Flowers, Fruits and Seeds and Seedlings
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
History Department Botany
THE HISTORY OF THE DEPARTMENT OF BOTANY 1889-1989 UNIVERSITY OF MINNESOTA SHERI L. BARTLETT I - ._-------------------- THE HISTORY OF THE DEPARTMENT OF BOTANY 1889-1989 UNIVERSITY OF MINNESOTA SHERI L. BARTLETT TABLE OF CONTENTS Preface 1-11 Chapter One: 1889-1916 1-18 Chapter Two: 1917-1935 19-38 Chapter Three: 1936-1954 39-58 Chapter Four: 1955-1973 59-75 Epilogue 76-82 Appendix 83-92 Bibliography 93-94 -------------------------------------- Preface (formerly the College of Science, Literature and the Arts), the College of Agriculture, or The history that follows is the result some other area. Eventually these questions of months ofresearch into the lives and work were resolved in 1965 when the Department of the Botany Department's faculty members joined the newly established College of and administrators. The one-hundred year Biological Sciences (CBS). In 1988, The overview focuses on the Department as a Department of Botany was renamed the whole, and the decisions that Department Department of Plant Biology, and Irwin leaders made to move the field of botany at Rubenstein from the Department of Genetics the University of Minnesota forward in a and Cell Biology became Plant Biology's dynamic and purposeful manner. However, new head. The Department now has this is not an effort to prove that the administrative ties to both the College of Department's history was linear, moving Biological Sciences and the College of forward in a pre-determined, organized Agriculture. fashion at every moment. Rather I have I have tried to recognize the attempted to demonstrate the complexities of accomplishments and individuality of the the personalities and situations that shaped Botany Department's faculty while striving to the growth ofthe Department and made it the describe the Department as one entity. -
Plant Physiology
PLANT PHYSIOLOGY Vince Ördög Created by XMLmind XSL-FO Converter. PLANT PHYSIOLOGY Vince Ördög Publication date 2011 Created by XMLmind XSL-FO Converter. Table of Contents Cover .................................................................................................................................................. v 1. Preface ............................................................................................................................................ 1 2. Water and nutrients in plant ............................................................................................................ 2 1. Water balance of plant .......................................................................................................... 2 1.1. Water potential ......................................................................................................... 3 1.2. Absorption by roots .................................................................................................. 6 1.3. Transport through the xylem .................................................................................... 8 1.4. Transpiration ............................................................................................................. 9 1.5. Plant water status .................................................................................................... 11 1.6. Influence of extreme water supply .......................................................................... 12 2. Nutrient supply of plant ..................................................................................................... -
Reproduction in Plants Which But, She Has Never Seen the Seeds We Shall Learn in This Chapter
Reproduction in 12 Plants o produce its kind is a reproduction, new plants are obtained characteristic of all living from seeds. Torganisms. You have already learnt this in Class VI. The production of new individuals from their parents is known as reproduction. But, how do Paheli thought that new plants reproduce? There are different plants always grow from seeds. modes of reproduction in plants which But, she has never seen the seeds we shall learn in this chapter. of sugarcane, potato and rose. She wants to know how these plants 12.1 MODES OF REPRODUCTION reproduce. In Class VI you learnt about different parts of a flowering plant. Try to list the various parts of a plant and write the Asexual reproduction functions of each. Most plants have In asexual reproduction new plants are roots, stems and leaves. These are called obtained without production of seeds. the vegetative parts of a plant. After a certain period of growth, most plants Vegetative propagation bear flowers. You may have seen the It is a type of asexual reproduction in mango trees flowering in spring. It is which new plants are produced from these flowers that give rise to juicy roots, stems, leaves and buds. Since mango fruit we enjoy in summer. We eat reproduction is through the vegetative the fruits and usually discard the seeds. parts of the plant, it is known as Seeds germinate and form new plants. vegetative propagation. So, what is the function of flowers in plants? Flowers perform the function of Activity 12.1 reproduction in plants. Flowers are the Cut a branch of rose or champa with a reproductive parts. -
Advanced Encryption Standard Real-World Alternatives
