David Vaniman, Steve Chipera, Patricia Craig Calendar Year 2018 I

Total Page:16

File Type:pdf, Size:1020Kb

David Vaniman, Steve Chipera, Patricia Craig Calendar Year 2018 I David Vaniman, Steve Chipera, Patricia Craig Calendar Year 2018 I. Report on research For calendar year 2018, focus remained on the Mars Science Laboratory (MSL) mission. Vaniman’s involvement with MSL continued in roles with two instruments, the CheMin X-ray diffraction (XRD) and X-ray florescence (XRF) instrument and, to lesser extent, the ChemCam laser-induced breakdown spectroscopy (LIBS) and remote micro-imager (RMI) instrument. Chipera and Craig are involved with the CheMin instrument. (1) Research at the MSL Gale Crater Field Site on Mars (1a) CheMin Instrument on MSL. David Vaniman is a Co-I on the CheMin instrument for Mars Science Laboratory (MSL); the PI is Tom Bristow of NASA Ames. This report also covers Steve Chipera, who is a Co-I for the CheMin instrument, and Patricia Craig, who is a Postdoctoral Research Scientist for the CheMin team. Steve Chipera works through PSI as a Senior Research Associate for the MSL mission and reports to Dave Vaniman. Patricia Craig, who is a Postdoctoral Research Scientist at PSI, also reports to Dave Vaniman. Vaniman has tactical, data analysis, and Planetary data System (PDS) reporting roles for MSL. Steve Chipera has a data analysis role and Patricia Craig has both tactical and data analysis roles for MSL. As members of the CheMin Science Team tasked with operations, Vaniman’s and Craig’s tactical participation included operations in the role of combined Payload Uplink Lead and Payload Downlink Lead (PUDL). With Dick Morris (NASA-JSC) and Mike Wilson (NASA-Ames), Vaniman completed three additional rounds of data delivery for the Planetary Data System (PDS), one on February 16, 2018 (PDS release #17), one on June 29, 2018 (PDS release #18), and one on November 2, 2018 (PDS release #19). During this reporting period Vaniman, Chipera, and Craig assisted in characterization of Mars samples analyzed by CheMin. New samples collected and analyzed during this period were drill samples form Vera Rubin Ridge (informally known as Hematite Ridge). The three drill samples collected were Duluth, Stoer, and Highfield. Chipera’s expertise was used in application of FULLPAT analysis for quantifying amorphous, poorly crystalline, and clay mineral components in these samples. Vaniman, Chipera and Craig contributed to five research papers that were published during this review period. A paper by Bristow et al. (2018) studied clay minerals at Gale cater with implications for surface chemical weathering, lake levels, and atmospheric infiltration. Two back-to-back papers by Morrison et al. (2018a,b) developed algorithms for obtaining crystal chemistry from X-ray diffraction data (Part 1) and applied these methods to the mineralogy of Gale crater (Part 2). In Rampe et al. (2018) Chemin XRD data and CRISM-based estimates of mineralogy were used to examine variability in mineralogy and mineral sources in eolain dunes encountered on the lower slopes of Mount Sharp. In Vaniman et al. (2018) we reported on gypsum, bassanite and anhydrite at Gale crater and discussed mineral dehydration reactions within CheMin (gypsum dehydration to bassanite); the polyphase Ca-sulfate associations at Gale crater reflect limited opportunities for equilibration and presage mixed salt associations anticipated in higher strata that are more sulfate-rich and may mark local or global environmental change In Bristow et al. (2018), the accumulated clay mineral data for Gale crater was examined for indications of evolution of aqueous conditions and possible habitats. The ~3.5–billion year (Ga) fluvio- lacustrine mudstones in Gale crater contain up to ~28 weight % clay minerals. The paper shows that clay mineral X-ray diffraction and evolved gas analyses have paleoenvironmental significance. While perennial lake mudstones are characterized by Fe-saponite, the stratigraphic intervals associated with episodic lake drying contain Al-rich, Fe3+-bearing dioctahedral smectite. Minor ferripyrophyllite, interpreted as wind- blown