Free Indian Science

Total Page:16

File Type:pdf, Size:1020Kb

Free Indian Science COMMENT ILLUSTRATION BY PHIL DISLEY BY ILLUSTRATION Free Indian science As elections begin in India, Mathai Joseph and Andrew Robinson call for an end to the stultifying bureaucracy that has held back the nation’s science for decades. ndia’s general elections this month and Indian science is as much structural as it is industry. Three other Indian-born scientists next could be among the most important financial. Before the machinery of govern- have won a Nobel prize — biochemist since it gained independence in 1947. ment took over and mismanaged research Har Gobind Khorana (in 1968), astrophysi- IAfter ten years of a largely indecisive and in the mid-twentieth century, several foun- cist Subrahmanyan Chandrasekhar (in an often scandal-ridden coalition govern- dational scientific discoveries were made 1983) and molecular biologist Venkatraman ment, there are strident demands for better in India. Between about 1900 and 1930, Ramakrishnan (in 2009) — but for work done governance, economic reform, the promo- Jagadish Chandra Bose made innovations entirely outside India. No mathematician tion of manufacturing and improvements in in wireless signalling (borrowed by Italian from India has won the Fields Medal. And agriculture, health care and environmental electrical engineer Guglielmo Marconi); Indian institutes and universities do not fea- management. Meghnad Saha developed an ionization for- ture in the world’s top 200 higher-education Sadly, science and its administration, once mula for hot gases that has a central role in institutions (see go.nature.com/bc69uq). seen as central to Indian development, are stellar astrophysics; Satyendra Nath Bose’s The basic problem is that Indian science not currently on the agenda, despite some theoretical work in quantum statistics led to has for too long been hamstrung by a trenchant critiques from scientists and Bose–Einstein statistics; Chandrasekhara bureaucratic mentality that values admin- science policy-makers1,2. Repeated govern- Venkata Raman did Nobel-prizewinning istrative power over scientific achievement. ment promises to increase the expenditure work on light scattering; and in math- And, to preserve local control, research is on research and development (R&D) to 2% ematics, Srinivasa Ramanujan was equally still done mostly by small teams working in of India’s gross domestic product have not pioneering. isolation rather than through collaboration been kept. R&D spend remains at about But since 1947, there has not been a single — a key generator of impact4. 0.9% of GDP — compared with 1.12% in Nobel-prizewinning scientific or techno- More than two decades ago, the threat of Russia3 (down from 1.25% in 2009), 1.25% logical discovery, despite India’s successes in imminent national bankruptcy forced India’s in Brazil and 1.84% in China2 (see ‘Brick space, radio astronomy, biology and pharma- government to liberate its economy from the benchmarking’). ceuticals and the worldwide reputation of its notorious ‘licence–permit raj’, which had That said, the stagnation afflicting US$100-billion information technology (IT) strait-jacketed commerce and industry since 36 | NATURE | VOL 508 | 3 APRIL 2014 © 2014 Macmillan Publishers Limited. All rights reserved COMMENT 1947. What will it take in 2014 to reinvigorate India’s decrepit scientific empires, trapped for BRICK BENCHMARKING Of the emerging economic powers, India spends the least on research and development. decades in a similarly rigid bureaucracy? On citations, it tails China, South Korea and until recently, Brazil. DEEP-ROOTED PROBLEM GROSS EXPENDITURE ON RESEARCH AND DEVELOPMENT (GERD) The problem has a long history. The Council 4 of Scientific and Industrial Research (CSIR) South Korea China Brazil Russia India SOURCE: THOMSON REUTERS was formed in 1942, before independ- ence, to establish five national laboratories 3 aimed at converting research discoveries into industrial applications. It was soon 2 widely derided. Raman, referring to the first director-general of the CSIR, chemist Shanti Swarup Bhatnagar, said: “Bhatnagar built 1 the National Laboratories to bury scientific instruments”5. The situation today is no bet- GERD as % of gross domestic product domestic product GERD as % of gross 0 ter. A former CSIR director-general, chemi- 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 cal engineer Raghunath Anant Mashelkar, remarked in 2013: “India can’t remain a 2 IMPACT nation of imitators.” 