Altieri Nicholls.Vp

Total Page:16

File Type:pdf, Size:1020Kb

Altieri Nicholls.Vp Miguel Angel Altieri, PhD Clara Ines Nicholls, PhD Biodiversity and Pest Management in Agroecosystems Second Edition Pre-publication tionships between insect pest man- REVIEWS, agement, diversified cropping systems, COMMENTARIES, and field boundary vegetation should EVALUATIONS... read this book.” Matt Liebman, PhD Professor of Agronomy, his book is an important contribu- Iowa State University “Ttion to the literature on ecologi- cally based pest management. In addi- tion to reviewing relevant aspects of ecological theory and the broader agro- ecological context of pest management, it presents numerous data sets and case his book is essential reading for studies from both temperate and tropical “Tanyone interested in develop- farming systems. Biodiversity and Pest ing truly logical pest management Management in Agroecosystems reflects the practices in any country. The authors authors’ many years of experience, par- go way beyond IPM and input substi- ticularly in the chapters on insect manage- tution approaches to show how a ment in multiple cropping systems, insect ecology in orchards containing cover crops, well-designed agroecosystem can ac- and non-crop vegetation effects on insect tually sponsor its own pest manage- populations in crop fields. Many new refer- ment.” ences have been added to this edition. This second edition also includes a new Peter Rosset, PhD chapter on insect dynamics in agroforest- Co-Director, Food First/Institute for Food ry systems. Anyone interested in rela- and Development Policy More pre-publication REVIEWS, COMMENTARIES, EVALUATIONS . ltieri and Nicholls, in this com- case studies. The first three chapters “Apletely reworked and updated edi- provide a firm grounding for pest tion, make one of the best attempts to date management in ecological theory. to present pest management with the The next five chapters very effec- whole-systems approach—biodiversity and tively present examples that apply habitat management in an agroecosystems the theory in agroecosystems from framework. This is a book about how to use ecological knowledge to design agro- around the world, and in systems that ecosystems with built-in pest manage- range from multiple cropping, to or- ment processes and, as a result, reduce or chards with cover crops, to agro- eliminate the use of synthetic chemical forestry systems with the integration pesticides. The authors build on the grow- of trees. The review of the influence ing body of knowledge about the vital of surrounding habitats on pest man- importance of biodiversity for maintain- agement very appropriately places the ing balanced, long-term ecosystem func- process off the farm into the land- tion, and its important role in agriculture. scape level. The concluding two chap- This book will appeal to researchers de- ters of the book explore how biodiversity veloping agroecologically based pest and habitat management must be part management strategies and to practitio- of the transition to sustainability in ners looking for possible options to ap- ply on their own farms. agriculture, presenting exciting and The very extensive and current review challenging goals for the future.” of the literature makes this book a remark- ably useful contribution to agroecological Stephen R. Gliessman, PhD knowledge. Most chapters complement Alfred Heller Professor of Agroecology, this review with several very in-depth University of California, Santa Cruz Food Products Press® An Imprint of The Haworth Press, Inc. New York • London • Oxford NOTES FOR PROFESSIONAL LIBRARIANS AND LIBRARY USERS This is an original book title published by Food Products Press, an im- print of The Haworth Press, Inc. Unless otherwise noted in specific chapters with attribution, materials in this book have not been previ- ously published elsewhere in any format or language. CONSERVATION AND PRESERVATION NOTES All books published by The Haworth Press, Inc. and its imprints are printed on certified pH neutral, acid free book grade paper. This paper meets the minimum requirements of American National Standard for Information Sciences-Permanence of Paper for Printed Material, ANSI Z39.48-1984. Biodiversity and Pest Management in Agroecosystems Second Edition FOOD PRODUCTS PRESS® Crop Science Amarjit S. Basra, PhD Senior Editor Mineral Nutrition of Crops: Fundamental Mechanisms