Assesment and Interpretation of Negative Forelimb Allometry in the Evolution of Non- Avian Theropoda José A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Anchiornis and Scansoriopterygidae
SpringerBriefs in Earth System Sciences SpringerBriefs South America and the Southern Hemisphere Series Editors Gerrit Lohmann Lawrence A. Mysak Justus Notholt Jorge Rabassa Vikram Unnithan For further volumes: http://www.springer.com/series/10032 Federico L. Agnolín · Fernando E. Novas Avian Ancestors A Review of the Phylogenetic Relationships of the Theropods Unenlagiidae, Microraptoria, Anchiornis and Scansoriopterygidae 1 3 Federico L. Agnolín “Félix de Azara”, Departamento de Ciencias Naturales Fundación de Historia Natural, CEBBAD, Universidad Maimónides Buenos Aires Argentina Fernando E. Novas CONICET, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” Buenos Aires Argentina ISSN 2191-589X ISSN 2191-5903 (electronic) ISBN 978-94-007-5636-6 ISBN 978-94-007-5637-3 (eBook) DOI 10.1007/978-94-007-5637-3 Springer Dordrecht Heidelberg New York London Library of Congress Control Number: 2012953463 © The Author(s) 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. -
Acoustic Monitoring of Night-Migrating Birds: a Progress Report
Acoustic Monitoring of Night-Migrating Birds: A Progress Report William R. Evans Kenneth V. Rosenberg Abstract—This paper discusses an emerging methodology that to give regular vocalizations in night migration are the vireos uses electronic technology to monitor vocalizations of night-migrat- (Vireonidae), flycatchers (Tyrannidae), and orioles (Icterinae). ing birds. On a good migration night in eastern North America, If a monitoring protocol is consistently maintained, an array thousands of call notes may be recorded from a single ground-based, of microphone stations can provide information on how the audio-recording station, and an array of recording stations across a species composition and number of vocal migrants vary across region may serve as a “recording net” to monitor a broad front of time and space. Such data have application for monitoring migration. Data from pilot studies in Florida, Texas, New York, and avian populations and identifying their migration routes. In British Columbia illustrate the potential of this technique to gather addition, detection and classification of distinctive call-types information that cannot be gathered by more conventional methods, is possible with computers (Mills 1995; Taylor 1995), thus such as mist-netting or diurnal counts. For example, the Texas information on bird populations might be gained automati- station detected a major migration of grassland sparrows, and a cally. In this paper, we summarize the current state of station in British Columbia detected hundreds of Swainson’s knowledge for identifying night-flight calls to species; present Thrushes; both phenomena were not detected with ground monitor- selected results from four ongoing studies that are monitoring ing efforts. -
LETTER Doi:10.1038/Nature14423
LETTER doi:10.1038/nature14423 A bizarre Jurassic maniraptoran theropod with preserved evidence of membranous wings Xing Xu1,2*, Xiaoting Zheng1,3*, Corwin Sullivan2, Xiaoli Wang1, Lida Xing4, Yan Wang1, Xiaomei Zhang3, Jingmai K. O’Connor2, Fucheng Zhang2 & Yanhong Pan5 The wings of birds and their closest theropod relatives share a ratios are 1.16 and 1.08, respectively, compared to 0.96 and 0.78 in uniform fundamental architecture, with pinnate flight feathers Epidendrosaurus and 0.79 and 0.66 in Epidexipteryx), an extremely as the key component1–3. Here we report a new scansoriopterygid short humeral deltopectoral crest, and a long rod-like bone articu- theropod, Yi qi gen. et sp. nov., based on a new specimen from the lating with the wrist. Middle–Upper Jurassic period Tiaojishan Formation of Hebei Key osteological features are as follows. STM 31-2 (Fig. 1) is inferred Province, China4. Yi is nested phylogenetically among winged ther- to be an adult on the basis of the closed neurocentral sutures of the opods but has large stiff filamentous feathers of an unusual type on visible vertebrae, although this is not a universal criterion for maturity both the forelimb and hindlimb. However, the filamentous feath- across archosaurian taxa12. Its body mass is estimated to be approxi- ers of Yi resemble pinnate feathers in bearing morphologically mately 380 g, using an empirical equation13. diverse melanosomes5. Most surprisingly, Yi has a long rod-like The skull and mandible are similar to those of other scansoriopter- bone extending from each wrist, and patches of membranous tissue ygids, and to a lesser degree to those of oviraptorosaurs and some basal preserved between the rod-like bones and the manual digits. -