detritus, is found in candidate aeolian deposits. Results suggest that dioctahedral smectite formed by near-surface chemical weathering driven by fluctuations in lake level and atmospheric infiltration, a process leading to the redistribution of nutrients and potentially influencing the cycling of gases that help regulate climate. Back-to-back papers by Morrison et al., (2018a,b) address (Part 1, 2018a) general relationships between unit-cell parameters and composition for rock-forming minerals and (Part 2, 2018b) the specific crystal chemistry of martian minerals at Gale crater. In Part 1, mathematical relationships between unit-cell parameters and chemical composition were developed for selected mineral phases. Algorithms were developed for estimating the chemical composition of phases based solely on X-ray diffraction data. The mineral systems studied include plagioclase, alkali feldspar, clinopyroxenes, orthopyroxenes, Mg-Fe olivines, magnetites and other selected spinel oxides, and alunite-jarosite. These methods assume simple compositions of Na-Ca for plagioclase, K-Na for alkali feldspar, Mg-Fe-Ca for pyroxene, and Mg-Fe for olivine; however, some minor elements may occur and their impact on measured unit-cell parameters is discussed. In Part 2, the crystal chemical algorithms of Part 1 were used to estimate the chemical composition of selected mineral phases observed with the CheMin X-ray diffractometer at Gale crater. The samples in Part 2 include eolian soils (Rocknest and Gobabeb), mudstones of the Yellowknife Bay formation (John Klein and Cumberland) and the Murray formation (Confidence Hills, Mojave2, and Telegraph Peak), as well as the sandstone Windjana and sandstones of the unaltered Stimson formation (Big Sky and Okoruso) and the altered Stimson formation (Greenhorn and Lubango). Compositional ranges for feldspars, pyroxenes, olivines and magnetites are constrained by this study. Rampe et al. (2018) examined active eolian sands near linear dunes encountered during the Bagnold Dunes campaign in Gale crater, using the Ogunquit Beach scoop sample from a large-ripple trough within the Mount Desert Island ripple field. This sand is dominated by basaltic igneous minerals and X-ray amorphous materials. CheMin mineralogy of the prior Gobabeb sample acquired at a large-ripple crest on the Namib barchan dune is similar to Ogunquit Beach. Ogunquit Beach, however, contains more plagioclase and Gobabeb contains more olivine. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM)- based estimates of mineralogy at the optical surface of Namib Dune and Mount Desert Island demonstrate that surface sands are enriched in olivine and depleted in plagioclase at Mount Desert Island relative to Namib Dune. Differences between CheMin-derived and CRISM-derived mineralogies suggest sorting by grain size on bedform to dune field scales. Crystal chemistry from CheMin suggests contributions from multiple igneous sources and the local bedrock. In Vaniman et al. (2018) we show that gypsum, bassanite, and anhydrite are common minerals at Gale crater. Warm conditions (~6 to 30 °C) within CheMin drive gypsum dehydration to bassanite; measured surface temperatures and modeled temperature depth profiles indicate that near-equatorial warm-season surface heating can also cause gypsum dehydration to bassanite. By accounting for instrumental dehydration effects we are able to quantify the in situ abundances of Ca-sulfate phases in sedimentary rocks and in eolian sands at Gale crater. All three Ca-sulfate minerals occur together in some sedimentary rocks and their abundances and associations vary stratigraphically. Several Ca-sulfate diagenetic events are indicated. Salinity-driven anhydrite precipitation at temperatures below ~50 °C may be supported by co- occurrence of more soluble salts. An alternative pathway to anhydrite via dehydration might be possible, but if so would likely be limited to warmer near-equatorial dark eolian sands that presently contain only anhydrite. The polyphase Ca-sulfate associations at Gale crater reflect limited opportunities for equilibration, and they presage mixed salt