Controlled/Living Polymerization Towards Functional Poly(P-Phenylene Vinylene) Materials† Cite This: Polym

Total Page:16

File Type:pdf, Size:1020Kb

Controlled/Living Polymerization Towards Functional Poly(P-Phenylene Vinylene) Materials† Cite This: Polym Polymer Chemistry View Article Online REVIEW View Journal | View Issue Controlled/living polymerization towards functional poly(p-phenylene vinylene) materials† Cite this: Polym. Chem., 2016, 7, 1355 N. Zaquen,a L. Lutsen,b,c D. Vanderzandeb,c and T. Junkers*a,b Poly(p-phenylene vinylene)s (PPVs) are an important class of highly fluorescent polymeric semiconductor materials. Despite their somewhat declining use in optoelectronic applications, PPV synthesis routes were in recent years significantly improved towards controlled/living polymerization. In this way, nowadays well-defined PPV structures that can be implemented in advanced polymer structures have become accessible, finding a potential application in new fields of research. This review summarizes the advances Received 13th December 2015, made and the types of polymers that have recently become available. Most notably, two polymerization Accepted 11th January 2016 approaches are compared, living polymerization towards well-defined PPVs via ring-opening metathesis DOI: 10.1039/c5py01987g polymerization (ROMP) and chain-transfer radical and anionic polymerization in the so-called sulfinyl pre- www.rsc.org/polymers cursor polymerization route. Creative Commons Attribution-NonCommercial 3.0 Unported Licence. 1. Introduction Since the discovery of polyacetylene as the first type of pi- conjugated polymer material in the 1970s,1 a broad variety of – (semi)conducting polymer materials were developed.2 5 With plastic electronic applications such as organic light emitting Fig. 1 General structure of poly(p-phenylene vinylene)s (PPVs). – diodes (OLEDs)6 and organic photovoltaics (OPVs),7 12 these This article is licensed under a materials found a secure position in innovative electronic applications and devices. Among the most common types of Next to step-growth procedures, which mostly provide oligo- – conjugated polymer materials, the class of poly(p-phenylene (phenylene vinylenes),19 22 most predominantly chain-growth 13,14 Open Access Article. Published on 12 January 2016. Downloaded 9/24/2021 12:58:33 AM. vinylene) (PPV) polymers play a special role. PPVs are polymerizations are used to obtain PPVs with moderate to − robust polymers that are comparatively simple in their syn- high molecular weight, ranging between 4000 g mol 1 to − thesis and well-reproducible in their physical characteristics 100 000 g mol 1.23 Since the direct synthesis of PPV is often (depending on the substituents on the 2 and 5 positions at the tedious, in many cases so-called precursor polymerization phenyl core). While initially interesting for their electrolumi- routes are employed,24,25 in which a precursor polymer is nescent properties (the first OLED was made from PPV obtained from an initial polymerization, then converted into material),15,16 their use in optoelectronics has strongly the conjugated polymer in a post-polymerization step. As men- declined over the past years due their somewhat lower per- tioned above, all these synthesis methods are comparatively formance in photovoltaic devices, compared to the use of e.g. popular and straightforward in use; however, with only one pyrrole-based structures (Fig. 1).17 notable exception (metathesis polymerization),26 reactions are However, the synthesis of PPVs has been well studied and a fully uncontrolled. Uncontrolled means in this respect that no broad variety of synthesis techniques have been developed to or only insufficient control over molecular weight is achieved, date, making PPVs very valuable as work-horse materials.18 that end-groups of the polymers are not well defined and that dispersity is often high. As long as the main application of PPV was in optoelectronics, this was not an issue. For these aPolymer Reaction Design (PRD) Group, Institute for Materials Research (IMO), Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium. applications, mechanical and optical properties (specifically E-mail: [email protected] the band gap) are of importance, thus ideally requiring good bIMEC associated laboratory IMOMEC, Wetenschapspark 1, 3590 Diepenbeek, control over chain defects and microstructure but less over Belgium molecular weight and end-group functionalities.27 Function- c Design and Synthesis of Organic Semiconductors Group, Institute for Materials ality – when required – was usually introduced