A New Raptorial Dinosaur with Exceptionally Long Feathering Provides Insights Into Dromaeosaurid flight Performance
ARTICLE Received 11 Apr 2014 | Accepted 11 Jun 2014 | Published 15 Jul 2014 DOI: 10.1038/ncomms5382 A new raptorial dinosaur with exceptionally long feathering provides insights into dromaeosaurid flight performance Gang Han1, Luis M. Chiappe2, Shu-An Ji1,3, Michael Habib4, Alan H. Turner5, Anusuya Chinsamy6, Xueling Liu1 & Lizhuo Han1 Microraptorines are a group of predatory dromaeosaurid theropod dinosaurs with aero- dynamic capacity. These close relatives of birds are essential for testing hypotheses explaining the origin and early evolution of avian flight. Here we describe a new ‘four-winged’ microraptorine, Changyuraptor yangi, from the Early Cretaceous Jehol Biota of China. With tail feathers that are nearly 30 cm long, roughly 30% the length of the skeleton, the new fossil possesses the longest known feathers for any non-avian dinosaur. Furthermore, it is the largest theropod with long, pennaceous feathers attached to the lower hind limbs (that is, ‘hindwings’). The lengthy feathered tail of the new fossil provides insight into the flight performance of microraptorines and how they may have maintained aerial competency at larger body sizes. We demonstrate how the low-aspect-ratio tail of the new fossil would have acted as a pitch control structure reducing descent speed and thus playing a key role in landing. 1 Paleontological Center, Bohai University, 19 Keji Road, New Shongshan District, Jinzhou, Liaoning Province 121013, China. 2 Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA. 3 Institute of Geology, Chinese Academy of Geological Sciences, 26 Baiwanzhuang Road, Beijing 100037, China. 4 University of Southern California, Health Sciences Campus, BMT 403, Mail Code 9112, Los Angeles, California 90089, USA. -
A New Crested Theropod Dinosaur from the Early Jurassic of Yunnan
第55卷 第2期 古 脊 椎 动 物 学 报 pp. 177-186 2017年4月 VERTEBRATA PALASIATICA figs. 1-3 A new crested theropod dinosaur from the Early Jurassic of Yunnan Province, China WANG Guo-Fu1,2 YOU Hai-Lu3,4* PAN Shi-Gang5 WANG Tao5 (1 Fossil Research Center of Chuxiong Prefecture, Yunnan Province Chuxiong, Yunnan 675000) (2 Chuxiong Prefectural Museum Chuxiong, Yunnan 675000) (3 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044 * Corresponding author: [email protected]) (4 College of Earth Sciences, University of Chinese Academy of Sciences Beijing 100049) (5 Bureau of Land and Resources of Lufeng County Lufeng, Yunnan 650031) Abstract A new crested theropod, Shuangbaisaurus anlongbaoensis gen. et sp. nov., is reported. The new taxon is recovered from the Lower Jurassic Fengjiahe Formation of Shuangbai County, Chuxiong Yi Autonomous Prefecture, Yunnan Province, and is represented by a partial cranium. Shuangbaisaurus is unique in possessing parasagittal crests along the orbital dorsal rims. It is also distinguishable from the other two lager-bodied parasagittal crested Early Jurassic theropods (Dilophosaurus and Sinosaurus) by a unique combination of features, such as higher than long premaxillary body, elevated ventral edge of the premaxilla, and small upper temporal fenestra. Comparative morphological study indicates that “Dilophosaurus” sinensis could potentially be assigned to Sinosaurus, but probably not to the type species. The discovery of Shuangbaisaurus will help elucidate the evolution of basal theropods, especially the role of various bony cranial ornamentations had played in the differentiation of early theropods. -
Preliminary Description of Coelophysoids (Dinosauria:Theropoda) from the Upper Triassic (Revuletian:Early-Mid Norian) Snyder Quarry, North-Central New Mexico