associations anticipated in higher strata that are more sulfate-rich and may mark local or global environmental change. Mineral transformations within CheMin also provide a better understanding of changes that might occur in samples returned from Mars. (1b) ChemCam instrument on MSL ChemCam laser induced breakdown spectroscopy (LIBS) and remote micro-imaging (RMI) continued to be used extensively during 2018. Vaniman is a Co-investigator on the ChemCam instrument on Mars Science Laboratory (MSL); the PI is Roger Wiens of Los Alamos National Laboratory. During 2018, Vaniman ceded management of the weekly ChemCam Geochemistry Working Group to Roger Wiens. By December, Vaniman completed his work with CheCam and is now solely focused on CheMin for the MSL mission. (1c) Mars analog research in New Mexico Vaniman continued to analyze Mars-relevant samples from ash beds in Santa Fe Group sediments of the Española basin, and sulfur-bearing samples of the Valles caldera in New Mexico. These analyses used a Terra X-ray diffraction instrument similar to the CheMin instrument on MSL. The ash beds occur in a setting that may be comparable to that of the Buckskin siliceous sediment sample analyzed by MSL in Gale crater. Samples from the Valles caldera were collected in a study led by Anna Szynkiewicz of the University of Tennessee; the goal of this study is to constrain sulfur cycling between groundwater, rock, stream discharge and precipitation using an approach that has bearing on methods to understand such cycling on Mars. An abstract (Szynkiewicz et al. 2018; see below) was presented at AGU this year, and two papers are in press for publication in 2019 (EPSL). II. Publications Peer-reviewed Publications 2018 Bristow, T.F., E. B. Rampe, C.N. Achilles, D.F. Blake, S.J. Chipera, P. Craig, J.A. Crisp, D.J. Des Marais, R.T. Downs, R. Gellert, J.P. Grotzinger, S. Gupta, R.M. Hazen, B. Horgan, J.V. Hogancamp, N. Mangold, P.R. Mahaffy, A.C. McAdam, D.W. Ming, J.M. Morookian, R.V. Morris, S.M. Morrison, A.H. Treiman, D.T. Vaniman, A.R. Vasavada, and A.S. Yen (2018) Clay mineral diversity and abundance in sedimentary rocks of Gale crater, Mars.
Recommended publications
  • The Rock Abrasion Record at Gale Crater: Mars Science Laboratory
    PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE The rock abrasion record at Gale Crater: Mars 10.1002/2013JE004579 Science Laboratory results from Bradbury Special Section: Landing to Rocknest Results from the first 360 Sols of the Mars Science Laboratory N. T. Bridges1, F. J. Calef2, B. Hallet3, K. E. Herkenhoff4, N. L. Lanza5, S. Le Mouélic6, C. E. Newman7, Mission: Bradbury Landing D. L. Blaney2,M.A.dePablo8,G.A.Kocurek9, Y. Langevin10,K.W.Lewis11, N. Mangold6, through Yellowknife Bay S. Maurice12, P.-Y. Meslin12,P.Pinet12,N.O.Renno13,M.S.Rice14, M. E. Richardson7,V.Sautter15, R. S. Sletten3,R.C.Wiens6, and R. A. Yingst16 Key Points: • Ventifacts in Gale Crater 1Applied Physics Laboratory, Laurel, Maryland, USA, 2Jet Propulsion Laboratory, Pasadena, California, USA, 3Department • Maybeformedbypaleowind of Earth and Space Sciences, College of the Environments, University of Washington, Seattle, Washington, USA, 4U.S. • Can see abrasion textures at range 5 6 of scales Geological Survey, Flagstaff, Arizona, USA, Los Alamos National Laboratory, Los Alamos, New Mexico, USA, LPGNantes, UMR 6112, CNRS/Université de Nantes, Nantes, France, 7Ashima Research, Pasadena, California, USA, 8Universidad de Alcala, Madrid, Spain, 9Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Supporting Information: Austin, Texas, USA, 10Institute d’Astrophysique Spatiale, Université Paris-Sud, Orsay, France, 11Department of • Figure S1 12 fi • Figure S2 Geosciences, Princeton University, Princeton, New Jersey, USA, Centre National de la Recherche Scienti que, Institut 13 • Table S1 de Recherche en Astrophysique et Planétologie, CNRS-Université Toulouse, Toulouse, France, Department of Atmospheric, Oceanic, and Space Science; College of Engineering, University of Michigan, Ann Arbor, Michigan, USA, Correspondence to: 14Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA, 15Lab N.
