Vivipary, Proliferation, and Phyllody in Grasses
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Newfoundland Rare Plant Project Including an Update to the Rare Vascular Plants of the Island of Newfoundland
The Newfoundland Rare Plant Project Including an Update to the Rare Vascular Plants of the Island of Newfoundland April 2004 prepared by: Nathalie Djan-Chékar, Project Manager Newfoundland and Labrador Inland Fish and Wildlife Division and Claudia Hanel, Assistant Botanist Atlantic Canada Conservation Data Centre ii Table of Contents Table of Contents..........................................................................................................................ii Acknowledgments........................................................................................................................iii Participants....................................................................................................................................4 Background...................................................................................................................................1 Project description ........................................................................................................................1 Methodology.................................................................................................................................2 Results...........................................................................................................................................3 Revised list of rare vascular plants of the Island of Newfoundland .............................................4 Additions to the list of rare vascular plants of the Island of Newfoundland ............................4 Deletions -
Heathland Wind Farm Technical Appendix A8.1: Habitat Surveys
HEATHLAND WIND FARM TECHNICAL APPENDIX A8.1: HABITAT SURVEYS JANAURY 2021 Prepared By: Harding Ecology on behalf of: Arcus Consultancy Services 7th Floor 144 West George Street Glasgow G2 2HG T +44 (0)141 221 9997 l E [email protected] w www.arcusconsulting.co.uk Registered in England & Wales No. 5644976 Habitat Survey Report Heathland Wind Farm TABLE OF CONTENTS ABBREVIATIONS .................................................................................................................. 1 1 INTRODUCTION ........................................................................................................ 2 1.1 Background .................................................................................................... 2 1.2 Site Description .............................................................................................. 2 2 METHODS .................................................................................................................. 3 2.1 Desk Study...................................................................................................... 3 2.2 Field Survey .................................................................................................... 3 2.3 Survey Limitations .......................................................................................... 5 3 RESULTS .................................................................................................................... 6 3.1 Desk Study..................................................................................................... -
Symptomatology in Plant Pest Diagnosis
SYMPTOMATOLOGY IN PLANT PEST DIAGNOSIS Symptoms are the detectable expressions of a disease, pest, or environmental factor exhibited by the suscept or plant which is subject to a given pathogen or causal agent. These symptoms, usually the result of complex physiological disturbances, commonly combine to form a definite symptom-complex or syndrome. Symptom-complexes may develop in different organs of a suscept at different times. Symptoms may be either localized in a particular part of the plant, or systemic, that is, generalized in an organ or the plant. In addition, symptoms may be primary (direct and immediate changes in the tissues affected by a pathogen or other causal agent), or secondary (indirect and subsequent physiological effects on host tissue induced by action at a point distant from the initial infection). Usually, but not in all cases, localized symptoms are primary while generalized or systemic symptoms are