Lucas, S.G., and Heckert. A.B., eds., 2000, Dinosaurs of New Mexico. New Mexico Museum of Natural History and Science Bulletin No. 17. 27 PRELIMINARY DESCRIPTION OF COELOPHYSOIDS (DINOSAURIA:THEROPODA) FROM THE UPPER TRIASSIC (REVULETIAN:EARLY-MID NORIAN) SNYDER QUARRY, NORTH-CENTRAL NEW MEXICO ANDREW B. HECKERT!, KATE E. ZEIGLER!, SPENCER G. LUCAS2, LARRY F. RINEHARP, and JERALD D. HARRIS2 'Deparbnent of parth & Planetary Sciences, University of New Mexico, Albuquerque, NM 87131-1116; 'New Mexico Museum of Natural History and Science, 1801 Mountain Road NW, Albuquerque, NM 87104 Abstract-The Upper Triassic Snyder quarry is the second-most productive theropod locality in the Chinle Group. Skull and postcranialelements, particularly tibiae, collected from the Snyder quarry during the last three field seasons demonstrate the presence of at least four individuals of two taxa. The smaller theropod strongly resembles, but is distinct from, the holotype of Eucoelophysis baldwini Sullivan and Lucas and represents either a sexual dimorph or, more likely, a new species of Eucoelophysis. The larger theropod is represented by a single, incomplete fused tibia-fibula-astragalus-calcaneum. Most striking about this taxon is the proximal fusion of the tibia and fibula. These theropods are a small fraction of a rich and diverse assemblage of Upper Triassic vertebrates and invertebrates from the most productive Chinle Group vertebrate fossil assemblage discovered in the last 50 years. INTRODUCTION In 1998, Mark Snyder of Del Mar, California, discovered a spectacular assemblage of fossil vertebrates in the badlands of the Upper Triassic Petrified Forest Formation near Ghost Ranch, north-central New Mexico (Fig. 1). -
A Bird's Eye View of the Evolution of Avialan Flight
Chapter 12 Navigating Functional Landscapes: A Bird’s Eye View of the Evolution of Avialan Flight HANS C.E. LARSSON,1 T. ALEXANDER DECECCHI,2 MICHAEL B. HABIB3 ABSTRACT One of the major challenges in attempting to parse the ecological setting for the origin of flight in Pennaraptora is determining the minimal fluid and solid biomechanical limits of gliding and powered flight present in extant forms and how these minima can be inferred from the fossil record. This is most evident when we consider the fact that the flight apparatus in extant birds is a highly integrated system with redundancies and safety factors to permit robust performance even if one or more components of their flight system are outside their optimal range. These subsystem outliers may be due to other adaptive roles, ontogenetic trajectories, or injuries that are accommodated by a robust flight system. This means that many metrics commonly used to evaluate flight ability in extant birds are likely not going to be precise in delineating flight style, ability, and usage when applied to transitional taxa. Here we build upon existing work to create a functional landscape for flight behavior based on extant observations. The functional landscape is like an evolutionary adap- tive landscape in predicting where estimated biomechanically relevant values produce functional repertoires on the landscape. The landscape provides a quantitative evaluation of biomechanical optima, thus facilitating the testing of hypotheses for the origins of complex biomechanical func- tions. Here we develop this model to explore the functional capabilities of the earliest known avialans and their sister taxa. -
How High Do Birds Fly? a Review of Current Datasets and an Appraisal of Current Methodologies for Collecting Flight Height Data: Literature Review