    [Show full text]
  • Chemical Variations in Yellowknife Bay Formation Sedimentary Rocks Analyzed by Chemcam on Board the Curiosity Rover on Mars N
    Chemical variations in Yellowknife Bay formation sedimentary rocks analyzed by ChemCam on board the Curiosity rover on Mars N. Mangold, O. Forni, G. Dromart, K. Stack, R. C. Wiens, O. Gasnault, D. Y. Sumner, M. Nachon, P. -Y. Meslin, R. B. Anderson, et al. To cite this version: N. Mangold, O. Forni, G. Dromart, K. Stack, R. C. Wiens, et al.. Chemical variations in Yel- lowknife Bay formation sedimentary rocks analyzed by ChemCam on board the Curiosity rover on Mars. Journal of Geophysical Research. Planets, Wiley-Blackwell, 2015, 120 (3), pp.452-482. 10.1002/2014JE004681. hal-01281801 HAL Id: hal-01281801 https://hal.univ-lorraine.fr/hal-01281801 Submitted on 12 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE Chemical variations in Yellowknife Bay formation 10.1002/2014JE004681 sedimentary rocks analyzed by ChemCam Special Section: on board the Curiosity rover on Mars Results from the first 360 Sols of the Mars Science Laboratory N. Mangold1, O. Forni2, G. Dromart3, K. Stack4, R. C. Wiens5, O. Gasnault2, D. Y. Sumner6, M. Nachon1, Mission: Bradbury Landing P.-Y.
    [Show full text]
  • Chemical Variations in Yellowknife Bay Formation Sedimentary Rocks
    PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE Chemical variations in Yellowknife Bay formation 10.1002/2014JE004681 sedimentary rocks analyzed by ChemCam Special Section: on board the Curiosity rover on Mars Results from the first 360 Sols of the Mars Science Laboratory N. Mangold1, O. Forni2, G. Dromart3, K. Stack4, R. C. Wiens5, O. Gasnault2, D. Y. Sumner6, M. Nachon1, Mission: Bradbury Landing P.-Y. Meslin2, R. B. Anderson7, B. Barraclough4, J. F. Bell III8, G. Berger2, D. L. Blaney9, J. C. Bridges10, through Yellowknife Bay F. Calef9, B. Clark11, S. M. Clegg5, A. Cousin5, L. Edgar8, K. Edgett12, B. Ehlmann4, C. Fabre13, M. Fisk14, J. Grotzinger4, S. Gupta15, K. E. Herkenhoff7, J. Hurowitz16, J. R. Johnson17, L. C. Kah18, N. Lanza19, Key Points: 2 1 20 21 12 16 2 • J. Lasue , S. Le Mouélic , R. Léveillé , E. Lewin , M. Malin , S. McLennan , S. Maurice , Fluvial sandstones analyzed by 22 22 23 19 19 24 25 ChemCam display subtle chemical N. Melikechi , A. Mezzacappa , R. Milliken , H. Newsom , A. Ollila , S. K. Rowland , V. Sautter , variations M. Schmidt26, S. Schröder2,C.d’Uston2, D. Vaniman27, and R. Williams27 • Combined analysis of chemistry and texture highlights the role of 1Laboratoire de Planétologie et Géodynamique de Nantes, CNRS, Université de Nantes, Nantes, France, 2Institut de Recherche diagenesis en Astrophysique et Planétologie, CNRS/Université de Toulouse, UPS-OMP, Toulouse, France, 3Laboratoire de Géologie de • Distinct chemistry in upper layers 4 5 suggests distinct setting and/or Lyon, Université de Lyon, Lyon, France, California Institute of Technology, Pasadena, California, USA, Los Alamos National 6 source Laboratory, Los Alamos, New Mexico, USA, Earth and Planetary Sciences, University of California, Davis, California, USA, 7Astrogeology Science Center, U.S.
    [Show full text]
  • ROVING ACROSS MARS: SEARCHING for EVIDENCE of FORMER HABITABLE ENVIRONMENTS Michael H
    PERSPECTIVE ROVING ACROSS MARS: SEARCHING FOR EVIDENCE OF FORMER HABITABLE ENVIRONMENTS Michael H. Carr* My love affair with Mars started in the late 1960s when I was appointed a member of the Mariner 9 and Viking Orbiter imaging teams. The global surveys of these two missions revealed a geological wonderland in which many of the geological processes that operate here on Earth operate also on Mars, but on a grander scale. I was subsequently involved in almost every Mars mission, both US and non- US, through the early 2000s, and wrote several books on Mars, most recently The Surface of Mars (Carr 2006). I also participated extensively in NASA’s long-range strategic planning for Mars exploration, including assessment of the merits of various techniques, such as penetrators, Mars rovers showing their evolution from 1996 to the present day. FIGURE 1 balloons, airplanes, and rovers. I am, therefore, following the results In the foreground is the tethered rover, Sojourner, launched in 1996. On the left is a model of the rovers Spirit and Opportunity, launched in 2004. from Curiosity with considerable interest. On the right is Curiosity, launched in 2011. IMAGE CREDIT: NASA/JPL-CALTECH The six papers in this issue outline some of the fi ndings of the Mars rover Curiosity, which has spent the last two years on the Martian surface looking for evidence of past habitable conditions. It is not the fi rst rover to explore Mars, but it is by far the most capable (FIG. 1). modest-sized landed vehicles. Advances in guidance enabled landing Included on the vehicle are a number of cameras, an alpha particle at more interesting and promising places, and advances in robotics led X-ray spectrometer (APXS) for contact elemental composition, a spec- to vehicles with more independent capabilities.