secondary. Moreover, the sequence of symptom development frequently characterizes a particular disease. Symptomatology, the study of symptoms and associated signs that characterize a plant ailment, enables correct disease or pest diagnosis. It is very important to be aware that because symptoms are “host reactions” to an irritation, many agents or even abiotic factors can cause a particular symptom. For example, wilting of the entire plant can be caused by bacteria, fungus, root rot, inadequate soil moisture, and other agents. Signs are observable structure(s) of the agent which incites the disease or ailment. The commonest signs of disease agents are reproductive or vegetative parts of a pathogen such as fruiting structures, spore masses, mycelial mats, fans, rhizomorphs, etc. -
The Flora of Jan Mayen
NORSK POLARINSTITUTT SKRIFTER NR. 130 JOHANNES LID THE FLORA OF JAN MAYEN IlJustrated by DAGNY TANDE LID or1(f t ett} NORSK POLARINSTITUTT OSLO 1964 DET KONGELIGE DEPARTEMENT FOR INDUSTRI OG HÅNDVERK NORSK POLARINSTITUTT Observatoriegt. l, Oslo, Norway Short account of the publications of Norsk Polarinstitutt The two series, Norsk Polarinstitutt - SKRIFTER and Norsk Polarinstitutt - MEDDELELSER, were taken over from the institution Norges Svalbard- og Ishavs undersøkelser (NSIU), which was incorporated in Norsk Polarinstitutt when this was founded in 1948. A third series, Norsk Polarinstitutt - ÅRBOK, is published with one volum(� per year. SKRIFTER includes scientific papers, published in English, French or German. MEDDELELSER comprises shortcr papers, often being reprillts from other publi cations. They generally have a more popular form and are mostly published in Norwegian. SKRIFTER has previously been published under various tides: Nos. 1-11. Resultater av De norske statsunderstuttede Spitsbergen-ekspe. ditioner. No 12. Skrifter om Svalbard og Nordishavet. Nos. 13-81. Skrifter om Svalbard og Ishavet. 82-89. Norges Svalbard- og Ishavs-undersøkelser. Skrifter. 90- • Norsk Polarinstitutt Skrifter. In addition a special series is published: NORWEGIAN-BRITISH-SWEDISH ANTARCTIC EXPEDITION, 1949-52. SCIENTIFIC RESULTS. This series will comprise six volumes, four of which are now completed. Hydrographic and topographic surveys make an important part of the work carried out by Norsk Polarinstitutt. A list of the published charts and maps is printed on p. 3 and 4 of this cover. A complete list of publications, charts and maps is obtainable on request. ÅRBØKER Årbok 1960. 1962. Kr.lS.00. Årbok 1961. 1962. Kr. 24.00. -
A New Phytoplasma Taxon Associated with Japanese Hydrangea Phyllody
international Journal of Systematic Bacteriology (1 999), 49, 1275-1 285 Printed in Great Britain 'Candidatus Phytoplasma japonicum', a new phytoplasma taxon associated with Japanese Hydrangea phyllody Toshimi Sawayanagi,' Norio Horikoshi12Tsutomu Kanehira12 Masayuki Shinohara,2 Assunta Berta~cini,~M.-T. C~usin,~Chuji Hiruki5 and Shigetou Nambal Author for correspondence: Shigetou Namba. Tel: +81 424 69 3125. Fax: + 81 424 69 8786. e-mail : snamba(3ims.u-tokyo.ac.jp Laboratory of Bioresource A phytoplasma was discovered in diseased specimens of f ield-grown hortensia Technology, The University (Hydrangea spp.) exhibiting typical phyllody symptoms. PCR amplification of of Tokyo, 1-1-1 Yayoi, Bunkyo-ku 113-8657, DNA using phytoplasma specific primers detected phytoplasma DNA in all of Japan the diseased plants examined. No phytoplasma DNA was found in healthy College of Bioresource hortensia seedlings. RFLP patterns of amplified 165 rDNA differed from the Sciences, Nihon University, patterns previously described for other phytoplasmas including six isolates of Fujisawa, Kanagawa 252- foreign hortensia phytoplasmas. Based on the RFLP, the Japanese Hydrangea 0813, Japan phyllody (JHP) phytoplasma was classified as a representative of a new sub- 3 lstituto di Patologia group in the phytoplasma 165 rRNA group I (aster yellows, onion yellows, all vegetale, U niversita degli Studi, Bologna 40126, Italy of the previously reported hortensia phytoplasmas, and related phytoplasmas). A phylogenetic analysis of 16s rRNA gene sequences from this 4 Unite de Pathologie Vegetale, Centre de and other group Iphytoplasmas identified the JHP phytoplasma as a member Versa iI les, Inst it ut Nat iona I of a distinct sub-group (sub-group Id) in the phytoplasma clade of the class de la Recherche Mollicutes. -
