Piperonyl Butoxide General Fact Sheet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Toxicity of Pyrethorids Co-Administered with Sesame Oil Against Housefly Musca Domestica L
INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY 1560–8530/2007/09–5–782–784 http://www.fspublishers.org Toxicity of Pyrethorids Co-administered with Sesame Oil against Housefly Musca domestica L. SOHAIL AHMED1 AND MUHAMMAD IRFANULLAH Department of Agri-Entomology, University of Agriculture, Faisalabad–38040, Pakistan 1Corresponding author’s e-mail: [email protected] ABSTRACT The susceptibility of a laboratory reared strain of Musca domestica L. to cypermethrin 10 EC, fenpropathrin 20 EC, fenvalerate 20 EC and lambda cyhalothrin 2.5 EC, at different ranges of concentrations (250 to 2500 ppm) of the formulated insecticides in acetone alone and in combination with sesame oil in 1:1 and 1:2 ratio of insecticide: sesame oil was investigated. These concentrations in a volume of 5 mL were added to 25 g of granulated sugar in a petridish. House flies were fed on the insecticide coated sugar for 48 h. Knockdown and mortality data were recorded after 1, 2, 4, 6, 8, 12, 24 and 48 h and subjected to probit analysis. KD50 values of cypermethrin, lambda-cyhalothrin, fenpropathrin and fenvalerate in 1:1 ratio with sesame oil were 4297, 17188, 2324 and 8487 ppm, respectively as compared to 1915, 15034, 2608 and 4005 ppm respectively when these insecticides were applied alone. Similar fashion was seen in context of LC50 values. The pyrethroid + sesame oil combination in two ratios does not show the synergism in M. domestica. Key Words: M. domestica; Pyrethroids; Synergist; Sesame oil INTRODUCTION conventional insecticides as well as against cotton aphid (Aphis gossypii Glover) (Moore, 2005). Sesamin, a lignan Housefly (Musca domestica L.) causes a serious threat occurring in sesame’s seed oil has been reported as synergist to human and livestock health by transmitting many insecticide, antisseptic, bactericide (Bedigian et al., 1985). -
Treatments for the Protection of Stored Southern-Grown Corn from Rice Weevil Attack — Exploratory Tests ~
Historic, archived document Do not assume content reflects current scientific l<nowledge, policies, or practices. C~1 ^^ i -»T f-W-t-^-m-—, y>/^ .'3 L i B R •:i;RPEin SERIAL KLUu.^. Marketing Research Report No.272 L- nr.T2 7lS58 '.' S. uEFARTMENT OF AGRICULTURE Treatments for the Protection of Stored Southern-Grown Corn from Rice Weevil Attack — Exploratory Tests ~ Marketing Research Division Agricultural Marketing Service U.S. DEPARTMENT OF AGRICULTURE WARNING No tolerances have been established for the use of lindane, methoxychlor, or ryania as insecticidal applications to the entire bulk of stored grain for the prevention of insect infestation. The tests reported herein were exploratory studies to develop information that could be used in considering the establishment of tolerances. Until such tolerances are announced, lindane, methoxychlor, or ryania protective treatments should not be used. A tolerance of 2 p. p.m. for methoxychlor in grain permits the spraying of bin walls and some surface applications, but is not high enough to cover protective treat- ments in the sense considered here. CONTENTS Page Summary 1 Introduction 2 Techniques 2 Tests with lindane 4 Tests with malathion 6 Tests with methoxychlor 8 Tests with synergized pyrethrum 12 Tests with ryania 16 Findings 19 Washington, D. C. September 1958 sale For by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price 15 cents TREATMENTS FOR THE PROTECTION OF STORED SOUTHERN-GROWN CORN FROM RICE WEEVIL ATTACK—EXPLORATORY TESTS By D. W. La Hue, Herbert Womack, and B. W. Clements, Jr. Stored-Product Insects Laboratory- Georgia Coastal Plain Experiment Station Tifton, Ga.-"- SUMMARY Exploratory studies were made at Tifton, Ga. -
Evaluation of Fluralaner and Afoxolaner Treatments to Control Flea
Dryden et al. Parasites & Vectors (2016) 9:365 DOI 10.1186/s13071-016-1654-7 RESEARCH Open Access Evaluation of fluralaner and afoxolaner treatments to control flea populations, reduce pruritus and minimize dermatologic lesions in naturally infested dogs in private residences in west central Florida USA Michael W. Dryden1*, Michael S. Canfield2, Kimberly Kalosy1, Amber Smith1, Lisa Crevoiserat1, Jennifer C. McGrady1, Kaitlin M. Foley1, Kathryn Green2, Chantelle Tebaldi2, Vicki Smith1, Tashina Bennett1, Kathleen Heaney3, Lisa Math3, Christine Royal3 and Fangshi Sun3 Abstract Background: A study was conducted to evaluate and compare the effectiveness of two different oral flea and tick products to control flea infestations, reduce pruritus and minimize