1.00 In 1954, India’s Department of Atomic World average Energy (DAE) was created using a different model, later replicated for other scientific 0.75 departments, such as those for space, science and technology, electronics, biotechnol- 0.50 ogy and ocean development. Its first head, nuclear physicist Homi J. Bhabha, was made a secretary to the government, on a par with 0.25 top administrators in home affairs, finance Relative citation impact and defence. This gave atomic energy official 0 credibility, but placed it in a bureaucracy that 1981 1986 1991 1996 2001 2006 2011 was not designed to foster innovation. Gradually, the DAE’s independence was ground down and its scientists and technolo- Development of Telematics for some years virtual abandonment of science. But none gists slotted into administrative grades in before emigrating in the early 1990s, and the of India’s science academies (such as the which they could progress no faster than their appointment in February of Indian-born Indian National Science Academy and the non-scientific peers. Research achievement Satya Nadella as chief executive of Microsoft. Indian Academy of Sciences) has taken any offered few rewards, other than a patriotic pat The problems at the national level are action — even on the widely reported cases on the back. The other scientific departments mirrored in institutions. First, scientists are of plagiarism by their fellows7. quickly went down the same route. Scientists promoted on the basis of years of service, began to measure success by their adminis- rather than achievement, and once at the FOUR STEPS TOWARDS CHANGE trative position and left research to juniors, top they stay until retirement age; long after, Indian science needs public funding, but not who saw what they had to do to move up the in some cases. Even at the prestigious Tata government control. In many countries, the hierarchy. If good science was done along the Institute of Fundamental Research (TIFR) promotion of science is devolved to agencies way, it was incidental. Today, although India in Mumbai, which is less rule-bound than outside the main government structures, ranks tenth in the world for output of scien- many other institutions, research groups are such as the United Kingdom’s Engineering tific papers, it ranks 166th for average cita- almost invariably headed by those who have and Physical Sciences Research Council, the tions per paper (see go.nature.com/xl3ldg). been there the longest. European Research Council, the US National Almost 20% of patents filed at the World Second, although research in the lead- Science Foundation and Singapore’s Agency Intellectual Property Organization in 2010 ing institutions is well funded — with more for Science, Technology and Research. were from China, with just 1.9% from India money available than requested in credible The first step towards reinvigorating (below Russia’s 2.1% but above Brazil’s 1.1%)6. grant applications, a striking contrast to the Indian science must be to create an empow- Nearly 60% of India’s science budget2 is situation in many nations — the funding is ered funding agency, staffed by working now spent on the CSIR, scientific depart- subject to unsuitable restrictions applicable scientists, some of whom could be non- ments and the Defence Research and to the entire government bureaucracy. These resident Indians. A possible model is the Development Organisation (DRDO) — an include limited foreign travel and no travel European Research Council, which deals enormous and impenetrable empire set up support for research students, ruling out with a complex of national governments no in 1958. None of these national institutions regular participation in leading conferences less formidable than India’s 29 state govern- has stimulated scientific excellence. Indian and research gatherings. ments, yet manages to focus on supporting scientists do outstanding work, but not in Third, the movement of researchers from research excellence. The crucial requirement India. The latest examples of this long-famil- one institution to another is discouraged, is obviously that an Indian scientific research iar situation include the award of the 2014 because administrators prefer senior posi- council be permitted to set its own criteria Marconi Prize in the United States to engi- tions to be filled by internal promotion for the evaluation of research proposals, neer Arogyaswami Joseph Paulraj of Stan- rather than lateral hiring. independent of direct government control, ford University in California, who worked One would expect respected bodies of and disburse government funds accordingly. in the Indian navy and at the Centre for scientists to question the government’s A second step must be to ensure 3 APRIL 2014 | VOL 508 | NATURE | 37 © 2014 Macmillan Publishers Limited. All rights reserved COMMENT planned rotation of institutional roles in India barely benefited from this boom and responsibilities. This occurs in most until recently, when a few enterprising university departments in the Western world IT companies such as Tata Consultancy — typically, every four or five years for the Services, Microsoft and Infosys instituted chair of a UK university department. Gov- well-planned funding to pay attractive sti- erning bodies should limit the tenure of the pends to young computer scientists taking heads of scientific institutions and groups up research careers. to, say, five years, after which they would One lesson from India’s IT industry is be expected to return to active research. that it is essential to draw the private sector This change would work best by choosing into major research programmes. Industry heads young enough to have future research at present contributes about 30% of India’s careers.
