moons ................................................. 9 1.8.1 Galilean moons ........................................ 10 1.8.2 Classification of moons .................................... 10 1.9 Interaction with the Solar System ................................... 10 1.9.1 Impacts ............................................ 11 1.10 Possibility of life ........................................... 12 1.11 Mythology .............................................
    [Show full text]
  • Exploring Ancient and Modern Mars with the Curiosity Rover
    [email protected] Planetary Protection Subcommittee NASA/JPL‐Caltech/MSSS November 12, 2013 Exploring Ancient and Modern Mars with the Curiosity Rover: Early Results from the SAM Investigation at Gale Crater Curiosity’s primary scientific goal is to explore and quantitatively assess a local region on Mars’ surface as a potential habitat for life, past or present • Biological potential • Geology and geochemistry • Role of water Surface radiation (humans to Mars) NASA/JPL‐Caltech Curiosity’s Science Objectives ? 150‐km Gale Crater contains a 5‐km high mound of stratified rock. Strata in the lower section of the mound vary in mineralogy and texture, suggesting that they may have recorded environmental changes over time. Curiosity will investigate this record for clues about habitability, and the ability of Mars to preserve evidence about habitability or life. NASA/JPL‐Caltech/ESA/DLR/FU Berlin/MSSS NASA/JPL‐Caltech Target: Gale Crater and Mount Sharp Bibring et al (2006) from Mars Express IR observations Narrow distribution of large impact basins Frey (2008) Gale Crater strata may record a critical transition in the history of the martian surface ChemCam (Chemistry) Mastcam APXS (Imaging) RAD (Chemistry) MAHLI (Radiation) (Imaging) REMS (Weather) DAN (Subsurface Hydrogen) Drill Scoop Brush Sieves SAM (Chemistry CheMin MARDI and Isotopes) (Mineralogy) (Imaging) Curiosity’s Science Payload November 26, 2011 the Atlas V launch NASA/JPL‐Caltech/MSSS Heat shield separation captured by Curiosity’s Mars Descent Imager NASA/JPL‐Caltech/MSSS
    [Show full text]
  • PHYSICAL STRATIGRAPHY ALONG the CURIOSITY TRAVERSE and the TRANSITION to MOUNT SHARP. K. W. Lewis1, W. E. Dietrich2, L. A. Edgar3, J
    46th Lunar and Planetary Science Conference (2015) 2698.pdf PHYSICAL STRATIGRAPHY ALONG THE CURIOSITY TRAVERSE AND THE TRANSITION TO MOUNT SHARP. K. W. Lewis1, W. E. Dietrich2, L. A. Edgar3, J. P. Grotzinger4, S. Gupta5, L. C. Kah6, N. Mangold7, D. M. Rubin8, K. M. Stack-Morgan9, R. M. E. Williams10, and the MSL science team. 1Johns Hopkins University, Dept. of Earth and Planetary Sciences, Baltimore, MD 21218 ([email protected]), 2UC Berkeley, Berke- ley, CA, 3USGS, Flagstaff, AZ, 4California Institute of Technology, Pasadena, CA, 5Imperial College, London, UK, 6University of Tennessee, Knoxville, TN, 7Université de Nantes, Nantes, France, 8UC Santa Cruz, Santa Cruz, CA, 9Jet Propulsion Laboratory, Pasadena, CA, 10Planetary Science Institute, Tucson, AZ. Introduction: Over the first 800 sols of its mis- tionships between these sedimentary systems is critical sion, the Curiosity rover traversed several kilometers to determining the mechanisms and timing of deposi- across the floor of Gale crater from its landing site on tion and erosion within Gale crater. In particular, the Aeolis Palus toward its destination at Aeolis Mons lower strata of Mount Sharp are most promising for (Mount Sharp). This initial phase of the mission cul- determining whether Gale crater experienced long- minated with the recent arrival at the base of Mount term lacustrine phases early in its history. Here we Sharp, represented by an outcrop informally known as describe a combination of orbital and rover-based the Pahrump Hills. Over this route, the rover explored mapping, integrating stereo images and topography several distinct geologic units representing the transi- from the HiRISE camera with those from Curiosity’s tion zone between sediments of the Peace Vallis fan Navcam and Mastcam instruments.
    [Show full text]