dermatologic lesions over a 12 week period on naturally infested dogs in west central FL USA. Methods: Thirty-four dogs with natural flea infestations living in 17 homes were treated once with a fluralaner chew on study day 0. Another 27 dogs living in 17 different homes were treated orally with an afoxolaner chewable on day 0, once between days 28–30 and once again between days 54–60. All products were administered according to label directions by study investigators. Flea populations on pets were assessed using visual area counts and premise flea infestations were assessed using intermittent-light flea traps on days 0, 7, 14, 21, and once between days 28–30, 40–45, 54–60 and 82–86. Dermatologic assessments were conducted on day 0 and once monthly. Pruritus assessments were conducted by owners throughout the study. No concurrent treatments for existing skin disease (antibiotics, anti-inflammatories, anti-fungals) were allowed. -
Pesticide Safety & Pesticide Categories
Pesticide Safety & Pesticide Categories Janet Hurley, & Don Renchie Texas A&M AgriLife Extension Service School IPM What is a pesticide • Any substance or mixture of substances intended for preventing, destroying, repelling, or mitigating any pest. • Any substance or mixture of substances intended for use as a plant regulator, defoliant, or desiccant. • Any nitrogen stabilizer. • A product is likely to be a pesticide if the labeling or advertising: • Makes a claim to prevent, kill, destroy, mitigate, remove, repel or any other similar action against any pest. • Indirectly states or implies an action against a pest. • Draws a comparison to a pesticide. • Pictures a pest on the label. Not considered pesticides Drugs used to control the diseases of humans or animals, which are regulated by the FDA Fertilizers and soil nutrients Certain low-risk substances such as cedar chips, garlic and mint oil are exempted from regulation by EPA (requires license) • 25b classification requires no signal word (mostly food-safe compounds) Pest control devices (i.e., mousetraps) are not pesticides, but subject to labeling requirements There are many kinds of pesticides How insecticides work: Modes of action • Nervous system poisons • Acts on the nerve • Metabolic inhibitors • Affect ability of target to process food • Hormone mimics • Disrupt normal growth & reproduction • Physical poisons • Physically damage insect • Repellents & attractants • All products have been assigned to groups based on their mode of Mode of action: • i.e. pyrethroids are Group 3; Action Neonicotinoids are Group 4A, Spinosad is Group 5, Diamides Classification are Group 28 • Product labels include the number corresponding to the mode of action group. -
New Brunswick Drug Plans Formulary
New Brunswick Drug Plans Formulary August 2019 Administered by Medavie Blue Cross on Behalf of the Government of New Brunswick TABLE OF CONTENTS Page Introduction.............................................................................................................................................I New Brunswick Drug Plans....................................................................................................................II Exclusions............................................................................................................................................IV Legend..................................................................................................................................................V Anatomical Therapeutic Chemical (ATC) Classification of Drugs A Alimentary Tract and Metabolism 1 B Blood and Blood Forming Organs 23 C Cardiovascular System 31 D Dermatologicals 81 G Genito Urinary System and Sex Hormones 89 H Systemic Hormonal Preparations excluding Sex Hormones 100 J Antiinfectives for Systemic Use 107 L Antineoplastic and Immunomodulating Agents 129 M Musculo-Skeletal System 147 N Nervous System 156 P Antiparasitic Products, Insecticides and Repellants 223 R Respiratory System 225 S Sensory Organs 234 V Various 240 Appendices I-A Abbreviations of Dosage forms.....................................................................A - 1 I-B Abbreviations of Routes................................................................................A - 4 I-C Abbreviations of Units...................................................................................A -
4. Chemical and Physical Information