Outline Multiple Encryption Birthday Attack Advanced Encryption Standard Real-World Alternatives CPSC 367: Cryptography and Security Michael Fischer Lecture 7 February 5, 2019 Thanks to Ewa Syta for the slides on AES CPSC 367, Lecture 7 1/58 Outline Multiple Encryption Birthday Attack Advanced Encryption Standard Real-World Alternatives Multiple Encryption Composition Group property Birthday Attack Advanced Encryption Standard AES Real-World Issues Alternative Private Key Block Ciphers CPSC 367, Lecture 7 2/58 Outline Multiple Encryption Birthday Attack Advanced Encryption Standard Real-World Alternatives Multiple Encryption CPSC 367, Lecture 7 3/58 Outline Multiple Encryption Birthday Attack Advanced Encryption Standard Real-World Alternatives Composition Composition of cryptosystems Encrypting a message multiple times with the same or different ciphers and keys seems to make the cipher stronger, but that's not always the case. The security of the composition can be difficult to analyze. For example, with the one-time pad, the encryption and decryption functions Ek and Dk are the same. The composition Ek ◦ Ek is the identity function! CPSC 367, Lecture 7 4/58 Outline Multiple Encryption Birthday Attack Advanced Encryption Standard Real-World Alternatives Composition Composition within practical cryptosystems Practical symmetric cryptosystems such as DES and AES are built as a composition of simpler systems. Each component offers little security by itself, but when composed, the layers obscure the message to the point that it is difficult for an adversary to recover. The trick is to find ciphers that successfully hide useful information from a would-be attacker when used in concert. CPSC 367, Lecture 7 5/58 Outline Multiple Encryption Birthday Attack Advanced Encryption Standard Real-World Alternatives Composition Double Encryption Double encryption is when a cryptosystem is composed with itself. -
Implementations of Block Cipher SEED on Smartphone Operating Systems
SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies Implementations of Block Cipher SEED on Smartphone Operating Systems HwanJin Lee, DongHoon Shin, and Hyun-Chul Jung Security R&D Team Korea Internet & Security Agency (KISA) Seoul, Korea {lhj79, dhshin, hcjung}@kisa.or.kr Abstract—As more and more people are using smartphones limited power and offers inferior performance compared to a these days, a great deal of important information, such as PC. Therefore, it is difficult to use an open cryptographic personal information and the important documents of library such as OpenSSL, which is designed for the PC corporations among other things, are being saved on environment, in a smartphone. We need to study on the way smartphones. Unlike a PC, people can access another person’s for the effective use of SEED in smartphone. smartphone without great difficulty, and there is a high This paper presents the results of implementing the block possibility of losing one’s smartphone. If smartphone is lost cipher SEED to a smartphone. The results of a comparison without encryption, important information can be exploited. In with open cryptographic libraries (OpenSSL, BouncyCastle) addition, the open cryptographic library for PCs cannot be will also be presented. The SEED is a block cipher used due to the limited performance of the smartphone. This established as an international standard ISO/IEC and the paper introduces the optimization implementation technique for the smartphone OS and the results of using that technique. Korean standard. Section 2 introduces the SEED and open In addition, the results of a speed comparison with the open cryptographic libraries; Section 3 introduces smartphone cryptographic library will be presented. -
Seed and Seed Dispersal
1st GRADE SEEDS AND SEED DISPERSAL Summary: This lab is all about seeds. First, students take apart a swollen lima bean seed and find the seed coat, food storage area, and the plant embryo. Second, the students sort a bag of seeds into groups and notice that all seeds look different but have the same three seed parts. Finally, students sort seeds that are dispersed in different ways. Students identify seeds that are dispersed by wind, hitchiking, animals carrying and burying, and animals eating and pooping. Intended Learning Outcomes for 1st Grade: Objective 1: Framing questions. Conducting investigations. Drawing conclusions. Objective 2: Developing social interaction skills with peers. Sharing ideas with peers. Connecting ideas with reasons. Objective 3: Ideas are supported by reasons. Communicaiton of ideas in science is important for helping to check the reasons for ideas. Utah State Core Curriculum Tie: Standard 4 Objective 1: Life Science Analyze the individual similarities and differences within and across larger groups. Standard 4 Objective 2: Life Science Describe and model life cycles of living things. Make observations about living things and their environment using the five senses. Preparation time: 1 hour to locate seeds the first time, then 20 min if seeds are reused Lesson time: 50 min Small group size: works best with one adult for every 5 students Materials: 1. one petri dish or paper towel per student 2. 1 bag of dried lima beans 3. One seed classification bag per group, this should include 5-6 seeds of about 15 different seed types. Use old seeds from seed packets or spices or seeds or nuts you may have in your kitchen. -
STEM Disciplines