via attachment Research (IMO), Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium †Electronic supplementary information (ESI) available. See DOI: 10.1039/ of side-chains at the 2 and 5 positions of the phenyl ring, c5py01987g which is also required to keep PPVs soluble and hence This journal is © The Royal Society of Chemistry 2016 Polym. Chem.,2016,7, 1355–1367 | 1355 View Article Online Review Polymer Chemistry processable.28,29 Although controlled synthesis of PPVs for optoelectronic applications could be of interest from a funda- mental point of view,30 the major focus in this review is placed on biomedical application-driven controlled synthesis of PPVs. As PPVs and their derivatives have been mostly replaced in electronic applications, the question arises whether they can be used in other fields of application as well. An outstanding – feature of PPVs is their inherent fluorescent properties,31 33 hence PPVs are excellent candidates for biomedical appli- cations, where fluorescent properties are used broadly for imaging and in fact, a steep rise in the usage of conjugated polymers in bioimaging and theranostic applications has been – seen in recent years.34 40 PPVs play a prominent role here due to their good performance with respect to fluorescence but also due to their high reliability in properties (good reproduci- bility of polymerizations, especially when using micro-reactor technology)41 and the relative purity in which they are obtained, in the absence of toxic catalysts and heavy metals. However, in order to employ these materials in biomedical research, their complexity and functionality must be inherently increased. To interact in – or to mimic – biological processes Scheme 1 (a) Simplified olefin metathesis mechanism and (b) conver- and environments, the ability to self-assemble is required, as sion of cyclic alkenes to polymers in ROMP. ffi Creative Commons Attribution-NonCommercial 3.0 Unported Licence. is the potential to e ciently couple bioreceptors or other materials to the conjugated materials. In other words, con- trolled/living polymerization strategies have become a neces- architectures, giving access to a broad variety of interesting sity for the further evolution of conjugated polymers. For materials. A variety of catalysts as well as monomers are various types of conjugated polymers, living polymerization employed, with the Grubbs and Schrock catalyst as well as the strategies such as, for example, the Grignard metathesis norbornene monomer (NBE) and its derivatives being the polymerization (GRIM), were introduced,42 which gives access most prominent ones.51,52 to complex block copolymer structures and which allows ROMP mechanism applied to the synthesis of PPVs. With chain-end functionalization of polymer chains. respect to conjugated polymers, ROMP features a significant This article is licensed under a Here, we now focus on the strategies that can be used to advantage: via the olefin metathesis reaction, a vinylic bond is control polymerizations leading to PPVs, namely on the ring- directly obtained in the main chain of the polymer. Hence, the opening metathesis polymerization (ROMP) and the so-called pi-conjugated main-chain structure of PPV can in principle be Open Access Article. Published on 12 January 2016. Downloaded 9/24/2021 12:58:33 AM. anionic and radical precursor polymerization routes. This directly made available via ROMP. In fact, polyacetylene can be review is hence an update on a summary of (uncontrolled) PPV accessed via ROMP of cyclooctatetraene.53 Over the last few polymerization techniques that our group published a few decades, PPVs have mainly been synthesized by the polymeriz- years ago.18 ation of a bis(halomethyl) benzene via the addition of a strong base (e.g. NatBuO or LiHMDS; see section 2.2).18 Still, several attempts have been made to use ROMP for the synthesis of 2. Controlled synthesis of PPVs PPVs. In principle, a relatively high synthetic effort is required to reach this goal as monomer synthesis is tedious. Yet, ROMP 2.1 Ring-opening metathesis polymerization is inherently a living polymerization process (if transfer reac- Ring-opening metathesis polymerization (ROMP) is a chain- tions are absent) and not only is the conjugated polymer growth polymerization process where unsaturated cyclic system directly accessed by ROMP, but also block copolymers olefins are converted into polymeric materials. The reaction is and high-end-group functionality can be directly achieved. The based on olefin metathesis, a process that found its origin in first research in this field was performed by Kumar et al.,54 in – the 1950s.43 48 Here, a metal–carbene (alkylidene) complex which 1,4-divinylbenzene was treated under vacuum using a undergoes reversible [2 + 2] cycloadditions with olefins, tungsten alkylidene Schrock catalyst,55 yielding an insoluble thereby completing metathesis via metallacyclobutane inter- PPV oligomer in good yields and with low molecular weight 49,50 mediates, as shown in Scheme 1. When employing ring- (degree of polymerization, DPn, of 6). A follow-up of this work strained cyclic alkenes, olefin metathesis leads to a polymeriz- by Fox et al.56 confirmed