PYRETHRINS AND PYRETHROIDS 131 4. CHEMICAL AND PHYSICAL INFORMATION 4.1 CHEMICAL IDENTITY The naturally-occurring pyrethrins, extracted from chrysanthemum flowers, are esters of chrysanthemic acid (Pyrethrin I, Cinerin I, and Jasmolin I) and esters of pyrethric acid (Pyrethrin II, Cinerin II, and Jasmolin II). In the United States, the pyrethrum extract is standardized as 45–55% w/w total pyrethrins. The typical proportion of Pyrethrins I to II is 0.2:2.8, while the ratio of pyrethrins:cinerins:jasmolins is 71:21:7 (Tomlin 1997). Information regarding the chemical identity of the pyrethrins is presented in Table 4-1. Pyrethroids are synthetic esters derived from the naturally-occurring pyrethrins. One exception to the axiom that all pyrethroids are esters of carboxylic acids is noteworthy. There is a group of oxime ethers that exhibits insecticidal activity similar in nature to the pyrethrins and pyrethroid esters (Davies 1985). Little data exist regarding these compounds, and no commercial products have been produced. Commercially available pyrethroids include allethrin, bifenthrin, bioresmethrin, cyfluthrin, cyhalothrin, cypermethrin, deltamethrin, esfenvalerate (fenvalerate), flucythrinate, flumethrin, fluvalinate, fenpropathrin, permethrin, phenothrin, resmethrin, tefluthrin, tetramethrin, and tralomethrin. Information regarding the chemical identity of pyrethroids is shown in Table 4-2. With the exception of deltamethrin, pyrethroids are a complex mixture of isomers rather than one single pure compound. For pyrethroids possessing the cyclopropane moiety, isomerism about the cyclopropane ring greatly influences the toxicity of these insecticides. The presence of two chiral centers in the ring results in two pairs of diastereomers. The diastereomers and their nonsuperimposable mirror images (enantiomers) are illustrated in Figure 4-1. -
Committee for Risk Assessment RAC Annex 1 Background Document To
Committee for Risk Assessment RAC Annex 1 Background document to the Opinion proposing harmonised classification and labelling at EU level of piperonyl butoxide (ISO); 2-(2-butoxyethoxy)ethyl 6-propylpiperonyl ether EC Number: 200-076-7 CAS Number: 51-03-6 CLH-O-0000006819-59-01/F The background document is a compilation of information considered relevant by the dossier submitter or by RAC for the proposed classification. It includes the proposal of the dossier submitter and the conclusion of RAC. It is based on the official CLH report submitted to public consultation. RAC has not changed the text of this CLH report but inserted text which is specifically marked as ‘RAC evaluation’. Only the RAC text reflects the view of RAC. Adopted 11 June 2020 P.O. Box 400, FI-00121 Helsinki, Finland | Tel. +358 9 686180 | Fax +358 9 68618210 | echa.europa.eu [04.01-ML-009.02] ANNEX 1 - BACKGROUND DOCUMENT TO RAC OPINION ON PIPERONYL BUTOXIDE (ISO); 2-(2-BUTOXYETHOXY)ETHYL 6-PROPYLPIPERONYL ETHER ANNEX 1 - BACKGROUND DOCUMENT TO RAC OPINION ON PIPERONYL BUTOXIDE (ISO); 2-(2-BUTOXYETHOXY)ETHYL 6-PROPYLPIPERONYL ETHER CLH report Proposal for Harmonised Classification and Labelling Based on Regulation (EC) No 1272/2008 (CLP Regulation), Annex VI, Part 2 Substance Name: 2-(2-butoxyethoxy)ethyl 6-propylpiperonyl ether; piperonyl butoxide (ISO) EC Number: 200-076-7 CAS Number: 51-03-6 Index Number: n/a Contact details for dossier submitter: General Chemical State Laboratory of Greece 16 Anastasiou Tsocha Str., 11521 Ampelokipi, Athens, Greece Tel: 0030 210 6479286, 0030 210 6479408 Fax: 0030 210 6466917 Email: [email protected] Scientific Advisor: Benaki Phytopathological Institute 8 Stefanou Delta Str., 145 61 Kifissia, Attica, Greece Tel: 0030 210 8180334 Email: [email protected] ANNEX 1 - BACKGROUND DOCUMENT TO RAC OPINION ON PIPERONYL BUTOXIDE (ISO); 2-(2-BUTOXYETHOXY)ETHYL 6-PROPYLPIPERONYL ETHER Version number: 1.4 Date: March 2019 CONTENTS PART A. -
MP144: Ornamental Insect Control for Homeowners
ORNAMENTAL INSECT CONTROL FOR HOMEOWNERS OUTDOOR ORNAMENTAL INSECT CONTROL Amount Formulation Pest Insecticide and Formulation* Per Gallon Spray Remarks and Precautions Aphid acephate Follow label directions. acetamiprid Follow label directions. beta-cyfluthrin 0.0015% + imidacloprid 0.012% ready to use Follow label directions. (Bayer Advanced Dual Action Rose & Flower Insect Killer Ready-To-Use) bifenthrin Follow label directions. cyfluthrin Follow label directions. dinotefuran (Ortho Tree & Shrub Insect Control Plus Per label directions. Miracle-Gro Plant Food Concentrate 0.43%, Ortho Tree & Shrub Insect Control Granules 2.0%) horticultural oils 1%-2% Follow label directions. imidacloprid (Bayer Advanced) Follow label directions. insecticidal soap 1%-2% Thorough coverage is necessary. Spray must contact pests to be effective. Repeat spray three times at 5- to 7-day intervals. malathion (various) Follow label directions. pyrethrin/pyrethrum Follow label directions. pyrethroids (various) ready