and Implications by Zdenko Rengel Conservation Tillage in U.S. Agriculture: Environmental, Economic, and Policy Issues by Noel D. Uri Cotton Fibers: Developmental Biology, Quality Improvement, and Textile Processing edited by Amarjit S. Basra Heterosis and Hybrid Seed Production in Agronomic Crops edited by Amarjit S. Basra Intensive Cropping: Efficient Use of Water, Nutrients, and Tillage by S. S. Prihar, P. R. Gajri, D. K. Benbi, and V. K. Arora Physiological Bases for Maize Improvement edited by María E. Otegui and Gustavo A. Slafer Plant Growth Regulators in Agriculture and Horticulture: Their Role and Commercial Uses edited by Amarjit S. Basra Crop Responses and Adaptations to Temperature Stress edited by Amarjit S. Basra Plant Viruses As Molecular Pathogens by Jawaid A. Khan and Jeanne Dijkstra In Vitro Plant Breeding by Acram Taji, Prakash P. Kumar, and Prakash Lakshmanan Crop Improvement: Challenges in the Twenty-First Century edited by Manjit S. Kang Barley Science: Recent Advances from Molecular Biology to Agronomy of Yield and Quality edited by Gustavo A. Slafer, José Luis Molina-Cano, Roxana Savin, José Luis Araus, and Ignacio Romagosa Tillage for Sustainable Cropping by P. R. Gajri, V. K. Arora, and S. S. Prihar Bacterial Disease Resistance in Plants: Molecular Biology and Biotechnological Applications by P. Vidhyasekaran Handbook of Formulas and Software for Plant Geneticists and Breeders edited by Manjit S. Kang Postharvest Oxidative Stress in Horticultural Crops edited by D. M. Hodges Encyclopedic Dictionary of Plant Breeding and Related Subjects by Rolf H. G. Schlegel Handbook of Processes and Modeling in the Soil-Plant System edited by D. K. Benbi and R. Nieder The Lowland Maya Area: Three Millennia at the Human-Wildland Interface edited by A. Gómez-Pompa, M. F. Allen, S. Fedick, and J. J. Jiménez-Osornio Biodiversity and Pest Management in Agroecosystems, Second Edition by Miguel A. Altieri and Clara I. Nicholls Plant-Derived Antimycotics: Current Trends and Future Prospects edited by Mahendra Rai and Donatella Mares Concise Encyclopedia of Temperate Tree Fruit edited by Tara Auxt Baugher and Suman Singha Landscape Agroecology by Paul A. Wojtkowski Concise Encyclopedia of Plant Pathology by P. Vidhyasekaran Biodiversity and Pest Management in Agroecosystems Second Edition Miguel Angel Altieri, PhD Clara Ines Nicholls, PhD Food Products Press® An Imprint of The Haworth Press, Inc. New York • London • Oxford Published by Food Products Press®, an imprint of The Haworth Press, Inc., 10 Alice Street, Binghamton, NY 13904-1580. © 2004 by The Haworth Press, Inc. All rights reserved. No part of this work may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, microfilm, and recording, or by any information storage and retrieval system, without permission in writing from the publisher. Printed in the United States of America. Cover design by Brooke R. Stiles. Cover photos of vineyards by Miguel Altieri. Library of Congress Cataloging-in-Publication Data Altieri, Miguel A. Biodiversity and pest management in agroecosystems / Miguel Angel Altieri, Clara I. Nicholls.— 2nd ed. p. cm. Includes bibliographical references (p. ) and index. ISBN 1-56022-922-5 (hardcover : alk. paper)—ISBN 1-56022-923-3 (softcover : alk. paper) 1. Insect pests—Biological control. 2. Insects—Ecology. 3. Biological diversity. 4. Agricultural ecology. I. Nicholls, Clara I. II. Title. SB933.3 .A38 2003 632'.7—dc21 2002014860 CONTENTS Preface to the Second Edition ix Acknowledgments xi Introduction 1 Chapter 1. The Ecological Role of Biodiversity in Agriculture 3 Traditional Agroecosystems As Models of Biodiverse Farms 6 The Ecological Role of Biodiversity 9 The Nature of Biodiversity in Agroecosystems 10 Chapter 2. Agroecology and Pest Management 17 The Nature of Agricultural Habitats and Its Relation to Pest Buildup 17 Crop Diversification and Biological Control 23 Chapter 3. Plant Diversity and Insect Stability in Agroecosystems 29 Ecological Theory 29 Theory Dilemmas 39 Chapter 4. Insect Manipulation Through Weed Management 47 Weeds As Sources of Insect Pests in Agroecosystems 48 The Role of Weeds in the Ecology of Natural Enemies 49 Insect Dynamics in Weed-Diversified Crop Systems 55 Isolating the Ecological Effects of Weed Diversity 67 Crop-Weed Management Considerations 68 Chapter 5. Insect Management in Multiple-Cropping Systems 77 Patterns of Insect Abundance in