Recommended publications
  • Cationic/Anionic/Living Polymerizationspolymerizations Objectives
    Chemical Engineering 160/260 Polymer Science and Engineering LectureLecture 1919 -- Cationic/Anionic/LivingCationic/Anionic/Living PolymerizationsPolymerizations Objectives • To compare and contrast cationic and anionic mechanisms for polymerization, with reference to free radical polymerization as the most common route to high polymer. • To emphasize the importance of stabilization of the charged reactive center on the growing chain. • To develop expressions for the average degree of polymerization and molecular weight distribution for anionic polymerization. • To introduce the concept of a “living” polymerization. • To emphasize the utility of anionic and living polymerizations in the synthesis of block copolymers. Effect of Substituents on Chain Mechanism Monomer Radical Anionic Cationic Hetero. Ethylene + - + + Propylene - - - + 1-Butene - - - + Isobutene - - + - 1,3-Butadiene + + - + Isoprene + + - + Styrene + + + + Vinyl chloride + - - + Acrylonitrile + + - + Methacrylate + + - + esters • Almost all substituents allow resonance delocalization. • Electron-withdrawing substituents lead to anionic mechanism. • Electron-donating substituents lead to cationic mechanism. Overview of Ionic Polymerization: Selectivity • Ionic polymerizations are more selective than radical processes due to strict requirements for stabilization of ionic propagating species. Cationic: limited to monomers with electron- donating groups R1 | RO- _ CH =CH- CH =C 2 2 | R2 Anionic: limited to monomers with electron- withdrawing groups O O || || _ -C≡N -C-OR -C- Overview of Ionic Chain Polymerization: Counterions • A counterion is present in both anionic and cationic polymerizations, yielding ion pairs, not free ions. Cationic:~~~C+(X-) Anionic: ~~~C-(M+) • There will be similar effects of counterion and solvent on the rate, stereochemistry, and copolymerization for both cationic and anionic polymerization. • Formation of relatively stable ions is necessary in order to have reasonable lifetimes for propagation.
    [Show full text]
  • Acrylamide, Sodium Acrylate Polymer (Cas No
    ACRYLAMIDE/SODIUM ACRYLATE COPOLYMER (CAS NO. 25085‐02‐3) ACRYLAMIDE, SODIUM ACRYLATE POLYMER (CAS NO. 25987‐30‐8) 2‐PROPENOIC ACID, POTASSIUM SALT, POLYMER WITH 2‐PROPENAMIDE (CAS NO. 31212‐13‐2) SILICONE BASED EMULSION NEUTRALISED POLYACRYLIC BASED STABILIZER (NO CAS NO.) This group contains a sodium salt of a polymer consisting of acrylic acid, methacrylic acid or one of their simple esters and three similar polymers. They are expected to have similar environmental concerns and have consequently been assessed as a group. Information provided in this dossier is based on acrylamide/sodium acrylate copolymer (CAS No. 25085‐02‐3). This dossier on acrylamide/sodium acrylate copolymer and similar polymers presents the most critical studies pertinent to the risk assessment of these polymers in their use in drilling muds. This dossier does not represent an exhaustive or critical review of all available data. Where possible, study quality was evaluated using the Klimisch scoring system (Klimisch et al., 1997). Screening Assessment Conclusion – Acrylamide/sodium acrylate copolymer, acrylamide, sodium acrylate polymer and 2‐propenoic acid, potassium salt, polymer with 2‐propenamide are polymers of low concern. Therefore, these polymers and the other similar polymer in this group are classified as tier 1 chemicals and require a hazard assessment only. 1. BACKGROUND Acrylamide/sodium acrylate copolymer is a sodium salt of a polymer consisting of acrylic acid, methacrylic acid or one of their simple esters. Acrylates are a family of polymers which are a type of vinyl polymer. Synthetic chemicals used in the manufacture of plastics, paint formulations and other products. Acrylate copolymer is a general term for copolymers of two or more monomers consisting of acrylic acid, methacrylic acid or one of their simple esters.