to use and concentrate Follow label directions. Azalea Leaf Miner acephate (Orthene TTO) 1 tsp Per label directions. beta-cyfluthrin 0.0015% + imidacloprid 0.012% ready to use Follow label directions. (Bayer Advanced Dual Action Rose & Flower Insect Killer Ready-To-Use) dinotefuran (Ortho Tree & Shrub Insect Control Plus Per label directions. Miracle-Gro Plant Food Concentrate 0.43%, Ortho Tree & Shrub Insect Control Granules 2.0%) imidacloprid (Bayer Advanced) Bagworm Bacillus thuringiensis 2 tsp Per label directions. (Biotrol WP, Thuricide, Sok-Bt) beta-cyfluthrin 0.0015% + imidacloprid 0.012% ready to use Follow label directions. (Bayer Advanced Dual Action Rose & Flower Insect Killer Ready-To-Use) malathion (various) Per label directions. In winter, hand-pick and burn if only a few bagworms are present. -
Safrole and the Versatility of a Natural Biophore Lima, L
Artigo Safrole and the Versatility of a Natural Biophore Lima, L. M.* Rev. Virtual Quim., 2015, 7 (2), 495-538. Data de publicação na Web: 31 de dezembro de 2014 http://www.uff.br/rvq Safrol e a Versatilidade de um Biofóro Natural Resumo: Safrol (1) obtido de óleos essenciais de diferentes espécies vegetais tem ampla aplicação na indústria química como precursor sintético do butóxido de piperonila, piperonal e de fármacos como a tadalafila, cinoxacina e levodopa. Do ponto vista toxicológico, é considerado uma hepatotoxina por mecanismo de bioativação metabólica conduzindo a formação de intermediários eletrofílicos, e tem sido descrito como inibidor de diferentes isoenzimas da família CYP450. A versatilidade de sua estrutura, permitindo várias transformações químicas, e a natureza biofórica de sua unidade benzodioxola ou metilenodioxifenila conferem-lhe características singulares, que o tornam atrativo material de partida para a síntese de compostos com distintas atividades farmacológicas. Exemplos selecionados de compostos bioativos, naturais e sintéticos, contendo o sistema benzodioxola serão comentados, incluindo aqueles provenientes de contribuição específica do LASSBio®. Palavras-chave: Safrol; benzodioxola; metilenodioxi; CYP450; bióforo; compostos bioativos. Abstract Safrole (1), obtained from essential oils from different plant species, has wide application in the chemical industry as a synthetic precursor of piperonyl butoxide, piperonal and drugs such as tadalafil, cinoxacin and levodopa. From the toxicological point of view, it is considered a hepatotoxin through metabolic bioactivation, leading to the formation of electrophilic metabolites, and has been described as an inhibitor of different CYP450 isoenzymes. The versatility of its structure, allowing various chemical transformations, and the biophoric nature of its benzodioxole or methylenedioxy subunit, give it unique features and make it an attractive starting material for the synthesis of compounds with different pharmacological activities. -
Home Vegetable Garden Insect Pest Control
Oklahoma Cooperative Extension Service EPP-7313 Home Vegetable Garden Insect Pest Control Jonathan Edelson Entomology Specialist Oklahoma Cooperative Extension Fact Sheets are also available on our website at: Brenda Simons http://osufacts.okstate.edu Assistant Extension Specialist -Horticulture David Hillock Assistant Extension Specialist -Horticulture and ‘suck’ liquids from the plants. Examples include squash bugs, aphids, stink bugs, thrips and mites. Many of the insects that feed in this manner defecate a sticky liquid (honeydew) that often builds up on leaves or fruit, leaving a shiny residue What is an Insect Pest? that may support the growth of a black or gray sooty mold. For purposes of this Fact Sheet, we classify insects and Damaged foliage often will turn yellow and eventually brown mites as pests based on their ability to damage vegetable in color or become malformed in shape. plants and reduce your harvest from the home garden. Many insects, and all spiders, found in home vegetable gardens are beneficial and control of these insects is not recommended. Key Pests Those pests that feed directly on the harvested portion of the plant are the most destructive, since they compete directly Monitoring Pest Insects in the Home with you for the food you are trying to grow. You will have little Garden tolerance for the key pests. We recommend controlling key Insects and mites can move into your garden and then pests when found in the garden. Examples include the corn rapidly increase in numbers. You should examine plants in earworm and the tomato fruitworm. and around the garden throughout the season at least twice Many insects and mites feed on leaves or on parts of the weekly. -
Thing Natural?