Polycultures 78 Herbivore Trends in Polycultures 85 Case Study 1: Maize Intercrops and Pest Attack 91 Case Study 2: Cassava Intercrops and Pest Incidence 93 Case Study 3: Reducing Stemborers in Africa 95 Living Mulches: A Special Type of Intercrop 96 Methodologies to Study Insect Dynamics in Polycultures 99 Management Considerations 107 Chapter 6. Insect Ecology in Orchards Under Cover-Crop Management 111 Selecting and Managing Cover Crops in Orchards 116 Case Study 1: Apple Orchards in California 118 Case Study 2: Pecan Orchards in Georgia 121 Case Study 3: Summer Cover Crops in Vineyards 123 Chapter 7. The Influence of Adjacent Habitats on Insect Populations in Crop Fields 127 Crop Edges and Insect Pests 129 Field Boundaries and Natural Enemies
Recommended publications
  • Insects for Weed Control: Status in North Dakota
    Insects for Weed Control: Status in North Dakota E. U. Balsbaugh, Jr. Associate Professor, Department of Entomology R. D. Frye Professor, Department of Entomology C. G. Scholl Plant Protection Specialist, North Dakota State Department of Agriculture A. W. Anderson Associate Professor, Department of Entomology Two foreign species of weevils have been introduced into North Dakota for the biological control of musk thistle, Carduus nutans L. - Rhinocyllus conicus (Froelich), a seed feeding weevH, and Ceutorrhynchidius horridus (Panzer), an internal root and lower stem inhabiting species. R. conicus has survived for several generations and is showing some promise for thistle suppression in Walsh County, but releases of C. hor­ ridus have been unsuccessful. The pigweed nea beetle, Disonycha glabrata (Fab.), which is native in southern United States, has been introduced into experimental sugarbeet plots in the Red River Valley for testing its effects at controlling rough pigweed or redroot, Amaranthus retroflexus L. Although both larvae and adults of these beetles feed heavily on pigweed, damage to the weed occurs too late in the season for them to be effective in suppressing weed growth or seed set. An initial survey for native insects of bindweed has been conducted. Feeding by localized populations of various insects, particularly tortoise beetles, has been observed. Several foreign species of nea beetles and a stem boring beetle are anticipated for release against leafy spurge. Entomologists at North Dakota State University are successful. In 1940, the cactus-feeding moth, Cac­ studying insects that feed on weeds to determine if the toblastis cactorum (Berg), was transported from its insects can reduce populations of selected weeds to native Argentina to Australia where it greatly reduced levels at which the weeds no longer are economically im­ the numbers of prickly pear cactus, Opuntia spp.
    [Show full text]
  • PIGWEED FLEA BEETLE (Disonycha Glabrata) (Coleoptera: Chrysomelidae)
    Rose Hiskes, Diagnostician and Horticulturist Department of Entomology The Connecticut Agricultural Experiment Station 123 Huntington Street, P. O. Box 1106 New Haven, CT 06504 Phone: (203) 974-8600 Fax: (203) 974-8502 Founded in 1875 Email: [email protected] Putting science to work for society Website: www.ct.gov/caes PIGWEED FLEA BEETLE (Disonycha glabrata) (Coleoptera: Chrysomelidae) Pigweeds are serious agricultural weeds in the This native beetle is found from California to Amaranth family. This would lead one to Florida in the Southern United States. In the believe a pigweed flea beetle would be a great Northern United States it is found from New biological control organism. However, there York to the foothills of the Rockies. are species of amaranth used for food, both as a grain and a leafy vegetable, and as In the Caribbean it is found on the islands of ornamentals (e.g., Love-Lies-Bleeding). In Jamaica and Trinidad. It is also found in Jamaica, callaloo refers to Amaranthus Central and South America. viridis, a pigweed that is harvested prior to flowering and mainly used as a steamed green vegetable. If left to flower, the grain produced is high in lysine and when combined with other grains, provides good human nutrition. The pigweed flea beetle is becoming a problem for callaloo producers in Connecticut. Figure 2. Damage to callaloo caused by the pigweed flea beetle. Photo by Richard Cowles. DAMAGE Adults feed on foliage, chewing small, round holes (Fig. 2). Larvae are also foliage feeders. Heavy feeding results in early leaf drop and Figure 1.