    [Show full text]
  • Mars Science Laboratory: Curiosity Rover Curiosity’S Mission: Was Mars Ever Habitable? Acquires Rock, Soil, and Air Samples for Onboard Analysis
    National Aeronautics and Space Administration Mars Science Laboratory: Curiosity Rover www.nasa.gov Curiosity’s Mission: Was Mars Ever Habitable? acquires rock, soil, and air samples for onboard analysis. Quick Facts Curiosity is about the size of a small car and about as Part of NASA’s Mars Science Laboratory mission, Launch — Nov. 26, 2011 from Cape Canaveral, tall as a basketball player. Its large size allows the rover Curiosity is the largest and most capable rover ever Florida, on an Atlas V-541 to carry an advanced kit of 10 science instruments. sent to Mars. Curiosity’s mission is to answer the Arrival — Aug. 6, 2012 (UTC) Among Curiosity’s tools are 17 cameras, a laser to question: did Mars ever have the right environmental Prime Mission — One Mars year, or about 687 Earth zap rocks, and a drill to collect rock samples. These all conditions to support small life forms called microbes? days (~98 weeks) help in the hunt for special rocks that formed in water Taking the next steps to understand Mars as a possible and/or have signs of organics. The rover also has Main Objectives place for life, Curiosity builds on an earlier “follow the three communications antennas. • Search for organics and determine if this area of Mars was water” strategy that guided Mars missions in NASA’s ever habitable for microbial life Mars Exploration Program. Besides looking for signs of • Characterize the chemical and mineral composition of Ultra-High-Frequency wet climate conditions and for rocks and minerals that ChemCam Antenna rocks and soil formed in water, Curiosity also seeks signs of carbon- Mastcam MMRTG • Study the role of water and changes in the Martian climate over time based molecules called organics.
    [Show full text]
  • EGU2015-6247, 2015 EGU General Assembly 2015 © Author(S) 2015
    Geophysical Research Abstracts Vol. 17, EGU2015-6247, 2015 EGU General Assembly 2015 © Author(s) 2015. CC Attribution 3.0 License. From Kimberley to Pahrump_Hills: toward a working sedimentary model for Curiosity’s exploration of strata from Aeolis Palus to lower Mount Sharp in Gale crater Sanjeev Gupta (1), David Rubin (2), Katie Stack (3), John Grotzinger (4), Rebecca Williams (5), Lauren Edgar (6), Dawn Sumner (7), Melissa Rice (8), Kevin Lewis (9), Michelle Minitti (5), Juergen Schieber (10), Ken Edgett (11), Ashwin Vasawada (3), Marie McBride (11), Mike Malin (11), and the MSL Science Team (1) Imperial College London, London, United Kingdom ([email protected]), (2) UC, Santa Cruz, CA, USA, (3) Jet Propulsion Laboratory, Pasadena, CA, USA, (4) California Institute of Technology, Pasadena, CA, USA, (5) Planetary Science INstitute, Tucson, AZ, USA, (6) USGS, Flagstaff, AZ, USA, (7) UC, Davis, CA, USA, (8) Western Washington University, Bellingham, WA, USA, (9) Johns Hopkins University, Baltimore, Maryland, USA, (10) Indiana University, Bloomington, Indiana, USA, (11) Malin Space Science Systems, San Diego, CA, USA In September 2014, NASA’s Curiosity rover crossed the transition from sedimentary rocks of Aeolis Palus to those interpreted to be basal sedimentary rocks of lower Aeolis Mons (Mount Sharp) at the Pahrump Hills outcrop. This transition records a change from strata dominated by coarse clastic deposits comprising sandstones and conglomerate facies to a succession at Pahrump Hills that is dominantly fine-grained mudstones and siltstones with interstratified sandstone beds. Here we explore the sedimentary characteristics of the deposits, develop depositional models in the light of observed physical characteristics and develop a working stratigraphic model to explain stratal relationships.