Recommended publications
  • Computing: 50 Years On
    Computing: 50 Years On Mathai Joseph* From a TIFR Alumni Association Public Lecture 27 July 2007 Introduction We may each remember a year for different things: some personal, some related to our work and interests and some for the unusual events that took place. 1957 is probably like any other year in this respect. For many scientists, the launch of the first Sputnik from Baikonur in the then-USSR will be remembered as the event which transformed the race to space and was the stimulus for the man-on-the-moon program that followed in the United States. Physicists may remember the year for the award of the Nobel Prize to Yann Chen Ning and Lee Tsung-Dao, both from China and working respectively at the Institute of Advanced Study, Princeton, and Columbia, for their work on parity laws. We in India may recall that it marked the first full year of operation of the Apsara nuclear reactor at Trombay. And, chess-lovers will certainly remember the year for the remarkable feat by Bobby Fischer in becoming the US chess champion at the age of 14! There were landmarks in computing in 1957. By that time, around 1000 computers had been sold worldwide (none of them in India) and new computer series (with solid-state technology) were announced by the big manufacturers such as IBM, Univac, NCR and Siemens. Development of the integrated circuit was nearing completion in the laboratories of Jack Kilby at Texas Instruments and Robert Noyce at Fairchild. The Fortran programming language was formally published by a team led by John Backus at IBM, marking the start of a great era of programming language development.
    [Show full text]
  • OTC TCS 2005.Pdf
    1 Annual Report 2004-05 Contents Board of Directors ............................................................................................................................................................................................................................... 3 Management Team ............................................................................................................................................................................................................................. 4 Message from the CEO...................................................................................................................................................................................................................... 6 Notice........................................................................................................................................................................................................................................................ 8 Directors' Report ............................................................................................................................................................................................................................... 15 Management Discussion and Analysis ................................................................................................................................................................................... 30 Corporate Governance Report...................................................................................................................................................................................................
    [Show full text]
  • August 2014 FACS a C T S
    Issue 2014-1 August 2014 FACS A C T S The Newsletter of the Formal Aspects of Computing Science (FACS) Specialist Group ISSN 0950-1231 FACS FACTS Issue 2014-1 August 2014 About FACS FACTS FACS FACTS (ISSN: 0950-1231) is the newsletter of the BCS Specialist Group on Formal Aspects of Computing Science (FACS). FACS FACTS is distributed in electronic form to all FACS members. Submissions to FACS FACTS are always welcome. Please visit the newsletter area of the BCS FACS website for further details (see http://www.bcs.org/category/12461). Back issues of FACS FACTS are available for download from: http://www.bcs.org/content/conWebDoc/33135 The FACS FACTS Team Newsletter Editors Tim Denvir [email protected] Brian Monahan [email protected] Editorial Team Jonathan Bowen, Tim Denvir. Brian Monahan, Margaret West. Contributors to this Issue Jonathan Bowen, Tim Denvir, Eerke Boiten, Rob Heirons, Azalea Raad, Andrew Robinson. BCS-FACS websites BCS: http://www.bcs-facs.org LinkedIn: http://www.linkedin.com/groups?gid=2427579 Facebook: http://www.facebook.com/pages/BCS- FACS/120243984688255 Wikipedia: http://en.wikipedia.org/wiki/BCS-FACS If you have any questions about BCS-FACS, please send these to Paul Boca <[email protected]> 2 FACS FACTS Issue 2014-1 August 2014 Editorial Welcome to issue 2014-1 of FACS FACTS. This is the first issue produced by your new joint editors, Tim Denvir and Brian Monahan. One effect of the maturity of formal methods is that researchers in the topic regularly grow old and expire. Rather than fill the issue with Obituaries, we have taken the course of reporting on most of these sad events in brief, with references to fuller obituaries that can be found elsewhere, in particular in the FAC Journal.
    [Show full text]
  • Software Engineering Approaches for Offshore and Outsourced Development
    Lecture Notes in Business Information Processing 35 Series Editors Wil van der Aalst Eindhoven Technical University, The Netherlands John Mylopoulos University of Trento, Italy Norman M. Sadeh Carnegie Mellon University, Pittsburgh, PA, USA Michael J. Shaw University of Illinois, Urbana-Champaign, IL, USA Clemens Szyperski Microsoft Research, Redmond, WA, USA Olly Gotel Mathai Joseph Bertrand Meyer (Eds.) Software Engineering Approaches for Offshore and Outsourced Development Third International Conference, SEAFOOD 2009 Zurich, Switzerland, July 2-3, 2009 Proceedings 13 Volume Editors Olly Gotel Pace University New York City, NY 10038, USA E-mail: [email protected] Mathai Joseph Tata Consultancy Services Pune 411 001, India E-mail: [email protected] Bertrand Meyer ETH Zurich Department of Computer Science 8092 Zurich, Switzerland E-mail: [email protected] Library of Congress Control Number: 2009929830 ACM Computing Classification (1998): D.2, K.6, K.4.2, J.1 ISSN 1865-1348 ISBN-10 3-642-02986-8 Springer Berlin Heidelberg New York ISBN-13 978-3-642-02986-8 Springer Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.