STEM Disciplines In order to be applicable to the many types of institutions that participate in the HERI Faculty Survey, this list is intentionally broad and comprehensive in its definition of STEM disciplines. It includes disciplines in the life sciences, physical sciences, engineering, mathematics, computer science, and the health sciences. Agriculture/Natural Resources Health Professions 0101 Agriculture and related sciences 1501 Alternative/complementary medicine/sys 0102 Natural resources and conservation 1503 Clinical/medical lab science/allied 0103 Agriculture/natural resources/related, other 1504 Dental support services/allied 1505 Dentistry Biological and Biomedical Sciences 1506 Health & medical administrative services 0501 Biochem/biophysics/molecular biology 1507 Allied health and medical assisting services 0502 Botany/plant biology 1508 Allied health diagnostic, intervention, 0503 Genetics treatment professions 0504 Microbiological sciences & immunology 1509 Medicine, including psychiatry 0505 Physiology, pathology & related sciences 1511 Nursing 0506 Zoology/animal biology 1512 Optometry 0507 Biological & biomedical sciences, other 1513 Osteopathic medicine/osteopathy 1514 Pharmacy/pharmaceutical sciences/admin Computer/Info Sciences/Support Tech 1515 Podiatric medicine/podiatry 0801 Computer/info tech administration/mgmt 1516 Public health 0802 Computer programming 1518 Veterinary medicine 0803 Computer science 1519 Health/related clinical services, other 0804 Computer software and media applications 0805 Computer systems -
Flower Power
FLOWER POWER IDAHO BOTANICAL GARDEN WHAT IS A FLOWER? INSTRUCTIONAL OBJECTIVE: When students finish this project, they will have gained respect for the beauty of flowers and appreciate their ecological and practical importance. INTRODUCTION Dear Teacher, The Idaho Botanical Garden is an outdoor learning environment. We want to make your visit comfortable and enjoyable, and ask that your students are dressed appropriately for the weather and have water, especially in the warm weather months. TERMS Angiosperms: Flowering plants that produce seeds enclosed in a fruit. Anthers: The boxlike structures at the top of stamens, where pollen is produced. Botanical garden: A place where plants are collected and displayed for scientific, educational and artistic purposes. Fertilization: The union of male sperm cells and female egg cells. Filament: The stalk of the stamen. Flower: The reproductive structure of an angiosperm. Fruit: A ripened ovary conaining seeds. Nectar: The sweet liquid produced by flowers to attract pollinators. Ovary: The hollow compartment at the base of the pistil which contains ovules. It develops into a fruit containing seeds. Ovules: The structures in a flower ovary that can develop into seeds. Pistil: The female part of a flower; stigma, style, and ovary. Pollen: A yellow, powder-like material containing sperm cells. Pollen tubes: Tubes that carry sperm cells from the stigma into the ovary. Pollination: The process of pollen coming together with the stigma of a flower. Pollinators: Animals which carry pollen from one flower to another. Seed: A structure containing a baby plant and its food supply, which is surrounded by a protective seed coat. -
"Role of the Gynoecium in Cytokinin-Induced Carnation Petal
J. AMER. Soc. HORT. SCI. 116(4):676-679. 1991. Role of the Gynoecium in Cytokinin-induced Carnation Petal Senescence William R. Woodson and Amanda S. Brandt Department of Horticulture, Purdue University, West Lafayette, IN 47907 Additional index words. benzyladenine, Dianthus caryophyllus, ethylene Abstract. Treatment of cut carnation (Dianthus caryophyllus L. ‘White Sim’) flowers with the synthetic cytokinin benzyladenine (BA) at concentrations >1.0 µM induced premature petal senescence. Flowers treated with 100 µM BA exhibited elevated ethylene production in styles and petals before untreated flowers. The gynoecia of BA-treated flowers accumulated 1-aminocyclopropane-l-carboxyllc acid (ACC) and enlarged before untreated flowers. Removal of the gynoecium (ovary and styles) or styles prevented BA-induced petal senescence and resulted in a substantial delay in petal senescence. In contrast, removal of the gynoecium had no effect on timing of petal senescence in flowers held in water. These results indicate BA stimulates petal senescence by inducing premature ACC accumulation and ethylene production in the gynoecium. The senescence of carnation flowers is associated with a sub- cytokinins have been shown to stimulate petal senescence (Ei- stantial increase in ethylene production (Nichols, 1966, 1968). singer, 1977; Van Staden and Joughin, 1988). We now report This increase in ethylene plays an important role in regulating results that indicate the gynoecium plays a critical role in de- the processes of petal senescence, including changes in gene termining the response of carnations to exogenously supplied expression (Borochov and Woodson, 1989; Lawton et al., 1990; cytokinin. Woodson and Lawton, 1988). While the petals account for a large amount of the ethylene produced by carnation flowers, Materials and Methods other floral tissues, including the gynoecium, produce a signif- Plant material. -
Botany for Gardeners Offers a Clear Explanation of How Plants Grow