    [Show full text]
  • JSC-Rocknest: a Large-Scale Mojave Mars Simulant (MMS) Based Soil Simulant for In-Situ
    1 JSC-Rocknest: A large-scale Mojave Mars Simulant (MMS) based soil simulant for in-situ 2 resource utilization water-extraction studies 3 Clark, J.V.a*, Archer, P.D.b, Gruener, J.E.c, Ming, D.W.c, Tu, V.M.b, Niles, P.B.c, Mertzman, 4 S.A.d 5 a GeoControls Systems, Inc – Jacobs JETS Contract at NASA Johnson Space Center, 2101 6 NASA Pkwy, Houston, TX 77058, USA. [email protected], 281-244-7442 7 b Jacobs JETS Contract at NASA Johnson Space Center, 2101 NASA Pkwy, Houston, TX 8 77058, USA. 9 c NASA Johnson Space Center, 2101 NASA Pkwy, Houston, TX 77058, USA. 10 d Department of Earth and Environmental, Franklin & Marshall College, Lancaster, PA 17604, 11 USA. 12 *Corresponding author 13 14 15 16 17 18 19 Keywords: Simulant, Mars, In-situ resource utilization, evolved gas analysis, Rocknest 1 20 Abstract 21 The Johnson Space Center-Rocknest (JSC-RN) simulant was developed in response to a 22 need by NASA's Advanced Exploration Systems (AES) In-Situ Resource Utilization (ISRU) 23 project for a simulant to be used in component and system testing for water extraction from Mars 24 regolith. JSC-RN was designed to be chemically and mineralogically similar to material from the 25 aeolian sand shadow named Rocknest in Gale Crater, particularly the 1-3 wt.% low temperature 26 (<450 ºC) water release as measured by the Sample Analysis at Mars (SAM) instrument on the 27 Curiosity rover. Sodium perchlorate, goethite, pyrite, ferric sulfate, regular and high capacity 28 granular ferric oxide, and forsterite were added to a Mojave Mars Simulant (MMS) base in order 29 to match the mineralogy, evolved gases, and elemental chemistry of Rocknest.
    [Show full text]
  • Of Curiosity in Gale Crater, and Other Landed Mars Missions
    44th Lunar and Planetary Science Conference (2013) 2534.pdf LOCALIZATION AND ‘CONTEXTUALIZATION’ OF CURIOSITY IN GALE CRATER, AND OTHER LANDED MARS MISSIONS. T. J. Parker1, M. C. Malin2, F. J. Calef1, R. G. Deen1, H. E. Gengl1, M. P. Golombek1, J. R. Hall1, O. Pariser1, M. Powell1, R. S. Sletten3, and the MSL Science Team. 1Jet Propulsion Labora- tory, California Inst of Technology ([email protected]), 2Malin Space Science Systems, San Diego, CA ([email protected] ), 3University of Washington, Seattle. Introduction: Localization is a process by which tactical updates are made to a mobile lander’s position on a planetary surface, and is used to aid in traverse and science investigation planning and very high- resolution map compilation. “Contextualization” is hereby defined as placement of localization infor- mation into a local, regional, and global context, by accurately localizing a landed vehicle, then placing the data acquired by that lander into context with orbiter data so that its geologic context can be better charac- terized and understood. Curiosity Landing Site Localization: The Curi- osity landing was the first Mars mission to benefit from the selection of a science-driven descent camera (both MER rovers employed engineering descent im- agers). Initial data downlinked after the landing fo- Fig 1: Portion of mosaic of MARDI EDL images. cused on rover health and Entry-Descent-Landing MARDI imaged the landing site and science target (EDL) performance. Front and rear Hazcam images regions in color. were also downloaded, along with a number of When is localization done? MARDI thumbnail images. The Hazcam images were After each drive for which Navcam stereo da- used primarily to determine the rover’s orientation by ta has been acquired post-drive and terrain meshes triangulation to the horizon.