    [Show full text]
  • Formal Techniques in Large-Scale Software Engineering Mathai Joseph Tata Research Development and Design Centre Tata Consultancy
    Formal Techniques in Large-Scale Software Engineering Mathai Joseph Tata Research Development and Design Centre Tata Consultancy Services 54B Hadapsar Industrial Estate Pune 411 013 India Draft of Paper 1. Introduction Formal techniques have been used effectively for developing software: from modeling requirements to specifying and verifying programs. In most cases, the programs have been relatively small and complex, many of them for safety critical applications. Use of formal techniques has also become relatively standard for the design of complex VLSI circuits, whether for processors or special purpose devices. Both of these areas are characterized by having a small state space, closely matching the capability of the formal techniques that are used. This capability has of course increased greatly over the last two decades, just as processing speeds have improved, and the problems that are solved today would have been out of reach, or even beyond expectation, some years ago. However, from the point of view of software engineering practice, formal techniques are still seen as exotic and suitable only for particular problems. Software engineers will agree with promoters of formal techniques, but for very different reasons, that these techniques are not applicable to today’s software engineering methods. They will usually disagree on why this is so, one pointing to the lack of contribution that formal techniques make to the practice of these methods and the other questioning the methods themselves. Successful applications of formal techniques have tended to be in the few areas where their use has become part of the practice, for reasons of complexity, cost or regulatory pressure.
    [Show full text]
  • Download (19Mb)
    Original citation: Liu, Z. and Joseph, M. (1990) Transformation of programs for fault-tolerance. University of Warwick. Department of Computer Science. (Department of Computer Science Research Report). (Unpublished) CS-RR-165 Permanent WRAP url: http://wrap.warwick.ac.uk/60860 Copyright and reuse: The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available. Copies of full items can be used for personal research or study, educational, or not-for- profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. A note on versions: The version presented in WRAP is the published version or, version of record, and may be cited as it appears here.For more information, please contact the WRAP Team at: [email protected] http://wrap.warwick.ac.uk/ Research report 165 ._ TRANSFORMATION OF PROGRAMS FOR FAULT TOLERANCE ZHIMING LIU, MATHAI JOSEPH (RR165) It has been usual to consider that the steps of program refinement start with a program specification and end with the production of the text of an executable program. But for fault-tolerance, the program must be capable of taking account of the failure modes of the particular architecture on which it is to be executed.
    [Show full text]
  • Organizing Committee Conference Chair
    Committees Organizing Committee Conference Chair Ken MacGregor, University of Cape Town, South Africa Finance Chair Mike Hinchey, University of Limerick, Ireland Program Co-Chairs Antonio Cerone, United Nations University, Macau SAR, China Stefan Gruner, University of Pretoria, South Africa Local Arrangement Chair Anet Potgieter, University of Cape Town, South Africa SEFM 2008 Program Committee Marco Aiello, University of Groningen, Netherlands Luis Barbosa, University of Minho, Portugal Bernhard Beckert, University of Koblenz, Germany Jonathan Bowen, King’s College London, UK Antonio Cerone (Co-Chair), United Nations University, Macau SAR, China Flavio Corradini, University of Camerino, Italy Patrick Cousot, ENS, France Hamdan Z. Dammag, Yemeni Centre for Studies and Research, Yemen Rocco De Nicola, University of Firenze, Italy George Eleftherakis, CITY College, Greece Stefania Gnesi, ISTI-CNR, Italy Valentin Goranko, University of the Witwatersrand, South Africa Stefan Gruner (Co-Chair), University of Pretoria, South Africa Klaus Havelund, Jet Propulsion Laboratory/Caltech, USA Thomas A. Henzinger, EPFL, Switzerland Mike Hinchey, University of Limerick, Ireland Dang Van Hung, Vietnam National University, Vietnam Jean-Marie Jacquet, University of Namur, Belgium Tomasz Janowski, United Nations University, Macau SAR, China Shmuel Katz, The Technion, Israel Padmanabhan Krishnan, Bond University, Australia Peter Gorm Larsen, Aarhus University, Denmark Peter Lindsay, The University of Queensland, Australia Tiziana Margaria, University of Potsdam, Germany Carlo Montangero, University of Pisa, Italy Cecilia Esti Nugraheni, Parahyangan Catholic University, Indonesia Tunji Odejobi, Obafemi Awolowo University, Nigeria x David von Oheimb, Siemens Corporate Technology, Germany Philippe Palanque, IRIT, Univ. of Toulouse III, France Doron Peled, Bar Ilan University, Israel Wojciech Penczek, IPI PAN and Univ. of Podlasie, Poland Alexander K.