APAR-07-00256.Pdf
Advances in Plants & Agriculture Research Research Article Open Access Detection, characterization and in-silico analysis of candidatus phytoplasma australasia associated with phyllody disease of sesame Abstract Volume 7 Issue 3 - 2017 Leaf samples from sesame plants exhibiting Phyllody disease were collected from V Venkataravanappa,1,2 CN Lakshminarayana Varanasi and Mirzapur districts of Uttar Pradesh, India during the survey conducted Reddy,4 M Manjunath,2 Neha S Chauhan,2 M between month of September to December, 2012-14. Incidence of sesame Phyllody in 3 the farmers at different location was ranged from 30-70 percent indicating its prevalence Krishna Reddy 1 in Uttar Pradesh. The Phytoplasma infection in sesame plants was confirmed by PCR Central Horticultural Experimental Station, India 2Division of Crop Protection, Indian Vegetable Research using universal primers of 16s rRNA (R16F2n/R16R2) and SecY gene (SecYF2 Institute, India and SecYR1) respectively. Amplified 16s rRNA and SecY gene was sequenced and 3Indian Institute of Horticultural Research, India sequence comparisons were made with the available Phytoplasma 16srRNA and SecY 4Department of Plant Pathology, University of Agricultural gene sequences in NCBI Gen Bank database. The 16srRNA and SecY gene sequence Sciences, India of Phytoplasma in the current study, shared highest nucleotide identity of 97.9-99.9% and 95.8 to 96.3% with subgroup 16Sr II-D the peanut witches’-broom group. A Correspondence: V Venkataravanappa, Scientist (Plant Comprehensive recombination analysis using RDP4 showed the evidence of inter- Pathology) Division of Plant pathology Central Horticultural recombination in F2nR2 and SecY gene fragment of Phytoplasma infecting sesame. Experimental Station, ICAR-Indian Institute of Horticultural The most of the F2nR2 fragment is descended from Ash yellows-[16SrVIII] and Apple Research Chettalli- 571248, Kodagu, Karnataka, India, proliferation-[16SrX] group. -
Microscopic Features of Monocotyledonous Plants Features of Culms, Flower Stalks, Stems and Rhizomes
Microscopic features of monocotyledonous plants Features of culms, flower stalks, stems and rhizomes Vol. IV Fritz H. Schweingruber Hugo Berger 1 Coverphoto Eriophorum scheuchzeri Species on the cover Top: Agropyron cristatum Middle (left to right): Luzula alpina-pilosa, Potamogeton pectinatus Base (left to right): Carex acutiformis, Carex pseudocyperus, Carex appropinquata Prof. Dr. Fritz H. Schweingruber Swiss Federal Research Institute WSL Zürichstrasse 111 8903 Birmensdorf Switzerland Email: [email protected] Hugo Berger Email: [email protected] Barbara Berger Design and layout Email: [email protected] Verlag Dr. Kessel Eifelweg 37 D-53424 Remagen Tel.: 0049-2228-493 www.forestrybooks.com www.forstbuch.de ISBN: 978-3-945941-52-2 2 Content 1 Introduction. 5 2 Material .............................................................. 6 3 Preparation ........................................................... 6 4 Features of culms, flower stalks and stems .................... 7 5 Rhizome features of Cyperaceae ............................... 41 6 References ......................................................... 60 7 Index ............................................................... 62 3 4 1. Introduction The list of monocotyledonous culms, flower stalks, rhizomes and stem-features is a result of the studies published in tree volumes: - Vol.I Anatomy of grass culms (Schweingruber and Berger 2017) - Vol. II Anatomy of culms and rhizomes of sedges (Schweingruber and Berger 2018) - Vol. III Anatomy of culms and flower stalks of monocotyledonous plants (Schweingruber and Berger 2018) Here we present the first time a list of features which is applicable on the whole spectrum of monocotyledonous plants in temperate zones of the northern hemisphere. The definition of features is primarily based on double stained microscopic slides from recently collected material. The origin of some feature-characterization originates from monographs of Schenk 1886 and Evans 2003, Seago et al. -
Arctic National Wildlife Refuge Volume 2