    [Show full text]
  • High Temperature, Living Polymerization of Ethylene by a Sterically-Demanding Nickel(II) Α-Diimine Catalyst
    polymers Article High Temperature, Living Polymerization of Ethylene by a Sterically-Demanding Nickel(II) α-Diimine Catalyst Lauren A. Brown, W. Curtis Anderson Jr., Nolan E. Mitchell, Kevin R. Gmernicki and Brian K. Long * ID Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA; [email protected] (L.A.B.); [email protected] (W.C.A.J.); [email protected] (N.E.M.); [email protected] (K.R.G.) * Correspondence: [email protected]; Tel.: +1-865-974-5664 Received: 15 December 2017; Accepted: 27 December 2017; Published: 2 January 2018 Abstract: Catalysts that employ late transition-metals, namely Ni and Pd, have been extensively studied for olefin polymerizations, co-polymerizations, and for the synthesis of advanced polymeric structures, such as block co-polymers. Unfortunately, many of these catalysts often exhibit poor thermal stability and/or non-living polymerization behavior that limits their ability to access tailored polymer structures. Due to this, the development of catalysts that display controlled/living behavior at elevated temperatures is vital. In this manuscript, we describe a Ni α-diimine complex that is capable of polymerizing ethylene in a living manner at temperatures as high as 75 ◦C, which is one of the highest temperatures reported for the living polymerization of ethylene by a late transition metal-based catalyst. Furthermore, we will demonstrate that this catalyst’s living behavior is not dependent on the presence of monomer, and that it can be exploited to access polyethylene-based block co-polymers. Keywords: polyethylene; living polymerization; nickel α-diimine; catalysis 1. Introduction Controlled/living polymerizations offer a precise means by which polymer structure, co-monomer incorporation levels, and even regio- and stereoselectivity can be tailored [1–7].
    [Show full text]
  • Synthesis of Polypeptides by Ring-Opening Polymerization of A-Amino Acid N-Carboxyanhydrides
    Top Curr Chem (2011) DOI: 10.1007/128_2011_173 # Springer-Verlag Berlin Heidelberg 2011 Synthesis of Polypeptides by Ring-Opening Polymerization of a-Amino Acid N-Carboxyanhydrides Jianjun Cheng and Timothy J. Deming Abstract This chapter summarizes methods for the synthesis of polypeptides by ring-opening polymerization. Traditional and recently improved methods used to polymerize a-amino acid N-carboxyanhydrides (NCAs) for the synthesis of homo- polypeptides are described. Use of these methods and strategies for the preparation of block copolypeptides and side-chain-functionalized polypeptides are also pre- sented, as well as an analysis of the synthetic scope of different approaches. Finally, issues relating to obtaining highly functional polypeptides in pure form are detailed. Keywords Amino acid Á Block copolymer Á N-Carboxyanhydride Á Polymerization Á Polypeptide Contents 1 Introduction 2 Polypeptide Synthesis Using NCAs 2.1 Conventional Methods 2.2 Transition Metal Initiators 2.3 Recent Developments 3 Copolypeptide and Functional Polypeptide Synthesis via NCA Polymerization 3.1 Block Copolypeptides 3.2 Side-Chain-Functionalized Polypeptides 4 Polypeptide Deprotection and Purification 5 Conclusions and Future Prospects References J. Cheng Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA T.J. Deming (*) Department of Bioengineering, University of California, Los Angeles, CA 90095, USA e-mail: [email protected] J. Cheng and T.J. Deming Abbreviations AM Activated
    [Show full text]
  • 7: Source-Based Nomenclature for Copolymers (1985)
    7: Source-Based Nomenclature for Copolymers (1985) PREAMBLE Copolymers have gained considerable importance both in scientific research and in industrial applications. A consistent and clearly defined system for naming these polymers would, therefore, be of great utility. The nomenclature proposals presented here are intended to serve this purpose by setting forth a system for designating the types of monomeric-unit sequence arrangements in copolymer molecules. In principle, a comprehensive structure-based system of naming copolymers would be desirable. However, such a system presupposes a knowledge of the structural identity of all the constitutional units as well as their sequential arrangements within the polymer molecules; this information is rarely available for the synthetic polymers encountered in practice. For this reason, the proposals presented in this Report embody an essentially source-based nomenclature system. Application of this system should not discourage the use of structure-based nomenclature whenever the copolymer structure is fully known and is amenable to treatment by the rules for single-strand polymers [1, 2]. Further, an attempt has been made to maintain consistency, as far as possible, with the abbreviated nomenclature of synthetic polypeptides published by the IUPAC-IUB Commission on Biochemical Nomenclature [3]. It is intended that the present nomenclature system supersede the previous recommendations published in 1952 [4]. BASIC CONCEPT The nomenclature system presented here is designed for copolymers. By definition, copolymers are polymers that are derived from more than one species of monomer [5]. Various classes of copolymers are discussed, which are based on the characteristic sequence arrangements of the monomeric units within the copolymer molecules.