    [Show full text]
  • A Compositional Framework for Fault Tolerance by Specification Transformation
    Theoretical Computer Science 128 (1994) 99-125 99 Elsevier A compositional framework for fault tolerance by specification transformation Doron Peled AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA Mathai Joseph* Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK Abstracf Peled. D. and M. Joseph, A compositional framework for fault tolerance by specification trans- formation, Theoretical Computer Science 128 (1994) 99-125. The incorporation of a recovery algorithm into a program can be viewed as a program transforma- tion, converting the basic program into a fault-tolerant version. We present a framework in which such program transformations are accompanied by a corresponding specijcation transformation which obtains properties of the fault tolerant versions of the programs from properties of the basic programs. Compositionality is achieved when every property of the fault tolerant version can be obtained from a transformed property of the basic program. A verification method for proving the correctness of specification transformations is presented. This makes it possible to prove just once that a specification transformation corresponds to a program transformation, removing the need to prove separately the correctness of each trans- formed program. 1. Introduction A fault tolerant program can be viewed as the result of superposing a recovery algorithm on a basic, non-fault tolerant program. Thus, adding a recovery algorithm can be seen as a program transformation, producing a program that can recover from faults in its execution environment. The combined execution of the basic program and the recovery algorithm ensures that the fault tolerant program achieves its goal Correspondence to: D.
    [Show full text]
  • Connecting You to News Affecting CIPS and the IT Profession CIPS
    5/1/2014 CIPS Ambassador Campaign Launches! CIPS CONNECTIONS 2010 - Vol 12, Issue 2 Connecting you to news affecting CIPS and the IT Profession In This Issue CIPS Ambassador Campaign Begins! CIPS Ambassador Campaign Begins! From March 3rd 2010 to June 30th 2010 CIPS will be thanking CIPS Member Benefit - Computer its great members for referring a new member* with a token of Security our appreciation. IP3 Update The Quest for Canada's Smartest IT FastTrack for CIPS ISP holders to receive the NPA CNP Microsoft Invites CIPS Members to Attend the "Align IT Tour 2010" Ignite Your Coding Webcast Series Follow CIPS on Tw itter 2010 NPA Aw ards for Professionalism Nominations Open ICTC Softw are Professionals Survey Click Here for Details "Pow er Within" Event Enterprise Architecture Symposium CIPS Member Benefit - Computer Security CIO Summit - Registration now open CIPS Member Request for Survey Call for Papers All new and renewing CIPS members now receive a one-year Interview s/Blogs/Podcasts free subscription to Trend Micro Worry-Free Business Security CIPS IT Resources Services. Note: Renewing CIPS members will receive this benefit based on their "renewal date", which falls in line with the expiry date on your membership card. This benefit is based on renewal dates from Feb 28th 2010 to Jan 31st 2011. Renew your membership, and get protected! [Click Here for Details] IP3 Update CIPS Community http://archive.constantcontact.com/fs009/1101969017222/archive/1103136679763.html 1/6 5/1/2014 CIPS Ambassador Campaign Launches! Advertisements Above - Steven Joyce during the New Zealand announcement Following a successful launch in 2006, the global professional standards initiative IP3 (see http://www.ipthree.org/) has made some significant progress.