BTO Research Report No. 666 How high do birds fly? A review of current datasets and an appraisal of current methodologies for collecting flight height data: Literature review Authors Chris B. Thaxter1, Viola H. Ross-Smith and Aonghais, S.C.P. Cook1 1 British Trust for Ornithology, The Nunnery, Thetford, Norfolk IP24 2PU, UK Report of work carried out by the British Trust for Ornithology1 on behalf of Natural England and the Crown Estate August 2015 British Trust for Ornithology The British Trust for Ornithology, The Nunnery, Thetford, Norfolk IP24 2PU Registered Charity No. 216652 2 CONTENTS Page No. List of Tables ........................................................................................................................................... 5 EXECUTIVE SUMMARY ........................................................................................................................... 7 1. INTRODUCTION ....................................................................................................................... 11 1.1 Background .............................................................................................................................. 11 1.2 Project aims and objectives .................................................................................................... 12 2. METHODS ................................................................................................................................ 13 2.1 Literature review .................................................................................................................... -
Exploring Bird Evolution
Jump, Glide, or Fly? Exploring Bird Evolution Activities to accompany the Flap to the Future game 1 The Exploring Bird Evolution activities are part of BirdSleuth K-12 suite of education resources from the Cornell Lab of Ornithology. If you have questions about the BirdSleuth K-12 curriculum, please contact us. Email: [email protected] Phone: (607) 254-2489 Post: 159 Sapsucker Woods Road, Ithaca, NY 14850 Web: www.birdsleuth.org For additional information, useful resources, and direct links to the resources described within this unit, please visit www.birdsleuth.org/flap-to-the-future. Project Manager: Jennifer Fee Curriculum Writers: Brittany Tabora, Lindsay Glasner Editors: Jennifer Fee, Mya Thompson, Noah Warnke The Cornell Lab of Ornithology is a nonprofit membership institution whose mission is to interpret and conserve the earth’s biological diversity through research, education, and citizen science focused on birds. Copyright 2017 Cornell Lab of Ornithology 159 Sapsucker Woods Road Ithaca, NY 14850 2 Welcome to BirdSleuth! The Cornell Lab of Ornithology’s BirdSleuth K-12 program provides resources and training to educators. Our curriculum kits and free resources focus on learning to identify birds, participating in the Lab’s citizen-science projects, getting outdoors, and doing science investigations. Through these activities, we hope to motivate students and encourage their interest in science. Please visit www.birdsleuth.org to learn more about our K-12 resources, connect with us via our social networks, and access our free downloads and easy-to-use curriculum kits. Introduction to Exploring Bird Evolution Flap to the Future: The Flight Adaptations Game by the Cornell Lab of Ornithology’s Bird Academy allows students to explore and understand the adaptations birds have evolved that help them fly. -
Cranial Anatomy of Allosaurus Jimmadseni, a New Species from the Lower Part of the Morrison Formation (Upper Jurassic) of Western North America
Cranial anatomy of Allosaurus jimmadseni, a new species from the lower part of the Morrison Formation (Upper Jurassic) of Western North America Daniel J. Chure1,2,* and Mark A. Loewen3,4,* 1 Dinosaur National Monument (retired), Jensen, UT, USA 2 Independent Researcher, Jensen, UT, USA 3 Natural History Museum of Utah, University of Utah, Salt Lake City, UT, USA 4 Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, USA * These authors contributed equally to this work. ABSTRACT Allosaurus is one of the best known theropod dinosaurs from the Jurassic and a crucial taxon in phylogenetic analyses. On the basis of an in-depth, firsthand study of the bulk of Allosaurus specimens housed in North American institutions, we describe here a new theropod dinosaur from the Upper Jurassic Morrison Formation of Western North America, Allosaurus jimmadseni sp. nov., based upon a remarkably complete articulated skeleton and skull and a second specimen with an articulated skull and associated skeleton. The present study also assigns several other specimens to this new species, Allosaurus jimmadseni, which is characterized by a number of autapomorphies present on the dermal skull roof and additional