    [Show full text]
  • Aim: to Prepare Block Copolymers of Methyl Methacrylate (MMA) and Styrene
    Conducting A Reversible-Deactivation Radical Polymerization (RDRP) Aim: To Prepare Block Copolymers of Methyl Methacrylate (MMA) and Styrene. Polymers are ubiquitous in the modern world. They provide tremendous value because the chemical and physical properties of these materials are determined by the monomers that are used to put them together. One of the most powerful methods to construct polymers is radical-chain polymerization and this method is used in the commercial synthesis of polymers everyday. Methyl methacrylate is polymerized to form poly(methyl methacrylate) (PMMA) which is also known as acrylic glass or Plexiglas (about 2 billion pounds per year in the US). This material is lightweight, strong and durable. The polymer chains are rigid due to the tetrasubstituted carbon atom in the polymer backbone and they have excellent optical clarity. As a consequence, these materials are used in aircraft windows, glasses, skylights, signs and displays. Polystyrene (PS), which can also be synthesized from radical chain polymerization, has found extensive use as a material (also approximately 2 billion pounds per year in the US). One of the forms of PS, Styrofoam, is used extensively to make disposable cups, thermal insulation, and cushion for packaging. Scheme 1. Radical polymerization of methyl methacrylate or styrene. While there are extensive uses for these polymers, when synthesizing any material using a free-radical polymerization, samples are obtained with limited control over molecular weight and molecular weight distribution. New methods have been developed directly at Carnegie Mellon (https://www.cmu.edu/maty/) which lead to improved control in this process. This new method is a reversible-deactivation of the polymerization reaction where highly reactive radicals toggle back and forth between an active state, where the polymer chain is growing, and a dormant state, where the polymer chain is capped (Scheme 2).
    [Show full text]
  • Acrylonitrile-Butadiene-Styrene Copolymer (ABS)
    Eco-profiles of the European Plastics Industry Acrylonitrile-Butadiene-Styrene Copolymer (ABS) A report by I Boustead for Plastics Europe Data last calculated March 2005 abs 1 IMPORTANT NOTE Before using the data contained in this report, you are strongly recommended to look at the following documents: 1. Methodology This provides information about the analysis technique used and gives advice on the meaning of the results. 2. Data sources This gives information about the number of plants examined, the date when the data were collected and information about up-stream operations. In addition, you can also download data sets for most of the upstream operations used in this report. All of these documents can be found at: www.plasticseurope.org. Plastics Europe may be contacted at Ave E van Nieuwenhuyse 4 Box 3 B-1160 Brussels Telephone: 32-2-672-8259 Fax: 32-2-675-3935 abs 2 CONTENTS ABS..................................................................................................................................................4 ECO-PROFILE OF ABS ..............................................................................................................6 abs 3 ABS ABS takes its name from the initial letters of the three immediate precursors: acrylonitrile (CH 2=CH-CN) butadiene (CH 2=C-CH=CH 3) styrene (C 6H5-CH=CH 2) and is a two phase polymer system consisting of a glassy matrix of styrene- acrylonitrile copolymer and the synthetic rubber, styrene-butadiene copolymer. The optimal properties of this polymer are achieved by the appropriate grafting between the glassy and rubbery phases. ABS copolymers have toughness, temperature stability and solvent resistance properties superior to those of high impact polystyrene and are true engineering polymers. They can be formed using all of the common plastics techniques and can also be cold formed using techniques usually associated with metals.