    [Show full text]
  • Lecture Notes in Computer Science 4700 Commenced Publication in 1973 Founding and Former Series Editors: Gerhard Goos, Juris Hartmanis, and Jan Van Leeuwen
    Lecture Notes in Computer Science 4700 Commenced Publication in 1973 Founding and Former Series Editors: Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen Editorial Board David Hutchison Lancaster University, UK Takeo Kanade Carnegie Mellon University, Pittsburgh, PA, USA Josef Kittler University of Surrey, Guildford, UK Jon M. Kleinberg Cornell University, Ithaca, NY, USA Friedemann Mattern ETH Zurich, Switzerland John C. Mitchell Stanford University, CA, USA Moni Naor Weizmann Institute of Science, Rehovot, Israel Oscar Nierstrasz University of Bern, Switzerland C. Pandu Rangan Indian Institute of Technology, Madras, India Bernhard Steffen University of Dortmund, Germany Madhu Sudan Massachusetts Institute of Technology, MA, USA Demetri Terzopoulos University of California, Los Angeles, CA, USA Doug Tygar University of California, Berkeley, CA, USA Moshe Y. Vardi Rice University, Houston, TX, USA Gerhard Weikum Max-Planck Institute of Computer Science, Saarbruecken, Germany Cliff B. Jones Zhiming Liu Jim Woodcock (Eds.) Formal Methods and Hybrid Real-Time Systems Essays in Honour of Dines Bjørner and Zhou Chaochen on the Occasion of Their 70th Birthdays 1 3 Volume Editors Cliff B. Jones Newcastle University, School of Computing Science Newcastle upon Tyne, NE1 7RU, UK E-mail: [email protected] Zhiming Liu United Nations University, International Institute for Software Technology Macao, China E-mail: [email protected] Jim Woodcock University of York, Department of Computer Science Heslington, YorkYO10 5DD, UK E-mail: [email protected] The illustration appearing on the cover of this book is the work of Daniel Rozenberg (DADARA). Library of Congress Control Number: 2007935177 CR Subject Classification (1998): D.2, D.3, C.3, F.3-4, C.2, H.4 LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues ISSN 0302-9743 ISBN-10 3-540-75220-X Springer Berlin Heidelberg New York ISBN-13 978-3-540-75220-2 Springer Berlin Heidelberg New York This work is subject to copyright.
    [Show full text]
  • Synthesizing Fault Tolerant Safety Critical Systems
    JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014 1809 Synthesizing Fault Tolerant Safety Critical Systems Seemanta Saha and Muhammad Sheikh Sadi Khulna University of Engineering & Technology, Khulna-9203, Bangladesh Email: [email protected], [email protected] Abstract- To keep pace with today’s nanotechnology, safety Various approaches have been proposed over the years critical embedded systems are becoming less tolerant to to provide fault tolerance for safety critical systems. Some errors. Research into techniques to cope with errors in approaches are based on synthesizing and some are based these systems has mostly focused on transformational on transformations. All these approaches have followed the approach, replication of hardware devices, parallel idea of program modification or program rewriting. Arshad program design, component based design and/or information redundancy. It would be better to tackle the et al. [13] proposed fast detector which has been used in issue early in the design process that a safety critical system distributed embedded system to provide fail safe fault never fails to satisfy its strict dependability requirements. A tolerance. They added the concept of the detector with a fault novel method is outlined in this paper that proposes an intolerant program to transform it to a fault tolerant program. For efficient approach to synthesize safety critical systems. The all possible errors, they checked that any particular program is proposed method outperforms dominant existing work by reachable to bad transitions are not. If bad transitions are introducing the technique of run time detection and reachable from a program state because of fault transitions then completion of proper execution of the system in the presence the earliest inconsistent transition from that program state has of faults.
    [Show full text]
  • High School CS Internationally
    bits & bytes status update: HIgH scHool cs INterNatIoNallY ■ lawrence Snyder ■ Many countries are engaged in efforts to revamp their high such courses. At the provincial level there is no CS teacher training in school computer science curricula. This paper touches briefly Ontario or British Columbia. Some faculty members with a “specialist” on the state of affairs with high school CS in Canada, Israel, certification do teach computing, of course. They are supported, for India, and New Zealand. Each country has different issues to example, by annual workshops at Waterloo and Toronto. address in implementing a concepts-rich high school computer Nevertheless, more attention to the issue is probably needed. science curriculum. The paper then reviews the recent report As Waterloo’s Sandy Graham remarked recently in email. “[In] my from the United Kingdom, Shut Down or Restart? The Way personal opinion, I think that CS education should be a national Forward for Computing in the UK Schools. concern. From my perspective, the CS Education Week that is sup- ported by ACM and has received publicity on a national level in the US is a good initiative. I think both these initiatives are worth pur- 1 Introduction suing, and would be happy to see something like them in Canada.” The time to offer substantive Computer Science to pre-college students has come. Different countries are at different stages in Israel creating concepts-rich high school curricula, and all come with dif- For the last dozen years Israeli high school Computer Science ferent histories. Nevertheless, when Computer Science is under- education has been guided by a Ministry of Education curriculum stood from a 2012 perspective, these are clearly the early days of [1], prescribing the five courses shown in Figure 1.
    [Show full text]