characters present in the postcrania. In particular, whereas the ventral margin of the jugal of Allosaurus fragilis has pronounced sigmoidal convexity, the ventral margin is virtually straight in Allosaurus jimmadseni. The paired nasals of Allosaurus jimmadseni possess bilateral, blade-like crests along the lateral margin, forming a pronounced nasolacrimal crest that is absent in Allosaurus fragilis. Submitted 20 July 2018 Accepted 31 August 2019 Subjects Paleontology, Taxonomy Published 24 January 2020 Keywords Allosaurus, Allosaurus jimmadseni, Dinosaur, Theropod, Morrison Formation, Jurassic, Corresponding author Cranial anatomy Mark A. -
A Fast-Growing Basal Troodontid (Dinosauria: Theropoda) from The
www.nature.com/scientificreports OPEN A fast‑growing basal troodontid (Dinosauria: Theropoda) from the latest Cretaceous of Europe Albert G. Sellés1,2*, Bernat Vila1,2, Stephen L. Brusatte3, Philip J. Currie4 & Àngel Galobart1,2 A characteristic fauna of dinosaurs and other vertebrates inhabited the end‑Cretaceous European archipelago, some of which were dwarves or had other unusual features likely related to their insular habitats. Little is known, however, about the contemporary theropod dinosaurs, as they are represented mostly by teeth or other fragmentary fossils. A new isolated theropod metatarsal II, from the latest Maastrichtian of Spain (within 200,000 years of the mass extinction) may represent a jinfengopterygine troodontid, the frst reported from Europe. Comparisons with other theropods and phylogenetic analyses reveal an autapomorphic foramen that distinguishes it from all other troodontids, supporting its identifcation as a new genus and species, Tamarro insperatus. Bone histology shows that it was an actively growing subadult when it died but may have had a growth pattern in which it grew rapidly in early ontogeny and attained a subadult size quickly. We hypothesize that it could have migrated from Asia to reach the Ibero‑Armorican island no later than Cenomanian or during the Maastrichtian dispersal events. During the latest Cretaceous (ca. 77–66 million years ago) in the run-up to the end-Cretaceous mass extinc- tion, Europe was a series of islands populated by diverse and distinctive communities of dinosaurs and other vertebrates. Many of these animals exhibited peculiar features that may have been generated by lack of space and resources in their insular habitats. -
New Tyrannosaur from the Mid-Cretaceous of Uzbekistan Clarifies Evolution of Giant Body Sizes and Advanced Senses in Tyrant Dinosaurs
New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs Stephen L. Brusattea,1, Alexander Averianovb,c, Hans-Dieter Suesd, Amy Muira, and Ian B. Butlera aSchool of GeoSciences, University of Edinburgh, Edinburgh EH9 3FE, United Kingdom; bZoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russia; cDepartment of Sedimentary Geology, Saint Petersburg State University, St. Petersburg 199178, Russia; and dDepartment of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560 Edited by Neil H. Shubin, The University of Chicago, Chicago, IL, and approved January 29, 2016 (received for review January 5, 2016) Tyrannosaurids—the familiar group of carnivorous dinosaurs in- We here report the first diagnostic tyrannosauroid from the mid- cluding Tyrannosaurus and Albertosaurus—were the apex predators Cretaceous, a new species from the Turonian (ca. 90–92 million in continental ecosystems in Asia and North America during the years ago) Bissekty Formation of Uzbekistan. This formation has latest Cretaceous (ca. 80–66 million years ago). Their colossal sizes recently emerged as one of the most important records of mid- and keen senses are considered key to their evolutionary and eco- Cretaceous dinosaurs globally (9–11). Possible tyrannosauroid logical success, but little is known about how these features devel- specimens from the Bissekty Formation were reported more than oped as tyrannosaurids evolved from smaller basal tyrannosauroids a half century ago (12), and, more recently, several isolated fossils that first appeared in the fossil record in the Middle Jurassic (ca. 170 were assigned to the group (9, 13), but none of these has been million years ago).