    [Show full text]
  • Terminology for Reversible-Deactivation Radical Polymerization Previously Called “Controlled” Radical Or “Living” Radical Polymerization (IUPAC Recommendations 2010)*
    Pure Appl. Chem., ASAP Article doi:10.1351/PAC-REC-08-04-03 © 2009 IUPAC, Publication date (Web): 18 November 2009 Terminology for reversible-deactivation radical polymerization previously called “controlled” radical or “living” radical polymerization (IUPAC Recommendations 2010)* Aubrey D. Jenkins1, Richard G. Jones2,‡, and Graeme Moad3,‡ 122A North Court, Hassocks, West Sussex, BN6 8JS, UK; 2University of Kent, Canterbury, Kent CT2 7NH, UK; 3CSIRO Molecular and Health Technologies, Bag 10, Clayton South, VIC 3169, Australia Abstract: This document defines terms related to modern methods of radical polymerization, in which certain additives react reversibly with the radicals, thus enabling the reactions to take on much of the character of living polymerizations, even though some termination in- evitably takes place. In recent technical literature, these reactions have often been loosely re- ferred to as, inter alia, “controlled”, “controlled/living”, or “living” polymerizations. The use of these terms is discouraged. The use of “controlled” is permitted as long as the type of con- trol is defined at its first occurrence, but the full name that is recommended for these poly- merizations is “reversible-deactivation radical polymerization”. Keywords: active-dormant equilibria; aminoxyl-mediated; AMRP; atom transfer; ATRP; chain polymerization; degenerative transfer; DTRP; controlled; IUPAC Polymer Division; living; nitroxide-mediated; NMRP; radical; RAFT; reversible-deactivation; reversible-addi- tion-fragmentation chain transfer. CONTENTS 1. INTRODUCTION 2. BASIC DEFINITIONS 3. DEFINITIONS OF THE TYPES OF POLYMERIZATION TO BE CONSIDERED 4. DEFINITIONS OF RELATED TERMS 5. MEMBERSHIP OF SPONSORING BODIES 6. REFERENCES 1. INTRODUCTION In conventional radical polymerization, the component steps in the process are chain initiation, chain propagation, chain termination, and sometimes also chain transfer.
    [Show full text]
  • Extremely Narrow-Dispersed High Molecular Weight Polyethylene
    Published on Web 09/12/2008 Extremely Narrow-Dispersed High Molecular Weight Polyethylene from Living Polymerization at Elevated Temperatures with o-F Substituted Ti Enolatoimines Sze-Man Yu and Stefan Mecking* UniVersity of Konstanz, Chair of Chemical Materials Science, Department of Chemistry, UniVersita¨tsstr. 10, D-78457 Konstanz, Germany Received July 9, 2008; E-mail: [email protected] Living polymerization techniques are an essential tool for the synthesis of polymers with controlled architectures, such as monodisperse polymers or blockcopolymers.1 Polymerization in a living fashion requires the essential absence of chain termination and irreversible transfer. In olefin polymerization, chain transfer (occurring by -hydride transfer or transfer to cocatalyst) and termination can be suppressed by polymerization at low tempera- tures.2 This, however, results in low catalyst activities and limited molecular weights attainable especially for semicrystalline polymers. Therefore, considerable effort has been directed at the development of new catalysts. Albeit a significant number of catalyst systems with living polymerization characteristics at ambient or elevated temperature have been reported,3-10 the synthesis of linear polyethylene (PE) with a high molecular weight and truly narrow Figure 1. ORTEP plot of the molecular structure of 3a. Ellipsoids are distribution remains a challenge. shown with 50% probability. The H-atoms are not shown for clarity. Phenoxyimine Ti complexes with o-fluorine substitution of the Scheme 1. Synthesis of Complexes 3a and 3b N-aryl moiety, discovered by Fujita et al., are highly active versatile catalysts for, e.g., the synthesis of narrowly distributed (ultra high molecular weight) PE and of block copolymers.3 The o-F substit- uents have been suggested to suppress chain transfer by interaction with the -hydrogen atoms of the growing PE chain.3,11 At 25 °C linear PE with Mw/Mn as low as 1.05 was obtained, when a short reaction time (3 min) and diluted ethylene (0.04 atm) were employed for this very reactive system.