Appendix F Species List Appendix F: Species List F. Species List F.1 Lists The following list and three tables denote the bird, mammal, fish, and plant species known to occur in Arctic National Wildlife Refuge (Arctic Refuge, Refuge). F.1.1 Birds of Arctic Refuge A total of 201 bird species have been recorded on Arctic Refuge. This list describes their status and abundance. Many birds migrate outside of the Refuge in the winter, so unless otherwise noted, the information is for spring, summer, or fall. Bird names and taxonomic classification follow American Ornithologists' Union (1998). F.1.1.1 Definitions of classifications used Regions of the Refuge . Coastal Plain – The area between the coast and the Brooks Range. This area is sometimes split into coastal areas (lagoons, barrier islands, and Beaufort Sea) and inland areas (uplands near the foothills of the Brooks Range). Brooks Range – The mountains, valleys, and foothills north and south of the Continental Divide. South Side – The foothills, taiga, and boreal forest south of the Brooks Range. Status . Permanent Resident – Present throughout the year and breeds in the area. Summer Resident – Only present from May to September. Migrant – Travels through on the way to wintering or breeding areas. Breeder – Documented as a breeding species. Visitor – Present as a non-breeding species. * – Not documented. Abundance . Abundant – Very numerous in suitable habitats. Common – Very likely to be seen or heard in suitable habitats. Fairly Common – Numerous but not always present in suitable habitats. Uncommon – Occurs regularly but not always observed because of lower abundance or secretive behaviors. -
Literature Cited Robert W. Kiger, Editor This Is a Consolidated List Of
RWKiger 26 Jul 18 Literature Cited Robert W. Kiger, Editor This is a consolidated list of all works cited in volumes 24 and 25. In citations of articles, the titles of serials are rendered in the forms recommended in G. D. R. Bridson and E. R. Smith (1991). When those forms are abbreviated, as most are, cross references to the corresponding full serial titles are interpolated here alphabetically by abbreviated form. Two or more works published in the same year by the same author or group of coauthors will be distinguished uniquely and consistently throughout all volumes of Flora of North America by lower-case letters (b, c, d, ...) suffixed to the date for the second and subsequent works in the set. The suffixes are assigned in order of editorial encounter and do not reflect chronological sequence of publication. The first work by any particular author or group from any given year carries the implicit date suffix "a"; thus, the sequence of explicit suffixes begins with "b". Works missing from any suffixed sequence here are ones cited elsewhere in the Flora that are not pertinent in these volumes. Aares, E., M. Nurminiemi, and C. Brochmann. 2000. Incongruent phylogeographies in spite of similar morphology, ecology, and distribution: Phippsia algida and P. concinna (Poaceae) in the North Atlantic region. Pl. Syst. Evol. 220: 241–261. Abh. Senckenberg. Naturf. Ges. = Abhandlungen herausgegeben von der Senckenbergischen naturforschenden Gesellschaft. Acta Biol. Cracov., Ser. Bot. = Acta Biologica Cracoviensia. Series Botanica. Acta Horti Bot. Prag. = Acta Horti Botanici Pragensis. Acta Phytotax. Geobot. = Acta Phytotaxonomica et Geobotanica. [Shokubutsu Bunrui Chiri.] Acta Phytotax. -
Flowers Under Attack by Phytoplasmas
doi:10.1093/jxb/erv115 Flowers under attack by phytoplasmas Frank Wellmer Smurfit Institute of Genetics, Trinity College Dublin, Ireland [email protected] Phytoplasmas are cell wall-less bacteria that infect plants when they are transferred via sap-feeding insects such as leafhoppers. Plants infected with phytoplasmas can show a range of defects. One of them is the well- known witches’ broom disease, a massive overproliferation of shoots, often seen in nature on trees and shrubs. Another common defect of phytoplasma infection is termed phyllody, which is a conversion of floral organs into leaf-like structures (Fig. 1). This phenomenon is interesting from an evolutionary point of view as floral organs are thought to be modified leaves (Pelaz et al., 2001; von Goethe, 1790). Thus, phytoplasmas convert floral organs into something that resembles their developmental ground state. The molecular basis of phyllody is largely unknown but a recent paper by MacLean et al., (2014) has begun to shed light on the underlying mechanism. The authors elucidated how one effector of phytoplasma, a protein Fig. 1. An Arabidopsis wild-type flower (left) and a flower from a plant after phytoplasma infection showing phyllody (right). Figure from called SAP54 (MacLean et al., 2011), MacLean et al., 2014. induces phyllody in Arabidopsis thaliana. Using a yeast two-hybrid approach, they found that SAP54 physically interacts with several transcription factors of the MADS- domain family, which contains many key floral regulators. Among them are the APETALA1 (AP1) and SEPALLATA1 to 4 (SEP1-4) proteins that have important functions during the onset of flower development and/or the specification of floral organ identity, respectively (O’Maoileidigh et al., 2014; Sablowski, 2010). -