    [Show full text]
  • A Miniaturized Chemin Xrd/Xrf for Future Mars Exploration
    Ninth International Conference on Mars 2019 (LPI Contrib. No. 2089) 6230.pdf A MINIATURIZED CHEMIN XRD/XRF FOR FUTURE MARS EXPLORATION. B. Lafuente1, P. Sarrazin1, T. F. Bristow2, D. F. Blake2, M. Gailhanou3, J. Chen4, K. Thompson1, R. Walroth2, K. Zacny5, R. T. Downs6, and A. Yen7, 1SETI Institute, Mountain View, CA ([email protected]), 2Exobiology, NASA ARC, Moffett Field, CA, 3CNRS, IM2NP UMR, Marseille, France, 4Baja Technology, Tempe, AZ, 5Honeybee Robotics Spacecraft Mecha- nisms Corp., Pasadena, CA, 6Geosciences, Univ. Arizona, Tucson AZ, 7JPL, Pasadena, CA. Introduction: X-ray Diffraction (XRD) and X-ray ergy-selective detection of XRD photons in Mars’ ra- Fluorescence (XRF) analyses provide the most diag- diative environment. The CheMinX XRD geometry is nostic and complete characterization of rocks and soil based on an architecture demonstrated by hundreds of by any spacecraft-capable technique, improved upon commercial XRD instruments (Terra, commercial spin- only by sample return and analysis in terrestrial labora- off of CheMin, Fig. 1). This design resulted from a tories. In a complex sample such as a basalt, XRD can ray-tracing study of XRD geometries based on high as- definitively identify and quantify all minerals, establish pect-ratio detectors. It was found that reduced surface their individual elemental compositions and quantify area detectors can be used with no loss in throughput, the amount of the amorphous component. When cou- angular resolution or angular range, the loss in detector pled with XRF, the composition of the amorphous coverage being fully compensated for by an optimized component can be determined as well. collimator design. The MSL CheMin instrument, the first XRD instru- In its basic implementation CheMinX will provide ment flown in space, established the quantitative min- a resolution of 0.3° 2θ FWHM, slightly improved over eralogy of the Mars soil [1], characterized the first hab- CheMin’s 0.35°.
    [Show full text]
  • Determining Mineralogy on Mars with the Chemin X-Ray Diffractometer the Chemin Team Logo Illustrating the Diffraction of Minerals on Mars
    Determining Mineralogy on Mars with the CheMin X-Ray Diffractometer The CheMin team logo illustrating the diffraction of minerals on Mars. Robert T. Downs1 and the MSL Science Team 1811-5209/15/0011-0045$2.50 DOI: 10.2113/gselements.11.1.45 he rover Curiosity is conducting X-ray diffraction experiments on the The mineralogy of the Martian surface of Mars using the CheMin instrument. The analyses enable surface is dominated by the phases found in basalt and its ubiquitous Tidentifi cation of the major and minor minerals, providing insight into weathering products. To date, the the conditions under which the samples were formed or altered and, in turn, major basaltic minerals identi- into past habitable environments on Mars. The CheMin instrument was devel- fied by CheMin include Mg– Fe-olivines, Mg–Fe–Ca-pyroxenes, oped over a twenty-year period, mainly through the efforts of scientists and and Na–Ca–K-feldspars, while engineers from NASA and DOE. Results from the fi rst four experiments, at the minor primary minerals include Rocknest, John Klein, Cumberland, and Windjana sites, have been received magnetite and ilmenite. CheMin and interpreted. The observed mineral assemblages are consistent with an also identifi ed secondary minerals formed during alteration of the environment hospitable to Earth-like life, if it existed on Mars. basalts, such as calcium sulfates KEYWORDS: X-ray diffraction, Mars, Gale Crater, habitable environment, CheMin, (anhydrite and bassanite), iron Curiosity rover oxides (hematite and akaganeite), pyrrhotite, clays, and quartz. These secondary minerals form and INTRODUCTION persist only in limited ranges of temperature, pressure, and The Mars rover Curiosity landed in Gale Crater on August ambient chemical conditions (i.e.