    [Show full text]
  • Aravalli Range of Rajasthan and Special Thanks to Sh
    Occasional Paper No. 353 Studies on Odonata and Lepidoptera fauna of foothills of Aravalli Range, Rajasthan Gaurav Sharma ZOOLOGICAL SURVEY OF INDIA OCCASIONAL PAPER NO. 353 RECORDS OF THE ZOOLOGICAL SURVEY OF INDIA Studies on Odonata and Lepidoptera fauna of foothills of Aravalli Range, Rajasthan GAURAV SHARMA Zoological Survey of India, Desert Regional Centre, Jodhpur-342 005, Rajasthan Present Address : Zoological Survey of India, M-Block, New Alipore, Kolkata - 700 053 Edited by the Director, Zoological Survey of India, Kolkata Zoological Survey of India Kolkata CITATION Gaurav Sharma. 2014. Studies on Odonata and Lepidoptera fauna of foothills of Aravalli Range, Rajasthan. Rec. zool. Surv. India, Occ. Paper No., 353 : 1-104. (Published by the Director, Zool. Surv. India, Kolkata) Published : April, 2014 ISBN 978-81-8171-360-5 © Govt. of India, 2014 ALL RIGHTS RESERVED . No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the publisher. This book is sold subject to the condition that it shall not, by way of trade, be lent, resold hired out or otherwise disposed of without the publisher’s consent, in any form of binding or cover other than that in which, it is published. The correct price of this publication is the price printed on this page. Any revised price indicated by a rubber stamp or by a sticker or by any other means is incorrect and should be unacceptable. PRICE Indian Rs. 800.00 Foreign : $ 40; £ 30 Published at the Publication Division by the Director Zoological Survey of India, M-Block, New Alipore, Kolkata - 700053 and printed at Calcutta Repro Graphics, Kolkata - 700 006.
    [Show full text]
  • Additions, Deletions and Corrections to An
    Bulletin of the Irish Biogeographical Society No. 36 (2012) ADDITIONS, DELETIONS AND CORRECTIONS TO AN ANNOTATED CHECKLIST OF THE IRISH BUTTERFLIES AND MOTHS (LEPIDOPTERA) WITH A CONCISE CHECKLIST OF IRISH SPECIES AND ELACHISTA BIATOMELLA (STAINTON, 1848) NEW TO IRELAND K. G. M. Bond1 and J. P. O’Connor2 1Department of Zoology and Animal Ecology, School of BEES, University College Cork, Distillery Fields, North Mall, Cork, Ireland. e-mail: <[email protected]> 2Emeritus Entomologist, National Museum of Ireland, Kildare Street, Dublin 2, Ireland. Abstract Additions, deletions and corrections are made to the Irish checklist of butterflies and moths (Lepidoptera). Elachista biatomella (Stainton, 1848) is added to the Irish list. The total number of confirmed Irish species of Lepidoptera now stands at 1480. Key words: Lepidoptera, additions, deletions, corrections, Irish list, Elachista biatomella Introduction Bond, Nash and O’Connor (2006) provided a checklist of the Irish Lepidoptera. Since its publication, many new discoveries have been made and are reported here. In addition, several deletions have been made. A concise and updated checklist is provided. The following abbreviations are used in the text: BM(NH) – The Natural History Museum, London; NMINH – National Museum of Ireland, Natural History, Dublin. The total number of confirmed Irish species now stands at 1480, an addition of 68 since Bond et al. (2006). Taxonomic arrangement As a result of recent systematic research, it has been necessary to replace the arrangement familiar to British and Irish Lepidopterists by the Fauna Europaea [FE] system used by Karsholt 60 Bulletin of the Irish Biogeographical Society No. 36 (2012) and Razowski, which is widely used in continental Europe.