    [Show full text]
  • Radical Polymerizations II Special Cases
    Radical Polymerizations II Special Cases Devon A. Shipp Department of Chemistry, & Center for Advanced Materials Processing Clarkson University Potsdam, NY 13699-5810 Tel. (315) 268-2393, Fax (315) 268-6610 [email protected] 46 © Copyright 2016 Devon A. Shipp Living Polymerizations • Objectives • Requirements – Initiation must be fast – Continuous chain • Ri >> Rp growth – Termination must be – No termination eliminated • Or at least reduced to – Well-defined chains insignificance • Chain structure • Chain length • Problems with free • Molecular weight radical polymerization distribution – Initiation is slow • Block copolymer – Radical-radical synthesis termination is fast 47 Reversible-Deactivation Radical Polymerizations (RDRP) • Often called living radical polymerization activation Dormant polymer Active polymer radical + capping group deactivation Monomer (Propagation) t P h o g l i y e Δ[M] Monomer repeat unit Functional terminal d DP = i W s ( ω ) end ("capping") group [In] r 0 p a e l r u s c X i t e y In l n o M Y Y < 1.5 Initiator ( α ) end 48 % Monomer Conversion Features of Living Polymerizations • Linear increase in • Low polydispersity molecular weight – Mw/Mn < 1.5 (often ~ 1.1) – Vs. monomer conversion • First-order monomer • Pre-defined molecular consumption weight – Same as conventional radical polymerization – DPn = Mn/FWM = Δ[M] / [Initiator] 49 Terminology/Tests for Living Polymerization • Controversy over terminology – Controlled, living, pseudo-living, quasi-living, living/controlled, living/controlled, reversible-deactivation,… • IUPAC definition of living polymerization: – Absence of irreversible transfer and termination • Cannot be applied to any radical polymerization! • Some tests for RDRP: – Continued chain growth after addition monomer added – Molecular weight increases linearly with conversion – Active species (i.e.
    [Show full text]
  • Patterning with Block Copolymer Thin Films
    Materials Science and Engineering R 48 (2005) 191–226 Patterning with block copolymer thin films Rachel A. Segalman* Department of Chemical Engineering, University of California at Berkeley, Division of Materials Science, Lawrence Berkeley Labs, 201D Gilman Hall, Berkeley, CA 94720-1462, USA Received 13 October 2004; accepted 10 December 2004 Abstract The nanometer-scale architectures in thin films of self-assembling block copolymers have inspired a variety of new applications. For example, the uniformly sized and shaped nanodomains formed in the films have been used for nanolithography, nanoparticle synthesis, and high-density information storage media. Imperative to all of these applications, however, is a high degree of control over orientation of the nanodomains relative to the surface of the film as well as control over order in the plane of the film. Induced fields including electric, shear, and surface fields have been demonstrated to influence orientation. Both heteroepitaxy and graphoepitaxy can induce positional order on the nanodomains in the plane of the film. This article will briefly review a variety of mechanisms for gaining control over block copolymer order as well as many of the applications of these materials. Particular attention is paid to the potential of perfecting long-range two-dimensional order over a broader range of length scales and the extension of these concepts to functional materials and more complex architectures. # 2005 Elsevier B.V. All rights reserved. Keywords: Block copolymers; Nanopatterning; Thin films; Microphase separation; Polymer self-assembly; Block copolymer lithography 1. Introduction Block copolymers have been suggested for many applications based principally on their ability to form regular nanometer-scale patterns.
    [Show full text]
  • Oct 15, Controlled Polymerizations by Ki-Young Yoon
    Wednesday Meeting Controlled Polymerizations 10/15/2014 Ki-Young Yoon Organometallics : A Friend of Total Synthesis Total Synthesis Organometallics e.g. Barry Trost Organometallics : A Friend of Polymer Synthesis Organometallics Polymer Synthesis e.g. Bob Grubbs Organometallics : Still Blue Ocean Area Total Synthesis Organometallics Polymer Synthesis In theory, every organometallic reaction can branch out into polymerization Organometallics : Still Blue Ocean Area Hydrolytic kinetic resolution E. Jacobson Science 1997, 277, 936 J. Coates J. Am. Chem. Soc 2008, 130, 17658 Enantioselective Polymerization of Epoxides: the first person who borrows Jacobson’s catalyst for the polymerization Enantioselective Polymerization of Epoxides: Catalyst which Jacobson should have used for the polymerization 10 years ago Contents 1. Polymerization Mechanism o Step-growth polymerization o Chain-growth polymerization o Step-growth vs. Chain-growth 2. Efforts to turn Step-growth polymerization into Chain-growth polymerization o GRIM polymerization o Pd-catalyzed chain-growth polymerization Polymer is a mixture Polymer is not a pure substance. It is a mixture Organic reaction Single pure product Polymerization mixture Molecular Weight Distribution Irresponsible polymer chemist Average Molecular Weight mixture - Mn, Mw, PDI (=Mw/Mn) Polymer molecular weight Number Average Molecular Weight, Mn Danny’s Credit Grade Credit*Gr ade PhysOrg 3 4.0 (A) 12 Calculus 2 3.0 (B) 6 Weight Average Molecular Weight, Mw History 1 2.0 (C) 2 Mn (4.0+3.0+2.0) =3 SEC/3 trace
    [Show full text]