Pyrethrum – Pyrethrins, Pyrethroid – Permethrin: Let’s Call the Whole Thing Natural? By Mike Catangui, Ph.D., Entomologist Manager, MWI Animal Health Technical Services Terminology This might be the reason why, despite being used for Pyrethrum: Liquid extract or dry preparation from hundreds of years, natural pyrethrins are still very effective the flowers of the pyrethrum plant (Chrysanthemum against many insect pests. Insects have not yet developed cinerariifolium). widespread resistance to natural pyrethrins despite being used for centuries. In comparison, many insect species, Pyrethrins: Collective name of the six naturally-occurring such as the house fly, can develop resistance against much insecticidal active ingredients (esters) found in pyrethrum. simpler man-made or laboratory-synthesized insecticides Pyrethroid: A manmade or laboratory-synthesized like permethrin (a synthetic pyrethroid) if used continuously insecticide patterned after one of the pyrethrins. for three to four years without employing resistance Permethrin: A pyrethroid. management strategies. Through the course of civilization, perhaps through keen observation and happenstance, humans have figured out that extracts from certain chrysanthemum flowers (Scientific Name: Chrysanthemum cinerariifolium; Common Names: pyrethrum plant, Dalmatian chrysanthemum, insect flowers) [Fig. 1] have insecticidal properties. Legend has it that a person picked certain chrysanthemum flowers as beautiful adornment—and then noticed dead insects around the flowers once they had dried and withered several days later. It is possible that pyrethrum extracts have been used for hundreds of years as insecticides in the Middle East. Persian Fig 1. Flowers of the pyrethrum plant (Chrysanthemum cinerariifolium). (Photo: Botanical Resources Australia http://botanicalra.com.au) pellitory, Persian powder and Zacherlin were names used by early Europeans to refer to preparations from pyrethrum extracts originating from the Middle East and the Balkans. -
Scanned Document
cc: Eric Bohnenblust Alexandra Dunn Cheryl Dunton Michael Goodis Arnold Layne Anna Lowit Autumn Metzger Jennifer Saunders OPP Docket FIFRA Scientific Advisory Panel: Robert E. Chapin, PhD Joseph Shaw, PhD Sonya K. Sobrian, PhD Clifford P. Weisel, PhD Raymond S.H. Yang, PhD FQPA Science Review Board Members: Arthur Appel, PhD Michael J. Daniels, ScD Marion Ehrich, PhD Jerome Hogsette, PhD Eric Kwok, PhD Lisa Murphy, VMD Weste Osbrink, PhD Michael K. Rust, PhD Jeffrey G Scott, PhD Keith Shockley, PhD Daniel E. Snyder, DVM, PhD Larisa Vredevoe, PhD 2 FIFRA Scientific Advisory Panel Meeting Minutes and Final Report No. 2019-02 Peer Review on EPA Office of Pesticide Programs’ Proposed Guidelines for Efficacy Testing of Topically Applied Pesticides Used Against Certain Ectoparasitic Pests on Pets June 11-14, 2019 FIFRA Scientific Advisory Panel Meeting Held at U.S. Environmental Protection Agency Conference Center Lobby Level One Potomac Yard (South Bldg.) 2777 S. Crystal Drive, Arlington, VA 22202 3 Page Blank 4 NOTICE The Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) Scientific Advisory Panel (SAP) is a federal advisory committee operating in accordance with the Federal Advisory Committee Act and established under the provisions of FIFRA as amended by the Food Quality Protection Act (FQPA) of 1996. The FIFRA SAP provides advice, information, and recommendations to the U.S. Environmental Protection Agency (EPA or Agency) Administrator on pesticides and pesticide-related issues regarding the impact of regulatory actions on health and the environment. The SAP serves as a primary scientific peer review mechanism of the EPA, Office of Pesticide Programs (OPP), and is structured to provide balanced expert assessment of pesticide and pesticide-related matters facing the Agency.