    [Show full text]
  • 6 GAURAV.Pdf
    Biological Forum — An International Journal, 3(1): 21-26(2011) ISSN : 0975-1130 Studies on Lepidopterous Insects Associated with Vegetables in Aravali Range, Rajasthan, India Gaurav Sharma Zoological Survey of India, Desert Regional Centre, Jhalamand, Jodhpur, (RJ) (Received 23 March, 2011 Accepted 14 April, 2011) ABSTRACT : The extensive studies on Lepidopterous insects associated with vegetables were conducted in different localities of Aravalli Range of Rajasthan i.e. Mount Abu, Udaipur, Rajsamand, Puskar, Ajmer, Jaipur, Sikar, Jhunjhunu, Sariska, Alwar, Dausa and Bharatpur during 2008-11. During present study 38 species of lepidopterous insects associated with vegetables in Aravalli Range of Rajasthan were recorded, out of 152 species of lepidopterous insects recorded from India. The families Crambidae and Noctuidae were the dominant families each represented by 8 species followed by Arctiidae having 4 species; Lycaenidae 3 species; then Nolidae, Pieridae and Sphingidae each having 2 species and least by Cosmopterigidae, Gelechiidae, Geometridae, Hesperiidae, Lymantriidae, Nymphalidae, Plutellidae, Pterophoridae and Saturniidae each having 1 species. On the basis of nature of damage the lepidopterous insects were also categorized as leaf feeders, pod borers, fruit borers, defoliators and leaf rollers, bud borers and leaf webbers, cut worms, leaf miners and stem borers etc. The salient details of their hosts, pest status or otherwise and their updated classification are provided. Keywords : Lepidopterous insects, Vegetables, pest status, Aravalli Range, Rajasthan. INTRODUCTION consequences like destruction of natural enemies fauna, effect on non target organisms, residues in consumable India is the second largest producer of vegetables after products including packed pure and mineral water and China, about 75 million tons.
    [Show full text]
  • Evaluation of Gratiana Spadicea (Klug, 1829) and Metriona Elatior
    Evaluation of Gratiana spadicea (Klug, 1829) and Metriona elatior (Klug, 1829) (Chrysomelidae: Cassidinae) for the biological control of sticky nightshade Solanum sisymbriifolium Lamarck (Solanaceae) in South Africa. THESIS Submitted in fulfilment of the requirements for the Degree of DOCTOR OF PHILOSOPHY of Rhodes University by MARTIN PATRICK HILL December 1994 · FRONTISPIECE Top Row (Left to Right): Gratiana spadicea adults and egg case; Gratiana spadicea larvae; Gratiana spadicea pupae. Centre: Solanum sisymbriifolium (sticky nightshade). Bottom Row (Left to Right): Metriona elatior adults; Metriona elatior larvae; Metriona elatior pupae. 11 PUBLICATIONS ARISING FROM THIS STUDY Parts of the research presented in this thesis, already accepted for publication are the following: Hill, M.P., P.E. Hulley and T.Olckers 1993. Insect herbivores on the exotic w~eds Solanum elaeagnifolium Cavanilles and S. sisymbrilfolium Lamarck (Solanaceae) in South Africa. African Entomology 1: 175-182. Hill, M.P. and P.E. Hulley 1995. Biology and host range of Gratiana spadicea (Klug, 1829) (Coleoptera: Chrysomelidae: Cassidinae), a potential biological control agent for the weed Solanum sisymbriifolium Lamarck (Solanaceae) in South Africa. Biological Control, in press. Hill, M.P. and P.E. Hulley 1995. Host range extension by native parasitoids to weed biocontrol agents introduced to South Africa. Biological Control, in press. 111 ACKNOWLEDGEMENTS lowe a huge debt of gratitude to my supervisor, Professor P.E. Hulley for his guidance, support and enthusiasm throughout this project, and.for teaching me to think things through properly. He must also be thanked for constructive comments on earlier drafts of the thesis and for allowing me to use much of his unpublished data on insects associated with native Solanum species.