Characterization and Vector Identification of Phytoplasmas Associated with Cucumber and Squash Phyllody in Iran
Bulletin of Insectology 68 (2): 311-319, 2015 ISSN 1721-8861 Characterization and vector identification of phytoplasmas associated with cucumber and squash phyllody in Iran 1 2 3 4 Mohammad SALEHI , Majid SIAMPOUR , Seyyed Alireza ESMAILZADEH HOSSEINI , Assunta BERTACCINI 1Plant Protection Research Department, Fars Agricultural and Natural Resources Research and Education Center, AREEO, Zarghan, Iran 2Department of Plant Protection, College of Agriculture, Shahrekord University, Shahrekord, Iran 3Plant Protection Research Department, Yazd Agricultural and Natural Resources Research and Education Center, AREEO, Yazd, Iran 4Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Italy Abstract Phytoplasmas associated with cucumber phyllody (CuP) and squash phyllody (SqP) in Yazd province of Iran were characterized by molecular analyses and biological studies. Orosius albicinctus leafhoppers testing positive for phytoplasma presence by polymerase chain reaction (PCR) successfully transmitted CuP and SqP phytoplasmas to healthy cucumber and squash plants. The phytoplas- mas were also transmitted by O. albicinctus from cucumber and squash to periwinkle, alfalfa, cucumber, carrot, sesame, sunflower, pot marigold, eggplant, squash, tomato and parsley. Both phytoplasmas induced similar symptoms in the post-inoculated plants. Restriction fragment length polymorphism (RFLP) analysis of the 16S rDNA nested PCR products identified the CuP, SqP and O. albicinctus phytoplasmas as members of the 16SrII group. Sequence identity and phylogenetic analysis confirmed the placement of these phytoplasmas in the same clade of other phytoplasmas belonging to 16SrII group. Virtual RFLP analyses on 16S rDNA sequences allowed the affiliation of SqP phytoplasma to subgroup 16SrII-D, while the CuP phytoplasma was identified as represen- tative of a new subgroup 16SrII-M. -
Roses: Diseases and Abiotic Disorders
ROSES: DISEASES AND ABIOTIC DISORDERS Integrated Pest Management for Home Gardeners and Landscape Professionals A variety of plant pathogens can at- cycle yet allows time for foliage to dry tack roses. The most common problem before evening. in California is powdery mildew, but a number of other diseases including The pathogen requires living tissue in rust, black spot, botrytis, downy mil- order to survive, so pruning, collect- dew, and anthracnose may cause prob- ing, and disposing of leaves during the lems where moist conditions prevail. dormant season can limit infestations although it may not entirely eradicate To limit problems, choose varieties and them, since airborne spores from other irrigation practices carefully, promote locations can provide fresh inoculation. air circulation by following appropri- ate pruning techniques and providing Rose varieties vary greatly in resistance, sufficient space between plants, and with landscape (shrub) varieties among remove severely infested material the most resistant. Glossy-foliaged va- promptly. Although some rose enthu- rieties of hybrid teas and grandifloras siasts consider regular application of often have good resistance to powdery fungicides a necessary component of mildew as well. Plants grown in sunny rose culture, many gardeners are able locations with good air circulation are to sustain plants with little to no use less likely to have serious problems. of fungicides, especially in California’s dry interior valleys. Fungicides such as triforine (Ortho Rose- pride) are available, but generally you In addition to diseases that bacterial, must apply them to prevent rather than fungal, and viral pathogens cause, ros- eradicate infections, so timing is critical Figure 1.