    [Show full text]
  • Chemin: a Definitive Mineralogy Instrument on the Mars Science Laboratory (Msl ’09) Rover
    Seventh International Conference on Mars 3220.pdf CHEMIN: A DEFINITIVE MINERALOGY INSTRUMENT ON THE MARS SCIENCE LABORATORY (MSL ’09) ROVER. D.F. Blake1, P. Sarrazin2, D. L. Bish3, S. J. Chipera4, D. T. Vaniman4, D. Ming5, D. Morris5 and Albert Yen6. 1NASA ARC, MS 239-4, Moffett Field, CA 94035 ([email protected]), 2 In-Xitu, Inc., 2551 Casey Ave. Ste A, Mountain View, CA 94042, 3Dept. Geological Sciences, Indiana University, Bloomington, IN 47405, 4Hydrology, Geochemistry, and Geology, Los Alamos National Laboratory, MS D469, Los Alamos, NM 87545, 5NASA Johnson Space Center, Houston, TX 77058, MS 300-315L, Pasadena, CA 91109, 6MS 183-501, Jet Propulsion Laboratory, Pasadena, CA 91109 Introduction: An important goal of the Mars Sci- a 600X600 front-illuminated frame transfer device ence Laboratory (MSL ’09) mission is the determina- having 40 !m square pixels, a deep depletion zone for tion of definitive mineralogy and chemical composi- high quantum efficiency of 7 KeV X-rays (CoK"), tion of Mars soil and rocks. CheMin is a miniature and a thin polygate structure for enhanced sensitivity X-ray diffraction (XRD) instrument that has been cho- to lower atomic number elements such as Mg. sen for the analytical laboratory of MSL [1]. CheMin uses a microfocus-source Co X-ray tube, a transmis- Table 1: Critical source and detector requirements. sion sample cell, and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D XRD pat- Parameter Value terns and energy-dispersive X-ray histograms from powdered samples. A diagram of the instrument ge- 2! range 5-50° 2! ometry is shown in Figure 1.
    [Show full text]
  • Crystal Chemistry of Martian Minerals from Bradbury Landing Through
    1 Revision 2: 2 Crystal chemistry of martian minerals from Bradbury Landing 3 through Naukluft Plateau, Gale crater, Mars 4 5 SHAUNNA M. MORRISON,1,2* ROBERT T. DOWNS,1 DAVID F. BLAKE,3 DAVID T. VANIMAN,4 DOUGLAS 6 W. MING,5 ROBERT M. HAZEN,2 ALLAN H. TREIMAN,6 CHERIE N. ACHILLES,1 ALBERT S. YEN,7 7 RICHARD V. MORRIS,5 ELIZABETH B. RAMPE,5 THOMAS F. BRISTOW,3 STEVE J. CHIPERA,8 PHILIPPE 8 C. SARRAZIN,9 RALF GELLERT,10 KIM V. FENDRICH,11 JOHN MICHAEL MOROOKIAN,7 JACK D. 9 FARMER,12 DAVID J. DES MARAIS,3 AND PATRICIA I. CRAIG6 1 10 UNIVERSITY OF ARIZONA, 1040 E 4TH ST, TUCSON, AZ, 85721 U.S.A. 2 11 GEOPHYSICAL LABORATORY, CARNEGIE INSTITUTION, 5251 BROAD BRANCH RD NW, WASHINGTON, DC, 20015 12 U.S.A. 3 13 NASA AMES RESEARCH CENTER, MOFFETT FIELD, CA 94035, U.S.A. 4 14 PLANETARY SCIENCE INSTITUTE, 1700 E. FORT LOWELL, TUCSON, AZ 85719-2395, U.S.A. 5 15 NASA JOHNSON SPACE CENTER, HOUSTON, TX, 77058 U.S.A. 6 16 LUNAR AND PLANETARY INSTITUTE - USRA, 3600 BAY AREA BLVD, HOUSTON, TX 77058, U.S.A. 7 17 JET PROPULSION LABORATORY, CALIFORNIA INSTITUTE OF TECHNOLOGY, 4800 OAK GROVE DRIVE, PASADENA, CA 18 91109, U.S.A. 8 19 CHESAPEAKE ENERGY CORPORATION, 6100 N. WESTERN AVENUE, OKLAHOMA CITY, OK 73118, U.S.A. 9 20 SETI INSTITUTE, MOUNTAIN VIEW, CA 94043 U.S.A. 10 21 UNIVERSITY OF GUELPH, 50 STONE RD E, GUELPH, ON N1G 2W1, CANADA 11 22 AMERICAN MUSEUM OF NATURAL HISTORY, NEW YORK, NY 10024, U.S.A.
    [Show full text]