    [Show full text]
  • Phylogeny and Nomenclature of the Box Tree Moth, Cydalima Perspectalis (Walker, 1859) Comb
    Eur. J. Entomol. 107: 393–400, 2010 http://www.eje.cz/scripts/viewabstract.php?abstract=1550 ISSN 1210-5759 (print), 1802-8829 (online) Phylogeny and nomenclature of the box tree moth, Cydalima perspectalis (Walker, 1859) comb. n., which was recently introduced into Europe (Lepidoptera: Pyraloidea: Crambidae: Spilomelinae) RICHARD MALLY and MATTHIAS NUSS Museum of Zoology, Koenigsbruecker Landstrasse 159, 01109 Dresden, Germany; e-mails: [email protected]; [email protected] Key words. Crambidae, Spilomelinae, box tree moth, generic placement, Diaphania, Glyphodes, Neoglyphodes, Palpita, Cydalima perspectalis, new combination, taxonomy, phylogeny, morphology, nomenclature Abstract. The box tree moth, Cydalima perspectalis (Walker, 1859) comb. n., is native to India, China, Korea, Japan and the Rus- sian Far East. Its larvae are a serious pest of different species of Buxus. Recently, C. perspectalis was introduced into Europe and first recorded from Germany in 2006. This species has been placed in various spilomeline genera including Palpita Hübner, 1808, Diaphania Hübner, 1818, Glyphodes Guenée, 1854 and the monotypic Neoglyphodes Streltzov, 2008. In order to solve this nomen- clatural confusion and to find a reasonable and verifiable generic placement for the box tree moth, the morphology of the above mentioned and some additional spilomeline taxa was investigated and their phylogeny analysed. The results show that C. perspec- talis belongs to a monophylum that includes three of the genera in which it was previously placed: Glyphodes, Diaphania and Pal- pita. Within this monophylum, it is closely related to the Asian Cydalima Lederer, 1863. As a result of this analysis, Sisyrophora Lederer, 1863 syn. rev. and Neoglyphodes Streltzov, 2008 syn.
    [Show full text]
  • Forecasting Attacks by Pest Insects of Cruciferous Crops Rosemary H
    The management of diamondback moth and other crucifer pests Forecasting attacks by pest insects of cruciferous crops Rosemary H Collier and Stan Finch Horticulture Research International, Wellesbourne, Warwick CV35 9EF UK Corresponding author: [email protected] Abstract The timing of pest insect attacks can vary greatly from region to region and from year to year. A simulation method, based on rates of insect development, has been developed for forecasting the timing of insect attacks on cruciferous crops. The method is based on using a fixed number of individuals from one generation to the next and simulates the timing of events in the life cycle of the pests rather than their population dynamics. Forecasts produced for the cabbage root fly, the bronzed-blossom beetle and various species of Lepidoptera have been validated using pest monitoring data. Forecasts can be generated on either a regional basis from standard meteorological data, or on a local basis from air and soil temperatures collected by participating growers. Introduction Pest insects of horticultural crops are often controlled by spraying insecticide onto established crops. Such sprays are used against root-feeding insects because the insecticides applied at drilling or planting have usually degraded by the time the later generations of the pest become active. Sprays are also the simplest way of controlling foliar pests such as aphids and caterpillars. As the majority of insecticides recommended currently are of relatively short persistence, treatments are most effective if they are targeted to coincide with periods of peak pest activity. Unfortunately, the timing of such peaks can vary considerably from region to region and from year to year.