BotGar_Cover (5-8-2004) 11/8/04 11:18 AM Page 1 $19.95/ £14.99 GARDENING & HORTICULTURE/Reference Botany for Gardeners offers a clear explanation of how plants grow. • What happens inside a seed after it is planted? Botany for Gardeners Botany • How are plants structured? • How do plants adapt to their environment? • How is water transported from soil to leaves? • Why are minerals, air, and light important for healthy plant growth? • How do plants reproduce? The answers to these and other questions about complex plant processes, written in everyday language, allow gardeners and horticulturists to understand plants “from the plant’s point of view.” A bestseller since its debut in 1990, Botany for Gardeners has now been expanded and updated, and includes an appendix on plant taxonomy and a comprehensive index. Twodozen new photos and illustrations Botany for Gardeners make this new edition even more attractive than its predecessor. REVISED EDITION Brian Capon received a ph.d. in botany Brian Capon from the University of Chicago and was for thirty years professor of botany at California State University, Los Angeles. He is the author of Plant Survival: Adapting to a Hostile Brian World, also published by Timber Press. Author photo by Dan Terwilliger. Capon For details on other Timber Press books or to receive our catalog, please visit our Web site, www.timberpress.com. In the United States and Canada you may also reach us at 1-800-327-5680, and in the United Kingdom at [email protected]. ISBN 0-88192-655-8 ISBN 0-88192-655-8 90000 TIMBER PRESS 0 08819 26558 0 9 780881 926552 UPC EAN 001-033_Botany 11/8/04 11:20 AM Page 1 Botany for Gardeners 001-033_Botany 11/8/04 11:21 AM Page 2 001-033_Botany 11/8/04 11:21 AM Page 3 Botany for Gardeners Revised Edition Written and Illustrated by BRIAN CAPON TIMBER PRESS Portland * Cambridge 001-033_Botany 11/8/04 11:21 AM Page 4 Cover photographs by the author. -
Annals of the Missouri Botanical Garden 1988
- Annals v,is(i- of the Missouri Botanical Garden 1988 # Volume 75 Number 1 Volume 75, Number ' Spring 1988 The Annals, published quarterly, contains papers, primarily in systematic botany, con- tributed from the Missouri Botanical Garden, St. Louis. Papers originating outside the Garden will also be accepted. Authors should write the Editor for information concerning arrangements for publishing in the ANNALS. Instructions to Authors are printed on the inside back cover of the last issue of each volume. Editorial Committee George K. Rogers Marshall R. Crosby Editor, Missouri B Missouri Botanical Garden Editorial is. \I,,S ouri Botanu •al Garde,, John I). Dwyer Missouri Botanical Garden Saint Louis ( niversity Petei • Goldblatt A/I.S.S ouri Botanic al Garder Henl : van der W< ?rff V//.S.S ouri Botanic tor subscription information contact Department IV A\NM.S OK Tin: Missot m Boi >LM« M G\KDE> Eleven, P.O. Box 299, St. Louis, MO 63166. Sub- (ISSN 0026-6493) is published quarterly by the scription price is $75 per volume U.S., $80 Canada Missouri Botanical Garden, 2345 Tower Grove Av- and Mexico, $90 all other countries. Airmail deliv- enue, St. Louis, MO 63110. Second class postage ery charge, $35 per volume. Four issues per vol- paid at St. Louis, MO and additional mailing offices. POSTMAS'IKK: Send ad«lrt— changes to Department i Botanical Garden 1988 REVISED SYNOPSIS Grady L. Webster2 and Michael J. Huft" OF PANAMANIAN EUPHORBIACEAE1 ABSTRACT species induded in \ • >,H The new taxa ai I. i i " I ! I _- i II • hster, Tragia correi //,-," |1 U !. -
Seed Dispersal: Part 2 in Seed Dispersal Part 2, Find out Three Ways That Seeds Are Dispersed from the Initial Seed Producing Plant: Wind, Water, and Gravity
Finally Fall: Seed Dispersal: Part 2 In Seed Dispersal Part 2, find out three ways that seeds are dispersed from the initial seed producing plant: wind, water, and gravity. Seed Dispersal Part 1 focused on the movement of seeds from the parent plant to different areas of the environment and that gravity alone, wildlife and humans are often involved. Plants disperse their seeds throughout an ecosystem and this limits competition of necessary resources like sunlight as they grow and mature. Seed Dispersal by Wind Seed dispersal by wind is a very common mechanism. Use the space below to make predictions about how wind is involved in seed dispersal. Do you know any plant species where wind disperses their seeds? ___________________________________________________________________________________________ ___________________________________________________________________________________________ ___________________________________________________________________________________________ Wind is the main source of seed dispersal for many native plants. Have you ever seen a little yellow dandelion? Have you ever looked at that same flower and noticed that it has turned fluffy and white? The fluff you may have seen were the seeds of the dandelion! Generally, when flowers are at the end of their life cycle they will go to seed, which means the plant will use its energy to focus on reproduction. In the case of a dandelion, seeds are so light and fluffy, they are easily transported by the wind as it blows. Other factors can help the wind pick up the seeds. For example, if an animal walks into the dandelion that has gone to seed, the seeds may be released from the stalk of the plant. Seeds then can be transported by the wind even more effortlessly, having gotten a jump start on the process thanks to that animal.