    [Show full text]
  • %' Sciencedirect Phylogenetic Relationships of Egg Parasitoids
    Available online at www.sciencedirect.com MOLECULAR PHYLOGENETICS %' ScienceDirect AND EVOLUTION ELSEVIER Molecular Phylogenetics and Evolution 42 (2007) 573-584 www.elsevier.com/locate/ympev Phylogenetic relationships of egg parasitoids (Hymenoptera: Eulophidae) and correlated life history characteristics of their Neotropical Cassidinae hosts (Coleoptera, Chrysomelidae) M. Cuigneta, T. Hance a'*, DM. Windsor b a Unite d'ecologie et de biogeographie, Centre de recherche sur la biodiversite, Place Croix-du-Sud 4-5, 1348 Louvain-la-Neuve, Belgium Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama Received 11 March 2005; revised 13 October 2005; accepted 1 September 2006 Available online 16 September 2006 Abstract Egg parasitoids in the family Eulophidae (Hymenoptera) are an important part of the community of insects attacking neotropical leaf beetles in the subfamily Cassidinae. We present a phytogeny of 24 species of oophagous Eulophidae, using the 28S rDNA, the ITS2 rDNA and the cytochrome b genes, applying the NJ, MP, ML and Bayesian tree reconstruction methods on each data set. We ask whether the phylogenetic relationships of the parasitoids are linked with the life history characteristics of their beetle hosts. We show that cladogenesis in the oophagous Eulophidae does correlate with ovipositional behaviour and, to a lesser extent, diet and tribal affinities of their hosts. Additionally using two methods of simultaneous analysis of several gene sets: the Total Evidence method, and the construc- tion of a "supertree" by Matrix Representation Parsimony (MRP), we substantiate the same major phylogenetic relationships within the Eulophidae. © 2006 Elsevier Inc. All rights reserved. Keywords: Eulophidae; Cassidinae; Parasitoid; Supertree; Total Evidence; Matrix Representation Parsimony 1.
    [Show full text]
  • Species of Galerucinae (Coleoptera: Chrysomelidae) Associated to Fragments of Tropical Subcaducifolious Forest from the State of Tamaulipas, Mexico
    ECOLOGÍA Y COMPORTAMIENTO ISSN: 2448-475X ESPECIES DE GALERUCINAE (COLEOPTERA: CHRYSOMELIDAE) ASOCIADAS A FRAGMENTOS DE BOSQUE TROPICAL DEL ESTADO DE TAMAULIPAS José Norberto Lucio-García1, Uriel Jeshua Sánchez-Reyes3, Jorge Víctor Horta-Vega1, Juana María Coronado-Blanco2, Jesús Lumar Reyes-Muñoz4 y Santiago Niño-Maldonado2 1Tecnológico Nacional de México-Instituto Tecnológico de Cd. Victoria, Blvd. Emilio Portes Gil No. 1301, C. P. 87010. Cd. Victoria, Tamaulipas, México. 2Universidad Autónoma de Tamaulipas, Facultad de Ingeniería y Ciencias, Centro Universitario Victoria, C. P. 87149. Cd. Victoria, Tamaulipas, México. 3Universidad Autónoma de Querétaro, Facultad de Ciencias Naturales, Avenida de las Ciencias, s/n, C. P. 76230. Juriquilla, Querétaro, México. 4Universidad Juárez del Estado de Durango, Facultad de Ciencias Biológicas. Av. Universidad S/N, Fracc. Filadelfia, C. P. 35010 Gómez Palacio, Durango. Autor de correspondencia: [email protected] RESUMEN. El objetivo de este trabajo fue realizar un inventario faunístico actualizado de Galerucinae, en fragmentos de Bosque Tropical Subcaducifolio (BTS) pertenecientes a cuatro localidades del estado de Tamaulipas, así como determinar su similitud faunística. Se enlistaron un total de 53 especies en 31 géneros, lo cual representa el 22 % de los géneros y el 6 % de las especies en relación con lo registrado para México, así como un 55 % y 65 %, respectivamente, de lo reportado a nivel estatal. Los géneros con mayor número de especies fueron Diabrotica (7), Acalymma (5), Disonycha (4), Alagoasa y Asphaera (3). Además, se enlistan especies no registradas para el estado de Tamaulipas de acuerdo con la revisión taxonómica del grupo. El análisis de Sörensen indicó un 35.1 % de similitud faunística entre la Reserva de la Biosfera el Cielo y el Cañón de la Peregrina, con nueve especies comunes, mientras que el resto de las comparaciones mostró valores inferiores.
    [Show full text]
  • Carabid Beetle Diversity and Distribution in Boston Harbor Islands National Park Area (Coleoptera, Carabidae)
    Carabid beetle diversity and distribution in Boston Harbor Islands national park area (Coleoptera, Carabidae) The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Davidson R.L., J. Rykken, and B. Farrell. 2011. "Carabid beetle diversity and distribution in Boston Harbor Islands national park area (Coleoptera, Carabidae)." In Erwin T (Ed) Proceedings of a symposium honoring the careers of Ross and Joyce Bell and their contributions to scientific work. Burlington, Vermont, 12–15 June 2010. ZooKeys 147: 497– 526. doi: 10.3897/zookeys.147.2111 Published Version 10.3897/zookeys.147.2111 Citable link https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37368731 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA A peer-reviewed open-access journal ZooKeys Carabid147: 497–526 beetle (2011) diversity and distribution in Boston Harbor Islands national park area.... 497 doi: 10.3897/zookeys.147.2111 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research Carabid beetle diversity and distribution in Boston Harbor Islands national park area (Coleoptera, Carabidae) Robert L. Davidson1, Jessica Rykken2, Brian Farrell2 1 Section of Invertebrate Zoology, Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh PA 15213 2 Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138 Corresponding author: Robert L. Davidson ([email protected]) Academic editor: T. Erwin | Received 16 May 2011 | Accepted 20 September 2011 | Published 16 November 2011 Citation: Davidson RL, Rykken J, Farrell B (2011) Carabid beetle diversity and distribution in Boston Harbor Islands national park area (Coleoptera, Carabidae).
    [Show full text]
  • (Coleóptera: Chrysomelidae) and Their Amaranthaceous Hosts
    -mm TB 1593/6/79 ^^-— Op • ^~^ PROBABLE EVOLUTION AND MORPHOLOGICAL VARIATION IN SOUTH AMERICAN DISONYCHINE FLEA BEETLES (COLEÓPTERA: CHRYSOMELIDAE) AND THEIR AMARANTHACEOUS HOSTS O CZ-n ^"-"i ; CD . " • - /^^x UNITED STATES TECHNICAL PREPARED BY (iLyi) DEPARTMENT OF BULLETIN SCIENCE AND ^^»^ AGRICULTURE NUMBER 1593 EDUCATION ADMINISTRATION Probable Evolution and Morphological Variation in South American Disonychine Flea Beetles (Coleóptera : Chrysomelidae) and Their Amaranthaceous Hosts ^ Document Delivery Services Branch USDA, National Agricultural Library Nal B!dg. 10301 Baltimore Blvd. Beltsville. MD 20705-2351 Floating-mat gi-owth habit of alligatorweed. A, Alligatorweed growing in pure stand as floating mats prior to establishment of biocontrol agents at Blue Lake, an oxbow lake, in the Yazco Basin of the Mississippi River alluvial plain near Itta Bena, Miss. B, The reach of alligatorweed from the floating-mat edge is comparable to the free-ñoating Altenia»tl>em hasslerifnia. the closest relative of alligatorweed. From the mat margin, erect stems increase in length toward the maximum attained in the mat interior. Compare the length of ascending stems with that shown in figure 7. Probable Evolution and Morphological Variation in South American Disonychine Flea Beetles (Coleóptera : Chrysomelidae) and Their Amaranthaceous Hosts G. B. Vogt, research entomologist, J. U. McGuire, Jr., mathematical statistician, and A. D. Cushman, scientific illustrator Science and Education Administration USD A Technical Bulletin No. 1593 UNITED STATES DEPARTMENT OF AGRICULTURE Science and Education Administration in cooperation with Mississippi Agricultural and Forestry Experiment Station Trade names are used in this publication solely for the purpose of providing specific information. Mention of a trade name does not constitute a guarantee or warranty of the product by the U.S.
    [Show full text]